More cleanup. Remove files that are not strictly required.

This commit is contained in:
castano
2009-03-01 02:38:24 +00:00
parent 88fc5ca18e
commit 03c9ec0f62
26 changed files with 0 additions and 3939 deletions

View File

@ -7,7 +7,6 @@ SET(MATH_SRCS
Plane.h Plane.cpp
Box.h
Color.h
Random.h Random.cpp
Half.h Half.cpp
Fitting.h Fitting.cpp)

View File

@ -1,135 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#include <nvmath/Montecarlo.h>
using namespace nv;
void SampleDistribution::redistribute(Method method/*=Method_NRook*/, Distribution dist/*=Distribution_Cosine*/)
{
switch(method)
{
case Method_Random:
redistributeRandom(dist);
break;
case Method_Stratified:
redistributeStratified(dist);
break;
case Method_NRook:
redistributeNRook(dist);
break;
};
}
void SampleDistribution::redistributeRandom(const Distribution dist)
{
const uint sampleCount = m_sampleArray.count();
// This is the worst method possible!
for(uint i = 0; i < sampleCount; i++)
{
float x = m_rand.getFloat();
float y = m_rand.getFloat();
setSample(i, dist, x, y);
}
}
void SampleDistribution::redistributeStratified(const Distribution dist)
{
const uint sampleCount = m_sampleArray.count();
const uint sqrtSampleCount = uint(sqrtf(float(sampleCount)));
nvDebugCheck(sqrtSampleCount*sqrtSampleCount == sampleCount); // Must use exact powers!
// Create a uniform distribution of points on the hemisphere with low variance.
for(uint v = 0, i = 0; v < sqrtSampleCount; v++) {
for(uint u = 0; u < sqrtSampleCount; u++, i++) {
float x = (u + m_rand.getFloat()) / float(sqrtSampleCount);
float y = (v + m_rand.getFloat()) / float(sqrtSampleCount);
setSample(i, dist, x, y);
}
}
}
/** Multi-Stage N-rooks Sampling Method.
* See: http://www.acm.org/jgt/papers/WangSung9/9
*/
void SampleDistribution::multiStageNRooks(const int size, int* cells)
{
if (size == 1) {
return;
}
int size1 = size >> 1;
int size2 = size >> 1;
if (size & 1) {
if (m_rand.getFloat() > 0.5) {
size1++;
}
else {
size2++;
}
}
int* upper_cells = new int[size1];
int* lower_cells = new int[size2];
int i, j;
for(i = 0, j = 0; i < size - 1; i += 2, j++) {
if (m_rand.get() & 1) {
upper_cells[j] = cells[i];
lower_cells[j] = cells[i + 1];
}
else {
upper_cells[j] = cells[i + 1];
lower_cells[j] = cells[i];
}
}
if (size1 != size2) {
if (size1 > size2) {
upper_cells[j] = cells[i];
}
else {
lower_cells[j] = cells[i];
}
}
multiStageNRooks(size1, upper_cells);
memcpy(cells, upper_cells, size1 * sizeof(int));
delete [] upper_cells;
multiStageNRooks(size2, lower_cells);
memcpy(cells + size1, lower_cells, size2 * sizeof(int));
delete [] lower_cells;
}
void SampleDistribution::redistributeNRook(const Distribution dist)
{
const uint sampleCount = m_sampleArray.count();
// Generate nrook cells
int * cells = new int[sampleCount];
for(uint32 i = 0; i < sampleCount; i++)
{
cells[i] = i;
}
multiStageNRooks(sampleCount, cells);
for(uint i = 0; i < sampleCount; i++)
{
float x = (i + m_rand.getFloat()) / sampleCount;
float y = (cells[i] + m_rand.getFloat()) / sampleCount;
setSample(i, dist, x, y);
}
delete [] cells;
}

