nvidia-texture-tools/extern/EtcLib/EtcCodec/EtcBlock4x4Encoding.cpp

251 lines
7.9 KiB
C++
Raw Normal View History

2017-02-08 19:42:25 +00:00
/*
* Copyright 2015 The Etc2Comp Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
EtcBlock4x4Encoding.cpp
Block4x4Encoding is the abstract base class for the different encoders. Each encoder targets a
particular file format (e.g. ETC1, RGB8, RGBA8, R11)
*/
#include "EtcConfig.h"
#include "EtcBlock4x4Encoding.h"
#include "EtcBlock4x4EncodingBits.h"
#include "EtcBlock4x4.h"
#include <stdio.h>
#include <string.h>
#include <assert.h>
namespace Etc
{
// ----------------------------------------------------------------------------------------------------
//
const float Block4x4Encoding::LUMA_WEIGHT = 3.0f;
const float Block4x4Encoding::CHROMA_BLUE_WEIGHT = 0.5f;
// ----------------------------------------------------------------------------------------------------
//
Block4x4Encoding::Block4x4Encoding(void)
{
m_pblockParent = nullptr;
m_pafrgbaSource = nullptr;
m_boolBorderPixels = false;
m_fError = -1.0f;
m_mode = MODE_UNKNOWN;
m_uiEncodingIterations = 0;
m_boolDone = false;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_afrgbaDecodedColors[uiPixel] = ColorFloatRGBA(-1.0f, -1.0f, -1.0f, -1.0f);
m_afDecodedAlphas[uiPixel] = -1.0f;
}
}
// ----------------------------------------------------------------------------------------------------
// initialize the generic encoding for a 4x4 block
// a_pblockParent points to the block associated with this encoding
// a_errormetric is used to choose the best encoding
// init the decoded pixels to -1 to mark them as undefined
// init the error to -1 to mark it as undefined
//
void Block4x4Encoding::Init(Block4x4 *a_pblockParent,
ColorFloatRGBA *a_pafrgbaSource,
ErrorMetric a_errormetric)
{
m_pblockParent = a_pblockParent;
m_pafrgbaSource = a_pafrgbaSource;
m_boolBorderPixels = m_pblockParent->HasBorderPixels();
m_fError = -1.0f;
m_uiEncodingIterations = 0;
m_errormetric = a_errormetric;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_afrgbaDecodedColors[uiPixel] = ColorFloatRGBA(-1.0f, -1.0f, -1.0f, -1.0f);
m_afDecodedAlphas[uiPixel] = -1.0f;
}
}
// ----------------------------------------------------------------------------------------------------
// calculate the error for the block by summing the pixel errors
//
void Block4x4Encoding::CalcBlockError(void)
{
m_fError = 0.0f;
for (unsigned int uiPixel = 0; uiPixel < PIXELS; uiPixel++)
{
m_fError += CalcPixelError(m_afrgbaDecodedColors[uiPixel], m_afDecodedAlphas[uiPixel],
m_pafrgbaSource[uiPixel]);
}
}
// ----------------------------------------------------------------------------------------------------
// calculate the error between the source pixel and the decoded pixel
// the error amount is base on the error metric
//
float Block4x4Encoding::CalcPixelError(ColorFloatRGBA a_frgbaDecodedColor, float a_fDecodedAlpha,
ColorFloatRGBA a_frgbaSourcePixel)
{
// if a border pixel
if (isnan(a_frgbaSourcePixel.fA))
{
return 0.0f;
}
if (m_errormetric == ErrorMetric::RGBA)
{
assert(a_fDecodedAlpha >= 0.0f);
float fDRed = (a_fDecodedAlpha * a_frgbaDecodedColor.fR) -
(a_frgbaSourcePixel.fA * a_frgbaSourcePixel.fR);
float fDGreen = (a_fDecodedAlpha * a_frgbaDecodedColor.fG) -
(a_frgbaSourcePixel.fA * a_frgbaSourcePixel.fG);
float fDBlue = (a_fDecodedAlpha * a_frgbaDecodedColor.fB) -
(a_frgbaSourcePixel.fA * a_frgbaSourcePixel.fB);
float fDAlpha = a_fDecodedAlpha - a_frgbaSourcePixel.fA;
