Add tone mapping operators.

pull/216/head
castano 13 years ago
parent fa0800a24a
commit 2e9afac689

@ -52,7 +52,7 @@ static float solidAngleTerm(uint x, uint y, float inverseEdgeLength) {
nvDebugCheck(v >= -1.0f && v <= 1.0f); nvDebugCheck(v >= -1.0f && v <= 1.0f);
#if 1 #if 1
// Exact solid angle: @@ Not really exact when using seamless filtering... // Exact solid angle:
float x0 = u - inverseEdgeLength; float x0 = u - inverseEdgeLength;
float y0 = v - inverseEdgeLength; float y0 = v - inverseEdgeLength;
float x1 = u + inverseEdgeLength; float x1 = u + inverseEdgeLength;
@ -73,10 +73,10 @@ static float solidAngleTerm(uint x, uint y, float inverseEdgeLength) {
} }
static Vector3 texelDirection(uint face, uint x, uint y, int edgeLength, bool seamless) static Vector3 texelDirection(uint face, uint x, uint y, int edgeLength, EdgeFixup fixupMethod)
{ {
float u, v; float u, v;
if (seamless) { if (fixupMethod == EdgeFixup_Stretch) {
// Transform x,y to [-1, 1] range, match up edges exactly. // Transform x,y to [-1, 1] range, match up edges exactly.
u = float(x) * 2.0f / (edgeLength - 1) - 1.0f; u = float(x) * 2.0f / (edgeLength - 1) - 1.0f;
v = float(y) * 2.0f / (edgeLength - 1) - 1.0f; v = float(y) * 2.0f / (edgeLength - 1) - 1.0f;
@ -86,6 +86,14 @@ static Vector3 texelDirection(uint face, uint x, uint y, int edgeLength, bool se
u = (float(x) + 0.5f) * (2.0f / edgeLength) - 1.0f; u = (float(x) + 0.5f) * (2.0f / edgeLength) - 1.0f;
v = (float(y) + 0.5f) * (2.0f / edgeLength) - 1.0f; v = (float(y) + 0.5f) * (2.0f / edgeLength) - 1.0f;
} }
if (fixupMethod == EdgeFixup_Warp) {
// Warp texel centers in the proximity of the edges.
float a = powf(float(edgeLength), 2.0f) / powf(float(edgeLength - 1), 3.0f);
u = a * powf(u, 3) + u;
v = a * powf(v, 3) + v;
}
nvDebugCheck(u >= -1.0f && u <= 1.0f); nvDebugCheck(u >= -1.0f && u <= 1.0f);
nvDebugCheck(v >= -1.0f && v <= 1.0f); nvDebugCheck(v >= -1.0f && v <= 1.0f);
@ -128,7 +136,7 @@ static Vector3 texelDirection(uint face, uint x, uint y, int edgeLength, bool se
} }
TexelTable::TexelTable(uint edgeLength, bool seamless) : size(edgeLength) { TexelTable::TexelTable(uint edgeLength) : size(edgeLength) {
uint hsize = size/2; uint hsize = size/2;
@ -147,12 +155,10 @@ TexelTable::TexelTable(uint edgeLength, bool seamless) : size(edgeLength) {
for (uint f = 0; f < 6; f++) { for (uint f = 0; f < 6; f++) {
for (uint y = 0; y < size; y++) { for (uint y = 0; y < size; y++) {
for (uint x = 0; x < size; x++) { for (uint x = 0; x < size; x++) {
directionArray[(f * size + y) * size + x] = texelDirection(f, x, y, edgeLength, seamless); directionArray[(f * size + y) * size + x] = texelDirection(f, x, y, edgeLength, EdgeFixup_None);
} }
} }
} }
} }
const Vector3 & TexelTable::direction(uint f, uint x, uint y) const { const Vector3 & TexelTable::direction(uint f, uint x, uint y) const {
@ -376,9 +382,34 @@ Surface CubeSurface::unfold(CubeLayout layout) const
} }
float CubeSurface::average(int channel) const
{
const uint edgeLength = m->edgeLength;
m->allocateTexelTable();
float total = 0.0f;
float sum = 0.0f;
for (int f = 0; f < 6; f++) {
float * c = m->face[f].m->image->channel(channel);
for (uint y = 0; y < edgeLength; y++) {
for (uint x = 0; x < edgeLength; x++) {
float solidAngle = m->texelTable->solidAngle(f, x, y);
total += solidAngle;
sum += c[y * edgeLength + x] * solidAngle;
}
}
}
return sum / total;
}
#include "nvmath/SphericalHarmonic.h" #include "nvmath/SphericalHarmonic.h"
CubeSurface CubeSurface::irradianceFilter(int size, bool seamless) const CubeSurface CubeSurface::irradianceFilter(int size, EdgeFixup fixupMethod) const
{ {
m->allocateTexelTable(); m->allocateTexelTable();
@ -640,6 +671,7 @@ struct ApplyCosinePowerFilterContext {
CubeSurface::Private * filteredCube; CubeSurface::Private * filteredCube;
float coneAngle; float coneAngle;
float cosinePower; float cosinePower;
EdgeFixup fixupMethod;
}; };
void ApplyCosinePowerFilterTask(void * context, int id) void ApplyCosinePowerFilterTask(void * context, int id)
@ -656,7 +688,7 @@ void ApplyCosinePowerFilterTask(void * context, int id)
nvtt::Surface & filteredFace = ctx->filteredCube->face[f]; nvtt::Surface & filteredFace = ctx->filteredCube->face[f];
FloatImage * filteredImage = filteredFace.m->image; FloatImage * filteredImage = filteredFace.m->image;
const Vector3 filterDir = texelDirection(f, x, y, size, ctx->filteredCube->seamless); const Vector3 filterDir = texelDirection(f, x, y, size, ctx->fixupMethod);
// Convolve filter against cube. // Convolve filter against cube.
Vector3 color = ctx->inputCube->applyCosinePowerFilter(filterDir, ctx->coneAngle, ctx->cosinePower); Vector3 color = ctx->inputCube->applyCosinePowerFilter(filterDir, ctx->coneAngle, ctx->cosinePower);
@ -667,14 +699,13 @@ void ApplyCosinePowerFilterTask(void * context, int id)
} }
CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower, bool seamless) const CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower, EdgeFixup fixupMethod) const
{ {
const uint edgeLength = m->edgeLength; const uint edgeLength = m->edgeLength;
// Allocate output cube. // Allocate output cube.
CubeSurface filteredCube; CubeSurface filteredCube;
filteredCube.m->allocate(size); filteredCube.m->allocate(size);
filteredCube.m->seamless = seamless;
// Texel table is stored along with the surface so that it's compute only once. // Texel table is stored along with the surface so that it's compute only once.
m->allocateTexelTable(); m->allocateTexelTable();
@ -691,10 +722,10 @@ CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower, bool sea
for (uint y = 0; y < uint(size); y++) { for (uint y = 0; y < uint(size); y++) {
for (uint x = 0; x < uint(size); x++) { for (uint x = 0; x < uint(size); x++) {
const Vector3 filterDir = texelDirection(f, x, y, size, seamless); const Vector3 filterDir = texelDirection(f, x, y, size, fixupMethod);
// Convolve filter against cube. // Convolve filter against cube.
Vector3 color = m->applyCosinePowerFilter(filterDir, coneAngle, cosinePower, seamless); Vector3 color = m->applyCosinePowerFilter(filterDir, coneAngle, cosinePower);
filteredImage->pixel(0, x, y, 0) = color.x; filteredImage->pixel(0, x, y, 0) = color.x;
filteredImage->pixel(1, x, y, 0) = color.y; filteredImage->pixel(1, x, y, 0) = color.y;
@ -708,10 +739,31 @@ CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower, bool sea
context.filteredCube = filteredCube.m; context.filteredCube = filteredCube.m;
context.coneAngle = coneAngle; context.coneAngle = coneAngle;
context.cosinePower = cosinePower; context.cosinePower = cosinePower;
context.fixupMethod = fixupMethod;
nv::ParallelFor parallelFor(ApplyCosinePowerFilterTask, &context); nv::ParallelFor parallelFor(ApplyCosinePowerFilterTask, &context);
parallelFor.run(6 * size * size); parallelFor.run(6 * size * size);
// @@ Implement edge averaging.
if (fixupMethod == EdgeFixup_Average) {
for (uint f = 0; f < 6; f++) {
nvtt::Surface filteredFace = filteredCube.m->face[f];
FloatImage * filteredImage = filteredFace.m->image;
// For each component.
for (uint c = 0; c < 3; c++) {
// @@ For each corner, sample the two adjacent faces.
filteredImage->pixel(c, 0, 0, 0);
filteredImage->pixel(c, size-1, 0, 0);
filteredImage->pixel(c, 0, size-1, 0);
filteredImage->pixel(c, size-1, size-1, 0);
// @@ For each edge, sample the adjacent face.
}
}
}
return filteredCube; return filteredCube;
} }