View File

@ -1,103 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_MONTECARLO_H
#define NV_MATH_MONTECARLO_H
#include <nvmath/Vector.h>
#include <nvmath/Random.h>
namespace nv
{
/// A random sample distribution.
class SampleDistribution
{
public:
// Sampling method.
enum Method {
Method_Random,
Method_Stratified,
Method_NRook
};
// Distribution functions.
enum Distribution {
Distribution_UniformSphere,
Distribution_UniformHemisphere,
Distribution_CosineHemisphere
};
/// Constructor.
SampleDistribution(uint num)
{
m_sampleArray.resize(num);
}
uint count() const { return m_sampleArray.count(); }
void redistribute(Method method=Method_NRook, Distribution dist=Distribution_CosineHemisphere);
/// Get parametric coordinates of the sample.
Vector2 sample(int i) const { return m_sampleArray[i].uv; }
/// Get sample direction.
Vector3 sampleDir(int i) const { return m_sampleArray[i].dir; }
/// Get number of samples.
uint sampleCount() const { return m_sampleArray.count(); }
private:
void redistributeRandom(const Distribution dist);
void redistributeStratified(const Distribution dist);
void multiStageNRooks(const int size, int* cells);
void redistributeNRook(const Distribution dist);
/// A sample of the random distribution.
struct Sample
{
/// Set sample given the 3d coordinates.
void setDir(float x, float y, float z) {
dir.set(x, y, z);
uv.set(acosf(z), atan2f(y, x));
}
/// Set sample given the 2d parametric coordinates.
void setUV(float u, float v) {
uv.set(u, v);
dir.set(sinf(u) * cosf(v), sinf(u) * sinf(v), cosf(u));
}
Vector2 uv;
Vector3 dir;
};
inline void setSample(uint i, Distribution dist, float x, float y)
{
// Map uniform distribution in the square to desired domain.
if( dist == Distribution_UniformSphere ) {
m_sampleArray[i].setUV(acosf(1 - 2 * x), 2 * PI * y);
}
else if( dist == Distribution_UniformHemisphere ) {
m_sampleArray[i].setUV(acosf(x), 2 * PI * y);
}
else {
nvDebugCheck(dist == Distribution_CosineHemisphere);
m_sampleArray[i].setUV(acosf(sqrtf(x)), 2 * PI * y);
}
}
/// Random seed.
MTRand m_rand;
/// Samples.
Array<Sample> m_sampleArray;
};
} // nv namespace
#endif // NV_MATH_MONTECARLO_H

View File

@ -1,54 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#include <nvmath/Random.h>
#include <time.h>
using namespace nv;
// Statics
const uint16 Rand48::a0 = 0xE66D;
const uint16 Rand48::a1 = 0xDEEC;
const uint16 Rand48::a2 = 0x0005;
const uint16 Rand48::c0 = 0x000B;
/// Get a random seed based on the current time.
uint Rand::randomSeed()
{
return (uint)time(NULL);
}
void MTRand::initialize( uint32 seed )
{
// Initialize generator state with seed
// See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
// In previous versions, most significant bits (MSBs) of the seed affect
// only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
uint32 *s = state;
uint32 *r = state;
int i = 1;
*s++ = seed & 0xffffffffUL;
for( ; i < N; ++i )
{
*s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
r++;
}
}
void MTRand::reload()
{
// Generate N new values in state
// Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
uint32 *p = state;
int i;
for( i = N - M; i--; ++p )
*p = twist( p[M], p[0], p[1] );
for( i = M; --i; ++p )
*p = twist( p[M-N], p[0], p[1] );
*p = twist( p[M-N], p[0], state[0] );
left = N, next = state;
}