return fDRed*fDRed + fDGreen*fDGreen + fDBlue*fDBlue + fDAlpha*fDAlpha;
}
else if (m_errormetric == ErrorMetric::REC709)
{
assert(a_fDecodedAlpha >= 0.0f);
float fLuma1 = a_frgbaSourcePixel.fR*0.2126f + a_frgbaSourcePixel.fG*0.7152f + a_frgbaSourcePixel.fB*0.0722f;
float fChromaR1 = 0.5f * ((a_frgbaSourcePixel.fR - fLuma1) * (1.0f / (1.0f - 0.2126f)));
float fChromaB1 = 0.5f * ((a_frgbaSourcePixel.fB - fLuma1) * (1.0f / (1.0f - 0.0722f)));
float fLuma2 = a_frgbaDecodedColor.fR*0.2126f +
a_frgbaDecodedColor.fG*0.7152f +
a_frgbaDecodedColor.fB*0.0722f;
float fChromaR2 = 0.5f * ((a_frgbaDecodedColor.fR - fLuma2) * (1.0f / (1.0f - 0.2126f)));
float fChromaB2 = 0.5f * ((a_frgbaDecodedColor.fB - fLuma2) * (1.0f / (1.0f - 0.0722f)));
float fDeltaL = a_frgbaSourcePixel.fA * fLuma1 - a_fDecodedAlpha * fLuma2;
float fDeltaCr = a_frgbaSourcePixel.fA * fChromaR1 - a_fDecodedAlpha * fChromaR2;
float fDeltaCb = a_frgbaSourcePixel.fA * fChromaB1 - a_fDecodedAlpha * fChromaB2;
float fDAlpha = a_fDecodedAlpha - a_frgbaSourcePixel.fA;
// Favor Luma accuracy over Chroma, and Red over Blue
return LUMA_WEIGHT*fDeltaL*fDeltaL +
fDeltaCr*fDeltaCr +
CHROMA_BLUE_WEIGHT*fDeltaCb*fDeltaCb +
fDAlpha*fDAlpha;
#if 0
float fDRed = a_frgbaDecodedPixel.fR - a_frgbaSourcePixel.fR;
float fDGreen = a_frgbaDecodedPixel.fG - a_frgbaSourcePixel.fG;
float fDBlue = a_frgbaDecodedPixel.fB - a_frgbaSourcePixel.fB;
return 2.0f * 3.0f * fDeltaL * fDeltaL + fDRed*fDRed + fDGreen*fDGreen + fDBlue*fDBlue;
#endif
}
else if (m_errormetric == ErrorMetric::NORMALXYZ)
{
float fDecodedX = 2.0f * a_frgbaDecodedColor.fR - 1.0f;
float fDecodedY = 2.0f * a_frgbaDecodedColor.fG - 1.0f;
float fDecodedZ = 2.0f * a_frgbaDecodedColor.fB - 1.0f;
float fDecodedLength = sqrtf(fDecodedX*fDecodedX + fDecodedY*fDecodedY + fDecodedZ*fDecodedZ);
if (fDecodedLength < 0.5f)
{
return 1.0f;
}
else if (fDecodedLength == 0.0f)
{
fDecodedX = 1.0f;
fDecodedY = 0.0f;
fDecodedZ = 0.0f;
}
else
{
fDecodedX /= fDecodedLength;
fDecodedY /= fDecodedLength;
fDecodedZ /= fDecodedLength;
}
float fSourceX = 2.0f * a_frgbaSourcePixel.fR - 1.0f;
float fSourceY = 2.0f * a_frgbaSourcePixel.fG - 1.0f;
float fSourceZ = 2.0f * a_frgbaSourcePixel.fB - 1.0f;
float fSourceLength = sqrtf(fSourceX*fSourceX + fSourceY*fSourceY + fSourceZ*fSourceZ);
if (fSourceLength == 0.0f)
{
fSourceX = 1.0f;
fSourceY = 0.0f;
fSourceZ = 0.0f;
}
else
{
fSourceX /= fSourceLength;
fSourceY /= fSourceLength;
fSourceZ /= fSourceLength;
}
float fDotProduct = fSourceX*fDecodedX + fSourceY*fDecodedY + fSourceZ*fDecodedZ;
float fNormalizedDotProduct = 1.0f - 0.5f * (fDotProduct + 1.0f);
float fDotProductError = fNormalizedDotProduct * fNormalizedDotProduct;
float fLength2 = fDecodedX*fDecodedX + fDecodedY*fDecodedY + fDecodedZ*fDecodedZ;
float fLength2Error = fabsf(1.0f - fLength2);
float fDeltaW = a_frgbaDecodedColor.fA - a_frgbaSourcePixel.fA;
float fErrorW = fDeltaW * fDeltaW;
return fDotProductError + fLength2Error + fErrorW;
}
else // ErrorMetric::NUMERIC
{
assert(a_fDecodedAlpha >= 0.0f);
float fDX = a_frgbaDecodedColor.fR - a_frgbaSourcePixel.fR;
float fDY = a_frgbaDecodedColor.fG - a_frgbaSourcePixel.fG;
float fDZ = a_frgbaDecodedColor.fB - a_frgbaSourcePixel.fB;
float fDW = a_frgbaDecodedColor.fA - a_frgbaSourcePixel.fA;
return fDX*fDX + fDY*fDY + fDZ*fDZ + fDW*fDW;
}
}
// ----------------------------------------------------------------------------------------------------
//
} // namespace Etc