nvidia-texture-tools/extern/libsquish-1.15/alpha.cpp

351 lines
9.3 KiB
C++
Raw Normal View History

/* -----------------------------------------------------------------------------
Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-------------------------------------------------------------------------- */
#include "alpha.h"
#include <climits>
#include <algorithm>
namespace squish {
static int FloatToInt( float a, int limit )
{
// use ANSI round-to-zero behaviour to get round-to-nearest
int i = ( int )( a + 0.5f );
// clamp to the limit
if( i < 0 )
i = 0;
else if( i > limit )
i = limit;
// done
return i;
}
void CompressAlphaDxt3( u8 const* rgba, int mask, void* block )
{
u8* bytes = reinterpret_cast< u8* >( block );
// quantise and pack the alpha values pairwise
for( int i = 0; i < 8; ++i )
{
// quantise down to 4 bits
float alpha1 = ( float )rgba[8*i + 3] * ( 15.0f/255.0f );
float alpha2 = ( float )rgba[8*i + 7] * ( 15.0f/255.0f );
int quant1 = FloatToInt( alpha1, 15 );
int quant2 = FloatToInt( alpha2, 15 );
// set alpha to zero where masked
int bit1 = 1 << ( 2*i );
int bit2 = 1 << ( 2*i + 1 );
if( ( mask & bit1 ) == 0 )
quant1 = 0;
if( ( mask & bit2 ) == 0 )
quant2 = 0;
// pack into the byte
bytes[i] = ( u8 )( quant1 | ( quant2 << 4 ) );
}
}
void DecompressAlphaDxt3( u8* rgba, void const* block )
{
u8 const* bytes = reinterpret_cast< u8 const* >( block );
// unpack the alpha values pairwise
for( int i = 0; i < 8; ++i )
{
// quantise down to 4 bits
u8 quant = bytes[i];
// unpack the values
u8 lo = quant & 0x0f;
u8 hi = quant & 0xf0;
// convert back up to bytes
rgba[8*i + 3] = lo | ( lo << 4 );
rgba[8*i + 7] = hi | ( hi >> 4 );
}
}
static void FixRange( int& min, int& max, int steps )
{
if( max - min < steps )
max = std::min( min + steps, 255 );
if( max - min < steps )
min = std::max( 0, max - steps );
}
static int FitCodes( u8 const* rgba, int mask, u8 const* codes, u8* indices )
{
// fit each alpha value to the codebook
int err = 0;
for( int i = 0; i < 16; ++i )
{
// check this pixel is valid
int bit = 1 << i;
if( ( mask & bit ) == 0 )
{
// use the first code
indices[i] = 0;
continue;
}
// find the least error and corresponding index
int value = rgba[4*i + 3];
int least = INT_MAX;
int index = 0;
for( int j = 0; j < 8; ++j )
{
// get the squared error from this code
int dist = ( int )value - ( int )codes[j];
dist *= dist;
// compare with the best so far
if( dist < least )
{
least = dist;
index = j;
}
}
// save this index and accumulate the error
indices[i] = ( u8 )index;
err += least;
}
// return the total error
return err;
}
static void WriteAlphaBlock( int alpha0, int alpha1, u8 const* indices, void* block )
{
u8* bytes = reinterpret_cast< u8* >( block );
// write the first two bytes
bytes[0] = ( u8 )alpha0;
bytes[1] = ( u8 )alpha1;
// pack the indices with 3 bits each
u8* dest = bytes + 2;
u8 const* src = indices;
for( int i = 0; i < 2; ++i )
{
// pack 8 3-bit values
int value = 0;
for( int j = 0; j < 8; ++j )
{
int index = *src++;
value |= ( index << 3*j );
}
// store in 3 bytes
for( int j = 0; j < 3; ++j )
{
int byte = ( value >> 8*j ) & 0xff;
*dest++ = ( u8 )byte;
}
}
}
static void WriteAlphaBlock5( int alpha0, int alpha1, u8 const* indices, void* block )
{
// check the relative values of the endpoints
if( alpha0 > alpha1 )
{
// swap the indices
u8 swapped[16];
for( int i = 0; i < 16; ++i )
