nvidia-texture-tools/extern/butteraugli/butteraugli.cc

1589 lines
50 KiB
C++
Raw Normal View History

2017-02-08 19:42:25 +00:00
// Copyright 2016 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Author: Jyrki Alakuijala (jyrki.alakuijala@gmail.com)
//
// The physical architecture of butteraugli is based on the following naming
// convention:
// * Opsin - dynamics of the photosensitive chemicals in the retina
// with their immediate electrical processing
// * Xyb - hybrid opponent/trichromatic color space
// x is roughly red-subtract-green.
// y is yellow.
// b is blue.
// Xyb values are computed from Opsin mixing, not directly from rgb.
// * Mask - for visual masking
// * Hf - color modeling for spatially high-frequency features
// * Lf - color modeling for spatially low-frequency features
// * Diffmap - to cluster and build an image of error between the images
// * Blur - to hold the smoothing code
#include "butteraugli.h"
#include <assert.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <array>
// Restricted pointers speed up Convolution(); MSVC uses a different keyword.
#ifdef _MSC_VER
#define __restrict__ __restrict
#endif
namespace butteraugli {
void *CacheAligned::Allocate(const size_t bytes) {
char *const allocated = static_cast<char *>(malloc(bytes + kCacheLineSize));
if (allocated == nullptr) {
return nullptr;
}
const uintptr_t misalignment =
reinterpret_cast<uintptr_t>(allocated) & (kCacheLineSize - 1);
// malloc is at least kPointerSize aligned, so we can store the "allocated"
// pointer immediately before the aligned memory.
assert(misalignment % kPointerSize == 0);
char *const aligned = allocated + kCacheLineSize - misalignment;
memcpy(aligned - kPointerSize, &allocated, kPointerSize);
return aligned;
}
void CacheAligned::Free(void *aligned_pointer) {
if (aligned_pointer == nullptr) {
return;
}
char *const aligned = static_cast<char *>(aligned_pointer);
assert(reinterpret_cast<uintptr_t>(aligned) % kCacheLineSize == 0);
char *allocated;
memcpy(&allocated, aligned - kPointerSize, kPointerSize);
assert(allocated <= aligned - kPointerSize);
assert(allocated >= aligned - kCacheLineSize);
free(allocated);
}
static inline bool IsNan(const float x) {
uint32_t bits;
memcpy(&bits, &x, sizeof(bits));
const uint32_t bitmask_exp = 0x7F800000;
return (bits & bitmask_exp) == bitmask_exp && (bits & 0x7FFFFF);
}
static inline bool IsNan(const double x) {
uint64_t bits;
memcpy(&bits, &x, sizeof(bits));
return (0x7ff0000000000001ULL <= bits && bits <= 0x7fffffffffffffffULL) ||
(0xfff0000000000001ULL <= bits && bits <= 0xffffffffffffffffULL);
}
static inline void CheckImage(const ImageF &image, const char *name) {
for (size_t y = 0; y < image.ysize(); ++y) {
ConstRestrict<const float *> row = image.Row(y);
for (size_t x = 0; x < image.xsize(); ++x) {
if (IsNan(row[x])) {
printf("Image %s @ %lu,%lu (of %lu,%lu)\n", name, x, y, image.xsize(),
image.ysize());
exit(1);
}
}
}
}
#if BUTTERAUGLI_ENABLE_CHECKS
#define CHECK_NAN(x, str) \
do { \
if (IsNan(x)) { \
printf("%d: %s\n", __LINE__, str); \
abort(); \
} \
} while (0)
#define CHECK_IMAGE(image, name) CheckImage(image, name)
#else
#define CHECK_NAN(x, str)
#define CHECK_IMAGE(image, name)
#endif
static const double kInternalGoodQualityThreshold = 14.921561160295326;
static const double kGlobalScale = 1.0 / kInternalGoodQualityThreshold;
inline double DotProduct(const double u[3], const double v[3]) {
return u[0] * v[0] + u[1] * v[1] + u[2] * v[2];
}
inline double DotProduct(const float u[3], const double v[3]) {
return u[0] * v[0] + u[1] * v[1] + u[2] * v[2];
}
// Computes a horizontal convolution and transposes the result.
static void Convolution(size_t xsize, size_t ysize,
size_t xstep,
size_t len, size_t offset,
const float* __restrict__ multipliers,
const float* __restrict__ inp,
double border_ratio,
float* __restrict__ result) {
PROFILER_FUNC;
double weight_no_border = 0;
for (int j = 0; j <= 2 * offset; ++j) {
weight_no_border += multipliers[j];
}
for (size_t x = 0, ox = 0; x < xsize; x += xstep, ox++) {
int minx = x < offset ? 0 : x - offset;
int maxx = std::min(xsize, x + len - offset) - 1;
double weight = 0.0;
for (int j = minx; j <= maxx; ++j) {
weight += multipliers[j - x + offset];
}
// Interpolate linearly between the no-border scaling and border scaling.
weight = (1.0 - border_ratio) * weight + border_ratio * weight_no_border;
double scale = 1.0 / weight;
for (size_t y = 0; y < ysize; ++y) {
double sum = 0.0;
for (int j = minx; j <= maxx; ++j) {
sum += inp[y * xsize + j] * multipliers[j - x + offset];
}
result[ox * ysize + y] = sum * scale;
}
}
}
void Blur(size_t xsize, size_t ysize, float* channel, double sigma,
double border_ratio) {
PROFILER_FUNC;
double m = 2.25; // Accuracy increases when m is increased.
const double scaler = -1.0 / (2 * sigma * sigma);
// For m = 9.0: exp(-scaler * diff * diff) < 2^ {-52}
const int diff = std::max<int>(1, m * fabs(sigma));
const int expn_size = 2 * diff + 1;
std::vector<float> expn(expn_size);
for (int i = -diff; i <= diff; ++i) {
expn[i + diff] = exp(scaler * i * i);
}
const int xstep = std::max(1, int(sigma / 3));
const int ystep = xstep;
int dxsize = (xsize + xstep - 1) / xstep;
int dysize = (ysize + ystep - 1) / ystep;
std::vector<float> tmp(dxsize * ysize);
std::vector<float> downsampled_output(dxsize * dysize);
Convolution(xsize, ysize, xstep, expn_size, diff, expn.data(), channel,
border_ratio,
tmp.data());
Convolution(ysize, dxsize, ystep, expn_size, diff, expn.data(), tmp.data(),
border_ratio,
downsampled_output.data());
for (int y = 0; y < ysize; y++) {
for (int x = 0; x < xsize; x++) {
// TODO: Use correct rounding.
channel[y * xsize + x] =
downsampled_output[(y / ystep) * dxsize + (x / xstep)];
}
}
}
// To change this to n, add the relevant FFTn function and kFFTnMapIndexTable.
constexpr size_t kBlockEdge = 8;
constexpr size_t kBlockSize = kBlockEdge * kBlockEdge;
constexpr size_t kBlockEdgeHalf = kBlockEdge / 2;
constexpr size_t kBlockHalf = kBlockEdge * kBlockEdgeHalf;
// Contrast sensitivity related weights.