@ -39,7 +39,7 @@
namespace nvtt namespace nvtt
{ {
struct TexelTable { struct TexelTable {
TexelTable(uint edgeLength, bool seamless); TexelTable(uint edgeLength);
float solidAngle(uint f, uint x, uint y) const; float solidAngle(uint f, uint x, uint y) const;
const nv::Vector3 & direction(uint f, uint x, uint y) const; const nv::Vector3 & direction(uint f, uint x, uint y) const;
@ -59,7 +59,6 @@ namespace nvtt
nvDebugCheck( refCount() == 0 ); nvDebugCheck( refCount() == 0 );
edgeLength = 0; edgeLength = 0;
seamless = false;
texelTable = NULL; texelTable = NULL;
} }
Private(const Private & p) : RefCounted() // Copy ctor. inits refcount to 0. Private(const Private & p) : RefCounted() // Copy ctor. inits refcount to 0.
@ -67,7 +66,6 @@ namespace nvtt
nvDebugCheck( refCount() == 0 ); nvDebugCheck( refCount() == 0 );
edgeLength = p.edgeLength; edgeLength = p.edgeLength;
seamless = p.seamless;
for (uint i = 0; i < 6; i++) { for (uint i = 0; i < 6; i++) {
face[i] = p.face[i]; face[i] = p.face[i];
} }
@ -91,7 +89,7 @@ namespace nvtt
void allocateTexelTable() void allocateTexelTable()
{ {
if (texelTable == NULL) { if (texelTable == NULL) {
texelTable = new TexelTable(edgeLength, seamless); texelTable = new TexelTable(edgeLength);
} }
} }
@ -99,7 +97,6 @@ namespace nvtt
nv::Vector3 applyCosinePowerFilter(const nv::Vector3 & dir, float coneAngle, float cosinePower); nv::Vector3 applyCosinePowerFilter(const nv::Vector3 & dir, float coneAngle, float cosinePower);
uint edgeLength; uint edgeLength;
bool seamless;
Surface face[6]; Surface face[6];
TexelTable * texelTable; TexelTable * texelTable;
}; };