{
u8 index = indices[i];
if( index == 0 )
swapped[i] = 1;
else if( index == 1 )
swapped[i] = 0;
else if( index <= 5 )
swapped[i] = 7 - index;
else
swapped[i] = index;
}
// write the block
WriteAlphaBlock( alpha1, alpha0, swapped, block );
}
else
{
// write the block
WriteAlphaBlock( alpha0, alpha1, indices, block );
}
}
static void WriteAlphaBlock7( int alpha0, int alpha1, u8 const* indices, void* block )
{
// check the relative values of the endpoints
if( alpha0 < alpha1 )
{
// swap the indices
u8 swapped[16];
for( int i = 0; i < 16; ++i )
{
u8 index = indices[i];
if( index == 0 )
swapped[i] = 1;
else if( index == 1 )
swapped[i] = 0;
else
swapped[i] = 9 - index;
}
// write the block
WriteAlphaBlock( alpha1, alpha0, swapped, block );
}
else
{
// write the block
WriteAlphaBlock( alpha0, alpha1, indices, block );
}
}
void CompressAlphaDxt5( u8 const* rgba, int mask, void* block )
{
// get the range for 5-alpha and 7-alpha interpolation
int min5 = 255;
int max5 = 0;
int min7 = 255;
int max7 = 0;
for( int i = 0; i < 16; ++i )
{
// check this pixel is valid
int bit = 1 << i;
if( ( mask & bit ) == 0 )
continue;
// incorporate into the min/max
int value = rgba[4*i + 3];
if( value < min7 )
min7 = value;
if( value > max7 )
max7 = value;
if( value != 0 && value < min5 )
min5 = value;
if( value != 255 && value > max5 )
max5 = value;
}
// handle the case that no valid range was found
if( min5 > max5 )
min5 = max5;
if( min7 > max7 )
min7 = max7;
// fix the range to be the minimum in each case
FixRange( min5, max5, 5 );
FixRange( min7, max7, 7 );
// set up the 5-alpha code book
u8 codes5[8];
codes5[0] = ( u8 )min5;
codes5[1] = ( u8 )max5;
for( int i = 1; i < 5; ++i )
codes5[1 + i] = ( u8 )( ( ( 5 - i )*min5 + i*max5 )/5 );
codes5[6] = 0;
codes5[7] = 255;
// set up the 7-alpha code book
u8 codes7[8];
codes7[0] = ( u8 )min7;
codes7[1] = ( u8 )max7;
for( int i = 1; i < 7; ++i )
codes7[1 + i] = ( u8 )( ( ( 7 - i )*min7 + i*max7 )/7 );
// fit the data to both code books
u8 indices5[16];
u8 indices7[16];
int err5 = FitCodes( rgba, mask, codes5, indices5 );
int err7 = FitCodes( rgba, mask, codes7, indices7 );
// save the block with least error
if( err5 <= err7 )
WriteAlphaBlock5( min5, max5, indices5, block );
else
WriteAlphaBlock7( min7, max7, indices7, block );
}
void DecompressAlphaDxt5( u8* rgba, void const* block )
{
// get the two alpha values
u8 const* bytes = reinterpret_cast< u8 const* >( block );
int alpha0 = bytes[0];
int alpha1 = bytes[1];
// compare the values to build the codebook
u8 codes[8];
codes[0] = ( u8 )alpha0;
codes[1] = ( u8 )alpha1;
if( alpha0 <= alpha1 )
{
// use 5-alpha codebook
for( int i = 1; i < 5; ++i )
codes[1 + i] = ( u8 )( ( ( 5 - i )*alpha0 + i*alpha1 )/5 );
codes[6] = 0;
codes[7] = 255;
}
else
{
// use 7-alpha codebook
for( int i = 1; i < 7; ++i )
codes[1 + i] = ( u8 )( ( ( 7 - i )*alpha0 + i*alpha1 )/7 );
}
// decode the indices
u8 indices[16];
u8 const* src = bytes + 2;
u8* dest = indices;
for( int i = 0; i < 2; ++i )
{
// grab 3 bytes
int value = 0;
for( int j = 0; j < 3; ++j )
{
int byte = *src++;
value |= ( byte << 8*j );
}
// unpack 8 3-bit values from it
for( int j = 0; j < 8; ++j )
{
int index = ( value >> 3*j ) & 0x7;
*dest++ = ( u8 )index;
}
}
// write out the indexed codebook values
for( int i = 0; i < 16; ++i )
rgba[4*i + 3] = codes[indices[i]];
}
} // namespace squish