static const double *GetContrastSensitivityMatrix() {
static double csf8x8[kBlockHalf + kBlockEdgeHalf + 1] = {
5.28270670524,
0.0,
0.0,
0.0,
0.3831134973,
0.676303603859,
3.58927792424,
18.6104367002,
18.6104367002,
3.09093131948,
1.0,
0.498250875965,
0.36198671102,
0.308982169883,
0.1312701920435,
2.37370549629,
3.58927792424,
1.0,
2.37370549629,
0.991205724152,
1.05178802919,
0.627264168628,
0.4,
0.1312701920435,
0.676303603859,
0.498250875965,
0.991205724152,
0.5,
0.3831134973,
0.349686450518,
0.627264168628,
0.308982169883,
0.3831134973,
0.36198671102,
1.05178802919,
0.3831134973,
0.12,
};
return &csf8x8[0];
}
std::array<double, 21> MakeHighFreqColorDiffDx() {
std::array<double, 21> lut;
static const double off = 11.38708334481672;
static const double inc = 14.550189611520716;
lut[1] = off;
for (int i = 2; i < 21; ++i) {
lut[i] = lut[i - 1] + inc;
}
return lut;
}
const double *GetHighFreqColorDiffDx() {
static const std::array<double, 21> kLut = MakeHighFreqColorDiffDx();
return kLut.data();
}
std::array<double, 21> MakeHighFreqColorDiffDy() {
std::array<double, 21> lut;
static const double off = 1.4103373714040413;
static const double inc = 0.7084088867024;
lut[1] = off;
for (int i = 2; i < 21; ++i) {
lut[i] = lut[i - 1] + inc;
}
return lut;
}
const double *GetHighFreqColorDiffDy() {
static const std::array<double, 21> kLut = MakeHighFreqColorDiffDy();
return kLut.data();
}
std::array<double, 21> MakeLowFreqColorDiffDy() {
std::array<double, 21> lut;
static const double inc = 5.2511644570349185;
for (int i = 1; i < 21; ++i) {
lut[i] = lut[i - 1] + inc;
}
return lut;
}
const double *GetLowFreqColorDiffDy() {
static const std::array<double, 21> kLut = MakeLowFreqColorDiffDy();
return kLut.data();
}
inline double Interpolate(const double *array, int size, double sx) {
double ix = fabs(sx);
assert(ix < 10000);
int baseix = static_cast<int>(ix);
double res;
if (baseix >= size - 1) {
res = array[size - 1];
} else {
double mix = ix - baseix;
int nextix = baseix + 1;
res = array[baseix] + mix * (array[nextix] - array[baseix]);
}
if (sx < 0) res = -res;
return res;
}
inline double InterpolateClampNegative(const double *array,
int size, double sx) {
if (sx < 0) {
sx = 0;
}
double ix = fabs(sx);
int baseix = static_cast<int>(ix);
double res;
if (baseix >= size - 1) {
res = array[size - 1];
} else {
double mix = ix - baseix;
int nextix = baseix + 1;
res = array[baseix] + mix * (array[nextix] - array[baseix]);
}
return res;
}
void RgbToXyb(double r, double g, double b,
double *valx, double *valy, double *valz) {
static const double a0 = 1.01611726948;
static const double a1 = 0.982482243696;
static const double a2 = 1.43571362627;
static const double a3 = 0.896039849412;
*valx = a0 * r - a1 * g;
*valy = a2 * r + a3 * g;
*valz = b;
}
static inline void XybToVals(double x, double y, double z,
double *valx, double *valy, double *valz) {
static const double xmul = 0.758304045695;
static const double ymul = 2.28148649801;
static const double zmul = 1.87816926918;
*valx = Interpolate(GetHighFreqColorDiffDx(), 21, x * xmul);
*valy = Interpolate(GetHighFreqColorDiffDy(), 21, y * ymul);
*valz = zmul * z;
}
// Rough psychovisual distance to gray for low frequency colors.
static void XybLowFreqToVals(double x, double y, double z,
double *valx, double *valy, double *valz) {
static const double xmul = 6.64482198135;
static const double ymul = 0.837846224276;
static const double zmul = 7.34905756986;
static const double y_to_z_mul = 0.0812519812628;
z += y_to_z_mul * y;
*valz = z * zmul;
*valx = x * xmul;
*valy = Interpolate(GetLowFreqColorDiffDy(), 21, y * ymul);
}
double RemoveRangeAroundZero(double v, double range) {
if (v >= -range && v < range) {
return 0;
}
if (v < 0) {
return v + range;
} else {
return v - range;
}
}
void XybDiffLowFreqSquaredAccumulate(double r0, double g0, double b0,
double r1, double g1, double b1,
double factor, double res[3]) {
double valx0, valy0, valz0;
double valx1, valy1, valz1;
XybLowFreqToVals(r0, g0, b0, &valx0, &valy0, &valz0);
if (r1 == 0.0 && g1 == 0.0 && b1 == 0.0) {
PROFILER_ZONE("XybDiff r1=g1=b1=0");
res[0] += factor * valx0 * valx0;
res[1] += factor * valy0 * valy0;
res[2] += factor * valz0 * valz0;
return;
}
XybLowFreqToVals(r1, g1, b1, &valx1, &valy1, &valz1);
// Approximate the distance of the colors by their respective distances
// to gray.
double valx = valx0 - valx1;
double valy = valy0 - valy1;
double valz = valz0 - valz1;
res[0] += factor * valx * valx;
res[1] += factor * valy * valy;
res[2] += factor * valz * valz;
}
struct Complex {
public:
double real;
double imag;
};
inline double abssq(const Complex& c) {
return c.real * c.real + c.imag * c.imag;
}
static void TransposeBlock(Complex data[kBlockSize]) {
for (int i = 0; i < kBlockEdge; i++) {
for (int j = 0; j < i; j++) {
std::swap(data[kBlockEdge * i + j], data[kBlockEdge * j + i]);
}
}
}
// D. J. Bernstein's Fast Fourier Transform algorithm on 4 elements.
inline void FFT4(Complex* a) {
double t1, t2, t3, t4, t5, t6, t7, t8;
t5 = a[2].real;
t1 = a[0].real - t5;
t7 = a[3].real;
t5 += a[0].real;
t3 = a[1].real - t7;
t7 += a[1].real;
t8 = t5 + t7;
a[0].real = t8;
t5 -= t7;
a[1].real = t5;
t6 = a[2].imag;
t2 = a[0].imag - t6;
t6 += a[0].imag;
t5 = a[3].imag;
a[2].imag = t2 + t3;
t2 -= t3;
a[3].imag = t2;
t4 = a[1].imag - t5;
a[3].real = t1 + t4;
t1 -= t4;
a[2].real = t1;
t5 += a[1].imag;
a[0].imag = t6 + t5;
t6 -= t5;
a[1].imag = t6;
}
static const double kSqrtHalf = 0.70710678118654752440084436210484903;
// D. J. Bernstein's Fast Fourier Transform algorithm on 8 elements.