@ -1766,6 +1766,46 @@ void Surface::convolve(int channel, int kernelSize, float * kernelData)
m->image->convolve(k, channel, (FloatImage::WrapMode)m->wrapMode); m->image->convolve(k, channel, (FloatImage::WrapMode)m->wrapMode);
} }
void Surface::toneMap(ToneMapper tm, float exposure, float * parameters)
{
if (isNull()) return;
detach();
FloatImage * img = m->image;
float * r = img->channel(0);
float * g = img->channel(1);
float * b = img->channel(2);
const uint count = img->pixelCount();
if (tm == ToneMapper_Linear) {
// Clamp preserving the hue.
for (uint i = 0; i < count; i++) {
float m = max(r[i], g[i], b[i]);
if (m > 1.0f) {
r[i] *= 1.0f / m;
g[i] *= 1.0f / m;
b[i] *= 1.0f / m;
}
}
}
else if (tm == ToneMapper_Reindhart) {
for (uint i = 0; i < count; i++) {
r[i] /= r[i] + 1;
g[i] /= g[i] + 1;
b[i] /= b[i] + 1;
}
}
else if (tm == ToneMapper_Halo) {
for (uint i = 0; i < count; i++) {
r[i] = 1 - expf(-r[i]);
g[i] = 1 - expf(-g[i]);
b[i] = 1 - expf(-b[i]);
}
}
}
/* /*
void Surface::blockLuminanceScale(float scale) void Surface::blockLuminanceScale(float scale)
{ {

@ -413,6 +413,12 @@ namespace nvtt
//NormalTransform_DualParaboloid, //NormalTransform_DualParaboloid,
}; };
enum ToneMapper {
ToneMapper_Linear,
ToneMapper_Reindhart,
ToneMapper_Halo,
};
// A surface is one level of a 2D or 3D texture. // A surface is one level of a 2D or 3D texture.
// @@ It would be nice to add support for texture borders for correct resizing of tiled textures and constrained DXT compression. // @@ It would be nice to add support for texture borders for correct resizing of tiled textures and constrained DXT compression.
@ -492,6 +498,8 @@ namespace nvtt
NVTT_API void abs(int channel); NVTT_API void abs(int channel);
NVTT_API void convolve(int channel, int kernelSize, float * kernelData); NVTT_API void convolve(int channel, int kernelSize, float * kernelData);
NVTT_API void toneMap(ToneMapper tm, float exposure, float * parameters);
//NVTT_API void blockLuminanceScale(float scale); //NVTT_API void blockLuminanceScale(float scale);
// Color quantization. // Color quantization.
@ -535,6 +543,13 @@ namespace nvtt
CubeLayout_LatitudeLongitude CubeLayout_LatitudeLongitude
}; };
enum EdgeFixup {
EdgeFixup_None,
EdgeFixup_Stretch,
EdgeFixup_Warp,
EdgeFixup_Average,
};
// A CubeSurface is one level of a cube map texture. // A CubeSurface is one level of a cube map texture.
struct CubeSurface struct CubeSurface
{ {
@ -548,7 +563,6 @@ namespace nvtt
NVTT_API bool isNull() const; NVTT_API bool isNull() const;
NVTT_API int edgeLength() const; NVTT_API int edgeLength() const;
NVTT_API int countMipmaps() const; NVTT_API int countMipmaps() const;
NVTT_API bool isSeamless() const;
// Texture data. // Texture data.
NVTT_API bool load(const char * fileName, int mipmap); NVTT_API bool load(const char * fileName, int mipmap);
@ -570,8 +584,8 @@ namespace nvtt
NVTT_API float average(int channel) const; NVTT_API float average(int channel) const;
// Filtering. // Filtering.
NVTT_API CubeSurface irradianceFilter(int size, bool seamless) const; NVTT_API CubeSurface irradianceFilter(int size, EdgeFixup fixupMethod) const;
NVTT_API CubeSurface cosinePowerFilter(int size, float cosinePower, bool seamless) const; NVTT_API CubeSurface cosinePowerFilter(int size, float cosinePower, EdgeFixup fixupMethod) const;
/* /*