View File

@ -1,368 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_RANDOM_H
#define NV_MATH_RANDOM_H
#include <nvcore/Containers.h> // nextPowerOfTwo
#include <nvmath/nvmath.h>
namespace nv
{
/// Interface of the random number generators.
class Rand
{
public:
virtual ~Rand() {}
enum time_e { Time };
/// Provide a new seed.
virtual void seed( uint s ) { /* empty */ };
/// Get an integer random number.
virtual uint get() = 0;
/// Get a random number on [0, max] interval.
uint getRange( uint max )
{
uint n;
// uint mask = Bitmask( max );
// do { n = Get() & mask; } while( n > max );
uint np2 = nextPowerOfTwo( max );
do { n = get() & (np2-1); } while( n > max );
return n;
}
/// Random number on [0.0, 1.0] interval.
float getFloat()
{
union
{
uint32 i;
float f;
} pun;
pun.i = 0x3f800000UL | (get() & 0x007fffffUL);
return pun.f - 1.0f;
}
/*
/// Random number on [0.0, 1.0] interval.
double getReal()
{
return double(get()) * (1.0/4294967295.0); // 2^32-1
}
/// Random number on [0.0, 1.0) interval.
double getRealExclusive()
{
return double(get()) * (1.0/4294967296.0); // 2^32
}
*/
/// Get the max value of the random number.
uint max() const { return 4294967295U; }
// Get a random seed.
static uint randomSeed();
};
/// Very simple random number generator with low storage requirements.
class SimpleRand : public Rand
{
public:
/// Constructor that uses the current time as the seed.
SimpleRand( time_e )
{
seed(randomSeed());
}
/// Constructor that uses the given seed.
SimpleRand( uint s = 0 )
{
seed(s);
}
/// Set the given seed.
virtual void seed( uint s )
{
current = s;
}
/// Get a random number.
virtual uint get()
{
return current = current * 1103515245 + 12345;
}
private:
uint current;
};
/// Mersenne twister random number generator.
class MTRand : public Rand
{
public:
enum { N = 624 }; // length of state vector
enum { M = 397 };
/// Constructor that uses the current time as the seed.
MTRand( time_e )
{
seed(randomSeed());
}
/// Constructor that uses the given seed.
MTRand( uint s = 0 )
{
seed(s);
}
/// Constructor that uses the given seeds.
NVMATH_API MTRand( const uint * seed_array, uint length );
/// Provide a new seed.
virtual void seed( uint s )
{
initialize(s);
reload();
}
/// Get a random number between 0 - 65536.
virtual uint get()
{
// Pull a 32-bit integer from the generator state
// Every other access function simply transforms the numbers extracted here
if( left == 0 ) {
reload();
}
left--;
uint s1;
s1 = *next++;
s1 ^= (s1 >> 11);
s1 ^= (s1 << 7) & 0x9d2c5680U;
s1 ^= (s1 << 15) & 0xefc60000U;
return ( s1 ^ (s1 >> 18) );
};
private:
NVMATH_API void initialize( uint32 seed );
NVMATH_API void reload();
uint hiBit( uint u ) const { return u & 0x80000000U; }
uint loBit( uint u ) const { return u & 0x00000001U; }
uint loBits( uint u ) const { return u & 0x7fffffffU; }
uint mixBits( uint u, uint v ) const { return hiBit(u) | loBits(v); }
uint twist( uint m, uint s0, uint s1 ) const { return m ^ (mixBits(s0,s1)>>1) ^ ((~loBit(s1)+1) & 0x9908b0dfU); }
private:
uint state[N]; // internal state
uint * next; // next value to get from state
int left; // number of values left before reload needed
};
/** George Marsaglia's random number generator.
* Code based on Thatcher Ulrich public domain source code:
* http://cvs.sourceforge.net/viewcvs.py/tu-testbed/tu-testbed/base/tu_random.cpp?rev=1.7&view=auto
*
* PRNG code adapted from the complimentary-multiply-with-carry
* code in the article: George Marsaglia, "Seeds for Random Number