void FFT8(Complex* a) {
double t1, t2, t3, t4, t5, t6, t7, t8;
t7 = a[4].imag;
t4 = a[0].imag - t7;
t7 += a[0].imag;
a[0].imag = t7;
t8 = a[6].real;
t5 = a[2].real - t8;
t8 += a[2].real;
a[2].real = t8;
t7 = a[6].imag;
a[6].imag = t4 - t5;
t4 += t5;
a[4].imag = t4;
t6 = a[2].imag - t7;
t7 += a[2].imag;
a[2].imag = t7;
t8 = a[4].real;
t3 = a[0].real - t8;
t8 += a[0].real;
a[0].real = t8;
a[4].real = t3 - t6;
t3 += t6;
a[6].real = t3;
t7 = a[5].real;
t3 = a[1].real - t7;
t7 += a[1].real;
a[1].real = t7;
t8 = a[7].imag;
t6 = a[3].imag - t8;
t8 += a[3].imag;
a[3].imag = t8;
t1 = t3 - t6;
t3 += t6;
t7 = a[5].imag;
t4 = a[1].imag - t7;
t7 += a[1].imag;
a[1].imag = t7;
t8 = a[7].real;
t5 = a[3].real - t8;
t8 += a[3].real;
a[3].real = t8;
t2 = t4 - t5;
t4 += t5;
t6 = t1 - t4;
t8 = kSqrtHalf;
t6 *= t8;
a[5].real = a[4].real - t6;
t1 += t4;
t1 *= t8;
a[5].imag = a[4].imag - t1;
t6 += a[4].real;
a[4].real = t6;
t1 += a[4].imag;
a[4].imag = t1;
t5 = t2 - t3;
t5 *= t8;
a[7].imag = a[6].imag - t5;
t2 += t3;
t2 *= t8;
a[7].real = a[6].real - t2;
t2 += a[6].real;
a[6].real = t2;
t5 += a[6].imag;
a[6].imag = t5;
FFT4(a);
// Reorder to the correct output order.
// TODO: Modify the above computation so that this is not needed.
Complex tmp = a[2];
a[2] = a[3];
a[3] = a[5];
a[5] = a[7];
a[7] = a[4];
a[4] = a[1];
a[1] = a[6];
a[6] = tmp;
}
// Same as FFT8, but all inputs are real.
// TODO: Since this does not need to be in-place, maybe there is a
// faster FFT than this one, which is derived from DJB's in-place complex FFT.
void RealFFT8(const double* in, Complex* out) {
double t1, t2, t3, t5, t6, t7, t8;
t8 = in[6];
t5 = in[2] - t8;
t8 += in[2];
out[2].real = t8;
out[6].imag = -t5;
out[4].imag = t5;
t8 = in[4];
t3 = in[0] - t8;
t8 += in[0];
out[0].real = t8;
out[4].real = t3;
out[6].real = t3;
t7 = in[5];
t3 = in[1] - t7;
t7 += in[1];
out[1].real = t7;
t8 = in[7];
t5 = in[3] - t8;
t8 += in[3];
out[3].real = t8;
t2 = -t5;
t6 = t3 - t5;
t8 = kSqrtHalf;
t6 *= t8;
out[5].real = out[4].real - t6;
t1 = t3 + t5;
t1 *= t8;
out[5].imag = out[4].imag - t1;
t6 += out[4].real;
out[4].real = t6;
t1 += out[4].imag;
out[4].imag = t1;
t5 = t2 - t3;
t5 *= t8;
out[7].imag = out[6].imag - t5;
t2 += t3;
t2 *= t8;
out[7].real = out[6].real - t2;
t2 += out[6].real;
out[6].real = t2;
t5 += out[6].imag;
out[6].imag = t5;
t5 = out[2].real;
t1 = out[0].real - t5;
t7 = out[3].real;
t5 += out[0].real;
t3 = out[1].real - t7;
t7 += out[1].real;
t8 = t5 + t7;
out[0].real = t8;
t5 -= t7;
out[1].real = t5;
out[2].imag = t3;
out[3].imag = -t3;
out[3].real = t1;
out[2].real = t1;
out[0].imag = 0;
out[1].imag = 0;
// Reorder to the correct output order.
// TODO: Modify the above computation so that this is not needed.
Complex tmp = out[2];
out[2] = out[3];
out[3] = out[5];
out[5] = out[7];
out[7] = out[4];
out[4] = out[1];
out[1] = out[6];
out[6] = tmp;
}
// Fills in block[kBlockEdgeHalf..(kBlockHalf+kBlockEdgeHalf)], and leaves the
// rest unmodified.
void ButteraugliFFTSquared(double block[kBlockSize]) {
double global_mul = 0.000064;
Complex block_c[kBlockSize];
assert(kBlockEdge == 8);
for (int y = 0; y < kBlockEdge; ++y) {
RealFFT8(block + y * kBlockEdge, block_c + y * kBlockEdge);
}
TransposeBlock(block_c);
double r0[kBlockEdge];
double r1[kBlockEdge];
for (int x = 0; x < kBlockEdge; ++x) {
r0[x] = block_c[x].real;
r1[x] = block_c[kBlockHalf + x].real;
}
RealFFT8(r0, block_c);
RealFFT8(r1, block_c + kBlockHalf);
for (int y = 1; y < kBlockEdgeHalf; ++y) {
FFT8(block_c + y * kBlockEdge);
}
for (int i = kBlockEdgeHalf; i < kBlockHalf + kBlockEdgeHalf + 1; ++i) {
block[i] = abssq(block_c[i]);
block[i] *= global_mul;
}
}
// Computes 8x8 FFT of each channel of xyb0 and xyb1 and adds the total squared
// 3-dimensional xybdiff of the two blocks to diff_xyb_{dc,ac} and the average
// diff on the edges to diff_xyb_edge_dc.
void ButteraugliBlockDiff(double xyb0[3 * kBlockSize],
double xyb1[3 * kBlockSize],
double diff_xyb_dc[3],
double diff_xyb_ac[3],
double diff_xyb_edge_dc[3]) {
PROFILER_FUNC;
const double *csf8x8 = GetContrastSensitivityMatrix();
double avgdiff_xyb[3] = {0.0};
double avgdiff_edge[3][4] = { {0.0} };
for (int i = 0; i < 3 * kBlockSize; ++i) {
const double diff_xyb = xyb0[i] - xyb1[i];
const int c = i / kBlockSize;
avgdiff_xyb[c] += diff_xyb / kBlockSize;
const int k = i % kBlockSize;
const int kx = k % kBlockEdge;
const int ky = k / kBlockEdge;
const int h_edge_idx = ky == 0 ? 1 : ky == 7 ? 3 : -1;
const int v_edge_idx = kx == 0 ? 0 : kx == 7 ? 2 : -1;
if (h_edge_idx >= 0) {
avgdiff_edge[c][h_edge_idx] += diff_xyb / kBlockEdge;
}
if (v_edge_idx >= 0) {
avgdiff_edge[c][v_edge_idx] += diff_xyb / kBlockEdge;
}
}
XybDiffLowFreqSquaredAccumulate(avgdiff_xyb[0],
avgdiff_xyb[1],
avgdiff_xyb[2],
0, 0, 0, csf8x8[0],
diff_xyb_dc);
for (int i = 0; i < 4; ++i) {
XybDiffLowFreqSquaredAccumulate(avgdiff_edge[0][i],
avgdiff_edge[1][i],
avgdiff_edge[2][i],
0, 0, 0, csf8x8[0],
diff_xyb_edge_dc);
}
double* xyb_avg = xyb0;
double* xyb_halfdiff = xyb1;
for(int i = 0; i < 3 * kBlockSize; ++i) {
double avg = (xyb0[i] + xyb1[i])/2;
double halfdiff = (xyb0[i] - xyb1[i])/2;
xyb_avg[i] = avg;
xyb_halfdiff[i] = halfdiff;
}
double *y_avg = &xyb_avg[kBlockSize];
double *x_halfdiff_squared = &xyb_halfdiff[0];
double *y_halfdiff = &xyb_halfdiff[kBlockSize];
double *z_halfdiff_squared = &xyb_halfdiff[2 * kBlockSize];
ButteraugliFFTSquared(y_avg);
ButteraugliFFTSquared(x_halfdiff_squared);
ButteraugliFFTSquared(y_halfdiff);
ButteraugliFFTSquared(z_halfdiff_squared);
static const double xmul = 64.8;
static const double ymul = 1.753123908348329;
static const double ymul2 = 1.51983458269;
static const double zmul = 2.4;
for (size_t i = kBlockEdgeHalf; i < kBlockHalf + kBlockEdgeHalf + 1; ++i) {
double d = csf8x8[i];
diff_xyb_ac[0] += d * xmul * x_halfdiff_squared[i];
diff_xyb_ac[2] += d * zmul * z_halfdiff_squared[i];
y_avg[i] = sqrt(y_avg[i]);
y_halfdiff[i] = sqrt(y_halfdiff[i]);
double y0 = y_avg[i] - y_halfdiff[i];
double y1 = y_avg[i] + y_halfdiff[i];
// Remove the impact of small absolute values.