@ -50,7 +50,7 @@ int main(int argc, char *argv[])
return EXIT_FAILURE; return EXIT_FAILURE;
} }
envmap.toLinear(2.2f); //envmap.toLinear(2.2f);
// Setup compression options. // Setup compression options.
@ -59,19 +59,24 @@ int main(int argc, char *argv[])
compressionOptions.setPixelType(nvtt::PixelType_Float); compressionOptions.setPixelType(nvtt::PixelType_Float);
compressionOptions.setPixelFormat(16, 16, 16, 16); compressionOptions.setPixelFormat(16, 16, 16, 16);
// Setup output options. // Setup output options.
nvtt::OutputOptions outputOptions; nvtt::OutputOptions outputOptions;
outputOptions.setFileName("filtered_envmap.dds"); outputOptions.setFileName("filtered_envmap.dds");
outputOptions.setSrgbFlag(true); //outputOptions.setSrgbFlag(true);
const int MAX_MIPMAP_COUNT = 7; // nv::log2(64) + 1; const int MAX_MIPMAP_COUNT = 7; // nv::log2(64) + 1;
//const int mipmapCount = MAX_MIPMAP_COUNT; //const int mipmapCount = MAX_MIPMAP_COUNT;
const int mipmapCount = 4; const int mipmapCount = 4;
//const int mipmapCount = 1; //const int mipmapCount = 1;
const int firstMipmap = 0;
int topSize = 64;
float topPower = 64;
// Output header. // Output header.
context.outputHeader(nvtt::TextureType_Cube, 64, 64, 1, mipmapCount, false, compressionOptions, outputOptions); context.outputHeader(nvtt::TextureType_Cube, topSize >> firstMipmap, topSize >> firstMipmap, 1, mipmapCount-firstMipmap, false, compressionOptions, outputOptions);
nv::Timer timer; nv::Timer timer;
timer.start(); timer.start();
@ -79,20 +84,20 @@ int main(int argc, char *argv[])
nvtt::CubeSurface filteredEnvmap[mipmapCount]; nvtt::CubeSurface filteredEnvmap[mipmapCount];
// Output filtered mipmaps. // Output filtered mipmaps.
for (int m = 0; m < mipmapCount; m++) { for (int m = firstMipmap; m < mipmapCount; m++) {
int size = 64 / (1 << m); // 64, 32, 16, 8 int size = topSize >> m; // 64, 32, 16, 8
float cosine_power = float(64) / (1 << (2 * m)); // 64, 16, 4, 1 float cosine_power = topPower / (1 << (2 * m)); // 64, 16, 4, 1
cosine_power = nv::max(1.0f, cosine_power); cosine_power = nv::max(1.0f, cosine_power);
printf("filtering step: %d/%d\n", m+1, mipmapCount); printf("filtering step: %d/%d\n", m+1, mipmapCount);
filteredEnvmap[m] = envmap.cosinePowerFilter(size, cosine_power, false); filteredEnvmap[m] = envmap.cosinePowerFilter(size, cosine_power, nvtt::EdgeFixup_Warp);
filteredEnvmap[m].toGamma(2.2f); //filteredEnvmap[m].toGamma(2.2f);
} }
for (int f = 0; f < 6; f++) { for (int f = 0; f < 6; f++) {
for (int m = 0; m < mipmapCount; m++) { for (int m = firstMipmap; m < mipmapCount; m++) {
context.compress(filteredEnvmap[m].face(f), f, m, compressionOptions, outputOptions); context.compress(filteredEnvmap[m].face(f), f, m-firstMipmap, compressionOptions, outputOptions);
} }
} }

Loading…
Cancel
Save