* Generators", Communications of the ACM, May 2003, Vol 46 No 5,
* pp90-93.
*
* The article says:
*
* "Any one of the choices for seed table size and multiplier will
* provide a RNG that has passed extensive tests of randomness,
* particularly those in [3], yet is simple and fast --
* approximately 30 million random 32-bit integers per second on a
* 850MHz PC. The period is a*b^n, where a is the multiplier, n
* the size of the seed table and b=2^32-1. (a is chosen so that
* b is a primitive root of the prime a*b^n + 1.)"
*
* [3] Marsaglia, G., Zaman, A., and Tsang, W. Toward a universal
* random number generator. _Statistics and Probability Letters
* 8_ (1990), 35-39.
*/
class GMRand : public Rand
{
public:
enum { SEED_COUNT = 8 };
// const uint64 a = 123471786; // for SEED_COUNT=1024
// const uint64 a = 123554632; // for SEED_COUNT=512
// const uint64 a = 8001634; // for SEED_COUNT=255
// const uint64 a = 8007626; // for SEED_COUNT=128
// const uint64 a = 647535442; // for SEED_COUNT=64
// const uint64 a = 547416522; // for SEED_COUNT=32
// const uint64 a = 487198574; // for SEED_COUNT=16
// const uint64 a = 716514398U; // for SEED_COUNT=8
enum { a = 716514398U };
GMRand( time_e )
{
seed(randomSeed());
}
GMRand(uint s = 987654321)
{
seed(s);
}
/// Provide a new seed.
virtual void seed( uint s )
{
c = 362436;
i = SEED_COUNT - 1;
for(int i = 0; i < SEED_COUNT; i++) {
s = s ^ (s << 13);
s = s ^ (s >> 17);
s = s ^ (s << 5);
Q[i] = s;
}
}
/// Get a random number between 0 - 65536.
virtual uint get()
{
const uint32 r = 0xFFFFFFFE;
uint64 t;
uint32 x;
i = (i + 1) & (SEED_COUNT - 1);
t = a * Q[i] + c;
c = uint32(t >> 32);
x = uint32(t + c);
if( x < c ) {
x++;
c++;
}
uint32 val = r - x;
Q[i] = val;
return val;
};
private:
uint32 c;
uint32 i;
uint32 Q[8];
};
/** Random number implementation from the GNU Sci. Lib. (GSL).
* Adapted from Nicholas Chapman version:
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 James Theiler, Brian Gough
* This is the Unix rand48() generator. The generator returns the
* upper 32 bits from each term of the sequence,
*
* x_{n+1} = (a x_n + c) mod m
*
* using 48-bit unsigned arithmetic, with a = 0x5DEECE66D , c = 0xB
* and m = 2^48. The seed specifies the upper 32 bits of the initial
* value, x_1, with the lower 16 bits set to 0x330E.
*
* The theoretical value of x_{10001} is 244131582646046.
*
* The period of this generator is ? FIXME (probably around 2^48).
*/
class Rand48 : public Rand
{
public:
Rand48( time_e )
{
seed(randomSeed());
}
Rand48( uint s = 0x1234ABCD )
{
seed(s);
}
/** Set the given seed. */
virtual void seed( uint s ) {
vstate.x0 = 0x330E;
vstate.x1 = uint16(s & 0xFFFF);
vstate.x2 = uint16((s >> 16) & 0xFFFF);
}
/** Get a random number. */
virtual uint get() {
advance();
uint x1 = vstate.x1;
uint x2 = vstate.x2;
return (x2 << 16) + x1;
}
private:
void advance()
{
/* work with unsigned long ints throughout to get correct integer
promotions of any unsigned short ints */
const uint32 x0 = vstate.x0;
const uint32 x1 = vstate.x1;
const uint32 x2 = vstate.x2;
uint32 a;
a = a0 * x0 + c0;
vstate.x0 = uint16(a & 0xFFFF);
a >>= 16;
/* although the next line may overflow we only need the top 16 bits
in the following stage, so it does not matter */
a += a0 * x1 + a1 * x0;
vstate.x1 = uint16(a & 0xFFFF);
a >>= 16;
a += a0 * x2 + a1 * x1 + a2 * x0;
vstate.x2 = uint16(a & 0xFFFF);
}
private:
NVMATH_API static const uint16 a0, a1, a2, c0;
struct rand48_state_t {
uint16 x0, x1, x2;
} vstate;
};
} // nv namespace
#endif // NV_MATH_RANDOM_H