// This improves the behavior with flat noise.
static const double ylimit = 0.04;
y0 = RemoveRangeAroundZero(y0, ylimit);
y1 = RemoveRangeAroundZero(y1, ylimit);
if (y0 != y1) {
double valy0 = Interpolate(GetHighFreqColorDiffDy(), 21, y0 * ymul2);
double valy1 = Interpolate(GetHighFreqColorDiffDy(), 21, y1 * ymul2);
double valy = ymul * (valy0 - valy1);
diff_xyb_ac[1] += d * valy * valy;
}
}
}
// Low frequency edge detectors.
// Two edge detectors are applied in each corner of the 8x8 square.
// The squared 3-dimensional error vector is added to diff_xyb.
void Butteraugli8x8CornerEdgeDetectorDiff(
const size_t pos_x,
const size_t pos_y,
const size_t xsize,
const size_t ysize,
const std::vector<std::vector<float> > &blurred0,
const std::vector<std::vector<float> > &blurred1,
double diff_xyb[3]) {
PROFILER_FUNC;
int local_count = 0;
double local_xyb[3] = { 0 };
static const double w = 0.711100840192;
for (int k = 0; k < 4; ++k) {
size_t step = 3;
size_t offset[4][2] = { { 0, 0 }, { 0, 7 }, { 7, 0 }, { 7, 7 } };
size_t x = pos_x + offset[k][0];
size_t y = pos_y + offset[k][1];
if (x >= step && x + step < xsize) {
size_t ix = y * xsize + (x - step);
size_t ix2 = ix + 2 * step;
XybDiffLowFreqSquaredAccumulate(
w * (blurred0[0][ix] - blurred0[0][ix2]),
w * (blurred0[1][ix] - blurred0[1][ix2]),
w * (blurred0[2][ix] - blurred0[2][ix2]),
w * (blurred1[0][ix] - blurred1[0][ix2]),
w * (blurred1[1][ix] - blurred1[1][ix2]),
w * (blurred1[2][ix] - blurred1[2][ix2]),
1.0, local_xyb);
++local_count;
}
if (y >= step && y + step < ysize) {
size_t ix = (y - step) * xsize + x;
size_t ix2 = ix + 2 * step * xsize;
XybDiffLowFreqSquaredAccumulate(
w * (blurred0[0][ix] - blurred0[0][ix2]),
w * (blurred0[1][ix] - blurred0[1][ix2]),
w * (blurred0[2][ix] - blurred0[2][ix2]),
w * (blurred1[0][ix] - blurred1[0][ix2]),
w * (blurred1[1][ix] - blurred1[1][ix2]),
w * (blurred1[2][ix] - blurred1[2][ix2]),
1.0, local_xyb);
++local_count;
}
}
static const double weight = 0.01617112696;
const double mul = weight * 8.0 / local_count;
for (int i = 0; i < 3; ++i) {
diff_xyb[i] += mul * local_xyb[i];
}
}
// https://en.wikipedia.org/wiki/Photopsin absordance modeling.
const double *GetOpsinAbsorbance() {
static const double kMix[12] = {
0.348036746003,
0.577814843137,
0.0544556093735,
0.774145581713,
0.26922717275,
0.767247733938,
0.0366922708552,
0.920130265014,
0.0882062883536,
0.158581714673,
0.712857943858,
10.6524069248,
};
return &kMix[0];
}
void OpsinAbsorbance(const double in[3], double out[3]) {
const double *mix = GetOpsinAbsorbance();
out[0] = mix[0] * in[0] + mix[1] * in[1] + mix[2] * in[2] + mix[3];
out[1] = mix[4] * in[0] + mix[5] * in[1] + mix[6] * in[2] + mix[7];
out[2] = mix[8] * in[0] + mix[9] * in[1] + mix[10] * in[2] + mix[11];
}
double GammaMinArg() {
double in[3] = { 0.0, 0.0, 0.0 };
double out[3];
OpsinAbsorbance(in, out);
return std::min(out[0], std::min(out[1], out[2]));
}
double GammaMaxArg() {
double in[3] = { 255.0, 255.0, 255.0 };
double out[3];
OpsinAbsorbance(in, out);
return std::max(out[0], std::max(out[1], out[2]));
}
ButteraugliComparator::ButteraugliComparator(
size_t xsize, size_t ysize, int step)
: xsize_(xsize),
ysize_(ysize),
num_pixels_(xsize * ysize),
step_(step),
res_xsize_((xsize + step - 1) / step),
res_ysize_((ysize + step - 1) / step) {
assert(step <= 4);
}
void MaskHighIntensityChange(
size_t xsize, size_t ysize,
const std::vector<std::vector<float> > &c0,
const std::vector<std::vector<float> > &c1,
std::vector<std::vector<float> > &xyb0,
std::vector<std::vector<float> > &xyb1) {
PROFILER_FUNC;
for (int y = 0; y < ysize; ++y) {
for (int x = 0; x < xsize; ++x) {
int ix = y * xsize + x;
const double ave[3] = {
(c0[0][ix] + c1[0][ix]) * 0.5,
(c0[1][ix] + c1[1][ix]) * 0.5,
(c0[2][ix] + c1[2][ix]) * 0.5,
};
double sqr_max_diff = -1;
{
int offset[4] =
{ -1, 1, -static_cast<int>(xsize), static_cast<int>(xsize) };
int border[4] =
{ x == 0, x + 1 == xsize, y == 0, y + 1 == ysize };
for (int dir = 0; dir < 4; ++dir) {
if (border[dir]) {
continue;
}
const int ix2 = ix + offset[dir];
double diff = 0.5 * (c0[1][ix2] + c1[1][ix2]) - ave[1];
diff *= diff;
if (sqr_max_diff < diff) {
sqr_max_diff = diff;
}
}
}
static const double kReductionX = 275.19165240059317;
static const double kReductionY = 18599.41286306991;
static const double kReductionZ = 410.8995306951065;
static const double kChromaBalance = 106.95800948271017;
double chroma_scale = kChromaBalance / (ave[1] + kChromaBalance);
const double mix[3] = {
chroma_scale * kReductionX / (sqr_max_diff + kReductionX),
kReductionY / (sqr_max_diff + kReductionY),
chroma_scale * kReductionZ / (sqr_max_diff + kReductionZ),
};
// Interpolate lineraly between the average color and the actual
// color -- to reduce the importance of this pixel.
for (int i = 0; i < 3; ++i) {
xyb0[i][ix] = mix[i] * c0[i][ix] + (1 - mix[i]) * ave[i];
xyb1[i][ix] = mix[i] * c1[i][ix] + (1 - mix[i]) * ave[i];
}
}
}
}
double SimpleGamma(double v) {
static const double kGamma = 0.387494322593;
static const double limit = 43.01745241042018;
double bright = v - limit;
if (bright >= 0) {
static const double mul = 0.0383723643799;
v -= bright * mul;
}
static const double limit2 = 94.68634353321337;
double bright2 = v - limit2;
if (bright2 >= 0) {
static const double mul = 0.22885405968;
v -= bright2 * mul;
}
static const double offset = 0.156775786057;
static const double scale = 8.898059160493739;
double retval = scale * (offset + pow(v, kGamma));
return retval;
}
static inline double Gamma(double v) {
// return SimpleGamma(v);
return GammaPolynomial(v);
}
void OpsinDynamicsImage(size_t xsize, size_t ysize,
std::vector<std::vector<float> > &rgb) {
PROFILER_FUNC;
std::vector<std::vector<float> > blurred = rgb;
static const double kSigma = 1.1;
for (int i = 0; i < 3; ++i) {
Blur(xsize, ysize, blurred[i].data(), kSigma, 0.0);
}
for (int i = 0; i < rgb[0].size(); ++i) {
double sensitivity[3];
{
// Calculate sensitivity[3] based on the smoothed image gamma derivative.
double pre_rgb[3] = { blurred[0][i], blurred[1][i], blurred[2][i] };
double pre_mixed[3];
OpsinAbsorbance(pre_rgb, pre_mixed);
sensitivity[0] = Gamma(pre_mixed[0]) / pre_mixed[0];
sensitivity[1] = Gamma(pre_mixed[1]) / pre_mixed[1];
sensitivity[2] = Gamma(pre_mixed[2]) / pre_mixed[2];
}
double cur_rgb[3] = { rgb[0][i], rgb[1][i], rgb[2][i] };
double cur_mixed[3];
OpsinAbsorbance(cur_rgb, cur_mixed);
cur_mixed[0] *= sensitivity[0];
cur_mixed[1] *= sensitivity[1];
cur_mixed[2] *= sensitivity[2];
double x, y, z;
RgbToXyb(cur_mixed[0], cur_mixed[1], cur_mixed[2], &x, &y, &z);
rgb[0][i] = x;
rgb[1][i] = y;
rgb[2][i] = z;
}
}
static void ScaleImage(double scale, std::vector<float> *result) {
PROFILER_FUNC;
for (size_t i = 0; i < result->size(); ++i) {
(*result)[i] *= scale;
}
}
// Making a cluster of local errors to be more impactful than
// just a single error.
void CalculateDiffmap(const size_t xsize, const size_t ysize,
const int step,
std::vector<float>* diffmap) {
PROFILER_FUNC;
// Shift the diffmap more correctly above the pixels, from 2.5 pixels to 0.5
// pixels distance over the original image. The border of 2 pixels on top and
// left side and 3 pixels on right and bottom side are zeroed, but these
// values have no meaning, they only exist to keep the result map the same
// size as the input images.
int s2 = (8 - step) / 2;
// Upsample and take square root.
std::vector<float> diffmap_out(xsize * ysize);
const size_t res_xsize = (xsize + step - 1) / step;
for (size_t res_y = 0; res_y + 8 - step < ysize; res_y += step) {
for (size_t res_x = 0; res_x + 8 - step < xsize; res_x += step) {
size_t res_ix = (res_y * res_xsize + res_x) / step;
float orig_val = (*diffmap)[res_ix];
constexpr float kInitialSlope = 100;
// TODO(b/29974893): Until that is fixed do not call sqrt on very small
// numbers.
double val = orig_val < (1.0 / (kInitialSlope * kInitialSlope))
? kInitialSlope * orig_val
: std::sqrt(orig_val);
for (size_t off_y = 0; off_y < step; ++off_y) {
for (size_t off_x = 0; off_x < step; ++off_x) {
diffmap_out[(res_y + off_y + s2) * xsize + res_x + off_x + s2] = val;
}
}
}
}
*diffmap = diffmap_out;
{
static const double kSigma = 8.8510880283;
static const double mul1 = 24.8235314874;
static const double scale = 1.0 / (1.0 + mul1);
const int s = 8 - step;
std::vector<float> blurred((xsize - s) * (ysize - s));
for (int y = 0; y < ysize - s; ++y) {
for (int x = 0; x < xsize - s; ++x) {
blurred[y * (xsize - s) + x] = (*diffmap)[(y + s2) * xsize + x + s2];
}
}
static const double border_ratio = 0.03027655136;
Blur(xsize - s, ysize - s, blurred.data(), kSigma, border_ratio);
for (int y = 0; y < ysize - s; ++y) {
for (int x = 0; x < xsize - s; ++x) {
(*diffmap)[(y + s2) * xsize + x + s2]
+= mul1 * blurred[y * (xsize - s) + x];
}
}
ScaleImage(scale, diffmap);
}
}
void ButteraugliComparator::Diffmap(const std::vector<ImageF> &rgb0_arg,
const std::vector<ImageF> &rgb1_arg,
ImageF &result) {
result = ImageF(xsize_, ysize_);
if (xsize_ < 8 || ysize_ < 8) return;
std::vector<std::vector<float>> rgb0_c = PackedFromPlanes(rgb0_arg);
std::vector<std::vector<float>> rgb1_c = PackedFromPlanes(rgb1_arg);
OpsinDynamicsImage(xsize_, ysize_, rgb0_c);
OpsinDynamicsImage(xsize_, ysize_, rgb1_c);
std::vector<ImageF> pg0 = PlanesFromPacked(xsize_, ysize_, rgb0_c);
std::vector<ImageF> pg1 = PlanesFromPacked(xsize_, ysize_, rgb1_c);
DiffmapOpsinDynamicsImage(pg0, pg1, result);
}
void ButteraugliComparator::DiffmapOpsinDynamicsImage(
const std::vector<ImageF> &xyb0_arg, const std::vector<ImageF> &xyb1_arg,
ImageF &result) {
result = ImageF(xsize_, ysize_);
if (xsize_ < 8 || ysize_ < 8) return;
std::vector<std::vector<float>> xyb0 = PackedFromPlanes(xyb0_arg);
std::vector<std::vector<float>> xyb1 = PackedFromPlanes(xyb1_arg);
auto xyb0_c = xyb0;
auto xyb1_c = xyb1;
MaskHighIntensityChange(xsize_, ysize_, xyb0_c, xyb1_c, xyb0, xyb1);
assert(8 <= xsize_);
for (int i = 0; i < 3; i++) {
assert(xyb0[i].size() == num_pixels_);
assert(xyb1[i].size() == num_pixels_);
}
std::vector<std::vector<float> > mask_xyb(3);
std::vector<std::vector<float> > mask_xyb_dc(3);
std::vector<float> block_diff_dc(3 * res_xsize_ * res_ysize_);
std::vector<float> block_diff_ac(3 * res_xsize_ * res_ysize_);
std::vector<float> edge_detector_map(3 * res_xsize_ * res_ysize_);
std::vector<float> packed_result;
BlockDiffMap(xyb0, xyb1, &block_diff_dc, &block_diff_ac);
EdgeDetectorMap(xyb0, xyb1, &edge_detector_map);
EdgeDetectorLowFreq(xyb0, xyb1, &block_diff_ac);
Mask(xyb0, xyb1, xsize_, ysize_, &mask_xyb, &mask_xyb_dc);
CombineChannels(mask_xyb, mask_xyb_dc, block_diff_dc, block_diff_ac,
edge_detector_map, &packed_result);
CalculateDiffmap(xsize_, ysize_, step_, &packed_result);
CopyFromPacked(packed_result, &result);
}
void ButteraugliComparator::BlockDiffMap(
const std::vector<std::vector<float> > &xyb0,
const std::vector<std::vector<float> > &xyb1,
std::vector<float>* block_diff_dc,
std::vector<float>* block_diff_ac) {
PROFILER_FUNC;
for (size_t res_y = 0; res_y + (kBlockEdge - step_ - 1) < ysize_;
res_y += step_) {
for (size_t res_x = 0; res_x + (kBlockEdge - step_ - 1) < xsize_;
res_x += step_) {
size_t res_ix = (res_y * res_xsize_ + res_x) / step_;
size_t offset = (std::min(res_y, ysize_ - 8) * xsize_ +
std::min(res_x, xsize_ - 8));
double block0[3 * kBlockEdge * kBlockEdge];
double block1[3 * kBlockEdge * kBlockEdge];
for (int i = 0; i < 3; ++i) {
double *m0 = &block0[i * kBlockEdge * kBlockEdge];
double *m1 = &block1[i * kBlockEdge * kBlockEdge];
for (size_t y = 0; y < kBlockEdge; y++) {
for (size_t x = 0; x < kBlockEdge; x++) {
m0[kBlockEdge * y + x] = xyb0[i][offset + y * xsize_ + x];
m1[kBlockEdge * y + x] = xyb1[i][offset + y * xsize_ + x];
}
}
}
double diff_xyb_dc[3] = { 0.0 };
double diff_xyb_ac[3] = { 0.0 };
double diff_xyb_edge_dc[3] = { 0.0 };
ButteraugliBlockDiff(block0, block1,
diff_xyb_dc, diff_xyb_ac, diff_xyb_edge_dc);
for (int i = 0; i < 3; ++i) {
(*block_diff_dc)[3 * res_ix + i] = diff_xyb_dc[i];
(*block_diff_ac)[3 * res_ix + i] = diff_xyb_ac[i];
}
}
}
}
void ButteraugliComparator::EdgeDetectorMap(
const std::vector<std::vector<float> > &xyb0,
const std::vector<std::vector<float> > &xyb1,
std::vector<float>* edge_detector_map) {
PROFILER_FUNC;
static const double kSigma[3] = {
1.5,
0.586,
0.4,
};
std::vector<std::vector<float> > blurred0(xyb0);
std::vector<std::vector<float> > blurred1(xyb1);
for (int i = 0; i < 3; i++) {
Blur(xsize_, ysize_, blurred0[i].data(), kSigma[i], 0.0);
Blur(xsize_, ysize_, blurred1[i].data(), kSigma[i], 0.0);
}
for (size_t res_y = 0; res_y + (8 - step_) < ysize_; res_y += step_) {
for (size_t res_x = 0; res_x + (8 - step_) < xsize_; res_x += step_) {
size_t res_ix = (res_y * res_xsize_ + res_x) / step_;
double diff_xyb[3] = { 0.0 };
Butteraugli8x8CornerEdgeDetectorDiff(std::min(res_x, xsize_ - 8),
std::min(res_y, ysize_ - 8),
xsize_, ysize_,
blurred0, blurred1,
diff_xyb);
for (int i = 0; i < 3; ++i) {
(*edge_detector_map)[3 * res_ix + i] = diff_xyb[i];
}
}
}
}
void ButteraugliComparator::EdgeDetectorLowFreq(
const std::vector<std::vector<float> > &xyb0,
const std::vector<std::vector<float> > &xyb1,
std::vector<float>* block_diff_ac) {
PROFILER_FUNC;
static const double kSigma = 14;
static const double kMul = 10;
std::vector<std::vector<float> > blurred0(xyb0);
std::vector<std::vector<float> > blurred1(xyb1);
for (int i = 0; i < 3; i++) {
Blur(xsize_, ysize_, blurred0[i].data(), kSigma, 0.0);
Blur(xsize_, ysize_, blurred1[i].data(), kSigma, 0.0);
}
const int step = 8;
for (int y = 0; y + step < ysize_; y += step_) {
int resy = y / step_;
int resx = step / step_;
for (int x = 0; x + step < xsize_; x += step_, resx++) {
const int ix = y * xsize_ + x;
const int res_ix = resy * res_xsize_ + resx;
double diff[4][3];
for (int i = 0; i < 3; ++i) {
int ix2 = ix + 8;
diff[0][i] =
((blurred1[i][ix] - blurred0[i][ix]) +
(blurred0[i][ix2] - blurred1[i][ix2]));
ix2 = ix + 8 * xsize_;
diff[1][i] =
((blurred1[i][ix] - blurred0[i][ix]) +
(blurred0[i][ix2] - blurred1[i][ix2]));
ix2 = ix + 6 * xsize_ + 6;
diff[2][i] =
((blurred1[i][ix] - blurred0[i][ix]) +
(blurred0[i][ix2] - blurred1[i][ix2]));
ix2 = ix + 6 * xsize_ - 6;
diff[3][i] = x < step ? 0 :
((blurred1[i][ix] - blurred0[i][ix]) +
(blurred0[i][ix2] - blurred1[i][ix2]));
}
double max_diff_xyb[3] = { 0 };
for (int k = 0; k < 4; ++k) {
double diff_xyb[3] = { 0 };
XybDiffLowFreqSquaredAccumulate(diff[k][0], diff[k][1], diff[k][2],
0, 0, 0, 1.0,
diff_xyb);
for (int i = 0; i < 3; ++i) {
max_diff_xyb[i] = std::max<double>(max_diff_xyb[i], diff_xyb[i]);
}
}
for (int i = 0; i < 3; ++i) {
(*block_diff_ac)[3 * res_ix + i] += kMul * max_diff_xyb[i];
}
}
}
}
void ButteraugliComparator::CombineChannels(
const std::vector<std::vector<float> >& mask_xyb,
const std::vector<std::vector<float> >& mask_xyb_dc,
const std::vector<float>& block_diff_dc,
const std::vector<float>& block_diff_ac,
const std::vector<float>& edge_detector_map,
std::vector<float>* result) {
PROFILER_FUNC;
result->resize(res_xsize_ * res_ysize_);
for (size_t res_y = 0; res_y + (8 - step_) < ysize_; res_y += step_) {
for (size_t res_x = 0; res_x + (8 - step_) < xsize_; res_x += step_) {
size_t res_ix = (res_y * res_xsize_ + res_x) / step_;
double mask[3];
double dc_mask[3];
for (int i = 0; i < 3; ++i) {
mask[i] = mask_xyb[i][(res_y + 3) * xsize_ + (res_x + 3)];
dc_mask[i] = mask_xyb_dc[i][(res_y + 3) * xsize_ + (res_x + 3)];
}
(*result)[res_ix] =
(DotProduct(&block_diff_dc[3 * res_ix], dc_mask) +
DotProduct(&block_diff_ac[3 * res_ix], mask) +
DotProduct(&edge_detector_map[3 * res_ix], mask));
}
}
}
double ButteraugliScoreFromDiffmap(const ImageF& diffmap) {
PROFILER_FUNC;
float retval = 0.0f;
for (size_t y = 0; y < diffmap.ysize(); ++y) {
ConstRestrict<const float *> row = diffmap.Row(y);
for (size_t x = 0; x < diffmap.xsize(); ++x) {
retval = std::max(retval, row[x]);
}
}
return retval;
}
static std::array<double, 512> MakeMask(
double extmul, double extoff,
double mul, double offset,
double scaler) {
std::array<double, 512> lut;
for (int i = 0; i < lut.size(); ++i) {
const double c = mul / ((0.01 * scaler * i) + offset);
lut[i] = 1.0 + extmul * (c + extoff);
assert(lut[i] >= 0.0);
lut[i] *= lut[i];
}
return lut;
}
double MaskX(double delta) {
PROFILER_FUNC;
static const double extmul = 0.975741017749;
static const double extoff = -4.25328244168;
static const double offset = 0.454909521427;
static const double scaler = 0.0738288224836;
static const double mul = 20.8029176447;
static const std::array<double, 512> lut =
MakeMask(extmul, extoff, mul, offset, scaler);
return InterpolateClampNegative(lut.data(), lut.size(), delta);
}
double MaskY(double delta) {
PROFILER_FUNC;
static const double extmul = 0.373995618954;
static const double extoff = 1.5307267433;
static const double offset = 0.911952641929;
static const double scaler = 1.1731667845;
static const double mul = 16.2447033988;
static const std::array<double, 512> lut =
MakeMask(extmul, extoff, mul, offset, scaler);
return InterpolateClampNegative(lut.data(), lut.size(), delta);
}
double MaskB(double delta) {
PROFILER_FUNC;
static const double extmul = 0.61582234137;
static const double extoff = -4.25376118646;
static const double offset = 1.05105070921;
static const double scaler = 0.47434643535;
static const double mul = 31.1444967089;
static const std::array<double, 512> lut =
MakeMask(extmul, extoff, mul, offset, scaler);
return InterpolateClampNegative(lut.data(), lut.size(), delta);
}
double MaskDcX(double delta) {
PROFILER_FUNC;
static const double extmul = 1.79116943438;
static const double extoff = -3.86797479189;
static const double offset = 0.670960225853;
static const double scaler = 0.486575865525;
static const double mul = 20.4563479139;
static const std::array<double, 512> lut =
MakeMask(extmul, extoff, mul, offset, scaler);
return InterpolateClampNegative(lut.data(), lut.size(), delta);
}
double MaskDcY(double delta) {
PROFILER_FUNC;
static const double extmul = 0.212223514236;
static const double extoff = -3.65647120524;
static const double offset = 1.73396799447;
static const double scaler = 0.170392660501;
static const double mul = 21.6566724788;
static const std::array<double, 512> lut =
MakeMask(extmul, extoff, mul, offset, scaler);
return InterpolateClampNegative(lut.data(), lut.size(), delta);
}
double MaskDcB(double delta) {
PROFILER_FUNC;
static const double extmul = 0.349376011816;
static const double extoff = -0.894711072781;
static const double offset = 0.901647926679;
static const double scaler = 0.380086095024;
static const double mul = 18.0373825149;
static const std::array<double, 512> lut =
MakeMask(extmul, extoff, mul, offset, scaler);
return InterpolateClampNegative(lut.data(), lut.size(), delta);
}
// Replaces values[x + y * xsize] with the minimum of the values in the
// square_size square with coordinates
// x - offset .. x + square_size - offset - 1,
// y - offset .. y + square_size - offset - 1.
void MinSquareVal(size_t square_size, size_t offset,
size_t xsize, size_t ysize,
float *values) {
PROFILER_FUNC;
// offset is not negative and smaller than square_size.
assert(offset < square_size);
std::vector<float> tmp(xsize * ysize);
for (size_t y = 0; y < ysize; ++y) {
const size_t minh = offset > y ? 0 : y - offset;
const size_t maxh = std::min<size_t>(ysize, y + square_size - offset);
for (size_t x = 0; x < xsize; ++x) {
double min = values[x + minh * xsize];
for (size_t j = minh + 1; j < maxh; ++j) {
min = fmin(min, values[x + j * xsize]);
}
tmp[x + y * xsize] = min;
}
}
for (size_t x = 0; x < xsize; ++x) {
const size_t minw = offset > x ? 0 : x - offset;
const size_t maxw = std::min<size_t>(xsize, x + square_size - offset);
for (size_t y = 0; y < ysize; ++y) {
double min = tmp[minw + y * xsize];
for (size_t j = minw + 1; j < maxw; ++j) {
min = fmin(min, tmp[j + y * xsize]);
}
values[x + y * xsize] = min;
}
}
}
// ===== Functions used by Mask only =====
void Average5x5(int xsize, int ysize, std::vector<float>* diffs) {
PROFILER_FUNC;
if (xsize < 4 || ysize < 4) {
// TODO: Make this work for small dimensions as well.
return;
}
static const float w = 0.679144890667;
static const float scale = 1.0 / (5.0 + 4 * w);
std::vector<float> result = *diffs;
std::vector<float> tmp0 = *diffs;
std::vector<float> tmp1 = *diffs;
ScaleImage(w, &tmp1);
for (int y = 0; y < ysize; y++) {
const int row0 = y * xsize;
result[row0 + 1] += tmp0[row0];
result[row0 + 0] += tmp0[row0 + 1];
result[row0 + 2] += tmp0[row0 + 1];
for (int x = 2; x < xsize - 2; ++x) {
result[row0 + x - 1] += tmp0[row0 + x];
result[row0 + x + 1] += tmp0[row0 + x];
}
result[row0 + xsize - 3] += tmp0[row0 + xsize - 2];
result[row0 + xsize - 1] += tmp0[row0 + xsize - 2];
result[row0 + xsize - 2] += tmp0[row0 + xsize - 1];
if (y > 0) {
const int rowd1 = row0 - xsize;
result[rowd1 + 1] += tmp1[row0];
result[rowd1 + 0] += tmp0[row0];
for (int x = 1; x < xsize - 1; ++x) {
result[rowd1 + x + 1] += tmp1[row0 + x];
result[rowd1 + x + 0] += tmp0[row0 + x];
result[rowd1 + x - 1] += tmp1[row0 + x];
}
result[rowd1 + xsize - 1] += tmp0[row0 + xsize - 1];
result[rowd1 + xsize - 2] += tmp1[row0 + xsize - 1];
}
if (y + 1 < ysize) {
const int rowu1 = row0 + xsize;
result[rowu1 + 1] += tmp1[row0];
result[rowu1 + 0] += tmp0[row0];
for (int x = 1; x < xsize - 1; ++x) {
result[rowu1 + x + 1] += tmp1[row0 + x];
result[rowu1 + x + 0] += tmp0[row0 + x];
result[rowu1 + x - 1] += tmp1[row0 + x];
}
result[rowu1 + xsize - 1] += tmp0[row0 + xsize - 1];
result[rowu1 + xsize - 2] += tmp1[row0 + xsize - 1];
}
}
*diffs = result;
ScaleImage(scale, diffs);
}
void DiffPrecompute(
const std::vector<std::vector<float> > &xyb0,
const std::vector<std::vector<float> > &xyb1,
size_t xsize, size_t ysize,
std::vector<std::vector<float> > *mask) {
PROFILER_FUNC;
mask->resize(3, std::vector<float>(xyb0[0].size()));
double valsh0[3] = { 0.0 };
double valsv0[3] = { 0.0 };
double valsh1[3] = { 0.0 };
double valsv1[3] = { 0.0 };
int ix2;
for (size_t y = 0; y < ysize; ++y) {
for (size_t x = 0; x < xsize; ++x) {
size_t ix = x + xsize * y;
if (x + 1 < xsize) {
ix2 = ix + 1;
} else {
ix2 = ix - 1;
}
{
double x0 = (xyb0[0][ix] - xyb0[0][ix2]);
double y0 = (xyb0[1][ix] - xyb0[1][ix2]);
double z0 = (xyb0[2][ix] - xyb0[2][ix2]);
XybToVals(x0, y0, z0, &valsh0[0], &valsh0[1], &valsh0[2]);
double x1 = (xyb1[0][ix] - xyb1[0][ix2]);
double y1 = (xyb1[1][ix] - xyb1[1][ix2]);
double z1 = (xyb1[2][ix] - xyb1[2][ix2]);
XybToVals(x1, y1, z1, &valsh1[0], &valsh1[1], &valsh1[2]);
}
if (y + 1 < ysize) {
ix2 = ix + xsize;
} else {
ix2 = ix - xsize;
}
{
double x0 = (xyb0[0][ix] - xyb0[0][ix2]);
double y0 = (xyb0[1][ix] - xyb0[1][ix2]);
double z0 = (xyb0[2][ix] - xyb0[2][ix2]);
XybToVals(x0, y0, z0, &valsv0[0], &valsv0[1], &valsv0[2]);
double x1 = (xyb1[0][ix] - xyb1[0][ix2]);
double y1 = (xyb1[1][ix] - xyb1[1][ix2]);
double z1 = (xyb1[2][ix] - xyb1[2][ix2]);
XybToVals(x1, y1, z1, &valsv1[0], &valsv1[1], &valsv1[2]);
}
for (int i = 0; i < 3; ++i) {
double sup0 = fabs(valsh0[i]) + fabs(valsv0[i]);
double sup1 = fabs(valsh1[i]) + fabs(valsv1[i]);
double m = std::min(sup0, sup1);
(*mask)[i][ix] = m;
}
}
}
}
void Mask(const std::vector<std::vector<float> > &xyb0,
const std::vector<std::vector<float> > &xyb1,
size_t xsize, size_t ysize,
std::vector<std::vector<float> > *mask,
std::vector<std::vector<float> > *mask_dc) {
PROFILER_FUNC;
mask->resize(3);
mask_dc->resize(3);
for (int i = 0; i < 3; ++i) {
(*mask)[i].resize(xsize * ysize);
(*mask_dc)[i].resize(xsize * ysize);
}
DiffPrecompute(xyb0, xyb1, xsize, ysize, mask);
for (int i = 0; i < 3; ++i) {
Average5x5(xsize, ysize, &(*mask)[i]);
MinSquareVal(4, 0, xsize, ysize, (*mask)[i].data());
static const double sigma[3] = {
9.65781083553,
14.2644604355,
4.53358927369,
};
Blur(xsize, ysize, (*mask)[i].data(), sigma[i], 0.0);
}
static const double w00 = 232.206464018;
static const double w11 = 22.9455222245;
static const double w22 = 503.962310606;
for (size_t y = 0; y < ysize; ++y) {
for (size_t x = 0; x < xsize; ++x) {
const size_t idx = y * xsize + x;
const double s0 = (*mask)[0][idx];
const double s1 = (*mask)[1][idx];
const double s2 = (*mask)[2][idx];
const double p0 = w00 * s0;
const double p1 = w11 * s1;
const double p2 = w22 * s2;
(*mask)[0][idx] = MaskX(p0);
(*mask)[1][idx] = MaskY(p1);
(*mask)[2][idx] = MaskB(p2);
(*mask_dc)[0][idx] = MaskDcX(p0);
(*mask_dc)[1][idx] = MaskDcY(p1);
(*mask_dc)[2][idx] = MaskDcB(p2);
}
}
for (int i = 0; i < 3; ++i) {
ScaleImage(kGlobalScale * kGlobalScale, &(*mask)[i]);
ScaleImage(kGlobalScale * kGlobalScale, &(*mask_dc)[i]);
}
}
void ButteraugliDiffmap(const std::vector<ImageF> &rgb0_image,
const std::vector<ImageF> &rgb1_image,
ImageF &result_image) {
const size_t xsize = rgb0_image[0].xsize();
const size_t ysize = rgb0_image[0].ysize();
ButteraugliComparator butteraugli(xsize, ysize, 3);
butteraugli.Diffmap(rgb0_image, rgb1_image, result_image);
}
bool ButteraugliInterface(const std::vector<ImageF> &rgb0,
const std::vector<ImageF> &rgb1,
ImageF &diffmap,
double &diffvalue) {
const size_t xsize = rgb0[0].xsize();
const size_t ysize = rgb0[0].ysize();
if (xsize < 1 || ysize < 1) {
// Butteraugli values for small (where xsize or ysize is smaller
// than 8 pixels) images are non-sensical, but most likely it is
// less disruptive to try to compute something than just give up.
return false; // No image.
}
for (int i = 1; i < 3; i++) {
if (rgb0[i].xsize() != xsize || rgb0[i].ysize() != ysize ||
rgb1[i].xsize() != xsize || rgb1[i].ysize() != ysize) {
return false; // Image planes must have same dimensions.
}
}
if (xsize < 8 || ysize < 8) {
for (int y = 0; y < ysize; ++y) {
for (int x = 0; x < xsize; ++x) {
diffmap.Row(y)[x] = 0;
}
}
diffvalue = 0;
return true;
}
ButteraugliDiffmap(rgb0, rgb1, diffmap);
diffvalue = ButteraugliScoreFromDiffmap(diffmap);
return true;
}
bool ButteraugliAdaptiveQuantization(size_t xsize, size_t ysize,
const std::vector<std::vector<float> > &rgb, std::vector<float> &quant) {
if (xsize < 16 || ysize < 16) {
return false; // Butteraugli is undefined for small images.
}
size_t size = xsize * ysize;
std::vector<std::vector<float> > scale_xyb(3);
std::vector<std::vector<float> > scale_xyb_dc(3);
Mask(rgb, rgb, xsize, ysize, &scale_xyb, &scale_xyb_dc);
quant.resize(size);
// Mask gives us values in 3 color channels, but for now we take only
// the intensity channel.
for (size_t i = 0; i < size; i++) {
quant[i] = scale_xyb[1][i];
}
return true;
}
double ButteraugliFuzzyClass(double score) {
static const double fuzzy_width_up = 10.287189655;
static const double fuzzy_width_down = 6.97490803335;
static const double m0 = 2.0;
double fuzzy_width = score < 1.0 ? fuzzy_width_down : fuzzy_width_up;
return m0 / (1.0 + exp((score - 1.0) * fuzzy_width));
}
double ButteraugliFuzzyInverse(double seek) {
double pos = 0;
for (double range = 1.0; range >= 1e-10; range *= 0.5) {
double cur = ButteraugliFuzzyClass(pos);
if (cur < seek) {
pos -= range;
} else {
pos += range;
}
}
return pos;
}
} // namespace butteraugli