Add DXT1 compressor that uses texture to avoid CPU swizzling.

Fix errors under emulation.
Experiment with DXT5 compressor.
This commit is contained in:
castano 2008-10-01 22:24:53 +00:00
parent 1957120c26
commit 2f6e885ced
4 changed files with 410 additions and 87 deletions

View File

@ -21,10 +21,8 @@
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h> // FLT_MAX
#include "CudaMath.h"
@ -53,65 +51,57 @@ __device__ inline void swap(T & a, T & b)
__constant__ float3 kColorMetric = { 1.0f, 1.0f, 1.0f };
__constant__ float3 kColorMetricSqr = { 1.0f, 1.0f, 1.0f };
// Some kernels read the input through texture.
texture<uchar4, 2, cudaReadModeNormalizedFloat> tex;
////////////////////////////////////////////////////////////////////////////////
// Sort colors
////////////////////////////////////////////////////////////////////////////////
__device__ void sortColors(const float * values, int * cmp)
__device__ void sortColors(const float * values, int * ranks)
{
int tid = threadIdx.x;
#if __DEVICE_EMULATION__
if (threadIdx.x == 0)
{
for (int tid = 0; tid < 16; tid++)
{
int rank = 0;
for (int i = 0; i < 16; i++)
{
rank += (values[i] < values[tid]);
}
ranks[tid] = rank;
}
#if 1
cmp[tid] = (values[0] < values[tid]);
cmp[tid] += (values[1] < values[tid]);
cmp[tid] += (values[2] < values[tid]);
cmp[tid] += (values[3] < values[tid]);
cmp[tid] += (values[4] < values[tid]);
cmp[tid] += (values[5] < values[tid]);
cmp[tid] += (values[6] < values[tid]);
cmp[tid] += (values[7] < values[tid]);
cmp[tid] += (values[8] < values[tid]);
cmp[tid] += (values[9] < values[tid]);
cmp[tid] += (values[10] < values[tid]);
cmp[tid] += (values[11] < values[tid]);
cmp[tid] += (values[12] < values[tid]);
cmp[tid] += (values[13] < values[tid]);
cmp[tid] += (values[14] < values[tid]);
cmp[tid] += (values[15] < values[tid]);
// Resolve elements with the same index.
if (tid > 0 && cmp[tid] == cmp[0]) ++cmp[tid];
if (tid > 1 && cmp[tid] == cmp[1]) ++cmp[tid];
if (tid > 2 && cmp[tid] == cmp[2]) ++cmp[tid];
if (tid > 3 && cmp[tid] == cmp[3]) ++cmp[tid];
if (tid > 4 && cmp[tid] == cmp[4]) ++cmp[tid];
if (tid > 5 && cmp[tid] == cmp[5]) ++cmp[tid];
if (tid > 6 && cmp[tid] == cmp[6]) ++cmp[tid];
if (tid > 7 && cmp[tid] == cmp[7]) ++cmp[tid];
if (tid > 8 && cmp[tid] == cmp[8]) ++cmp[tid];
if (tid > 9 && cmp[tid] == cmp[9]) ++cmp[tid];
if (tid > 10 && cmp[tid] == cmp[10]) ++cmp[tid];
if (tid > 11 && cmp[tid] == cmp[11]) ++cmp[tid];
if (tid > 12 && cmp[tid] == cmp[12]) ++cmp[tid];
if (tid > 13 && cmp[tid] == cmp[13]) ++cmp[tid];
if (tid > 14 && cmp[tid] == cmp[14]) ++cmp[tid];
// Resolve elements with the same index.
for (int i = 0; i < 15; i++)
{
for (int tid = 0; tid < 16; tid++)
{
if (tid > i && ranks[tid] == ranks[i]) ++ranks[tid];
}
}
}
#else
const int tid = threadIdx.x;
cmp[tid] = 0;
int rank = 0;
#pragma unroll
for (int i = 0; i < 16; i++)
{
cmp[tid] += (values[i] < values[tid]);
}
#pragma unroll
for (int i = 0; i < 16; i++)
{
rank += (values[i] < values[tid]);
}
ranks[tid] = rank;
// Resolve elements with the same index.
#pragma unroll
for (int i = 0; i < 15; i++)
{
if (tid > 0 && cmp[tid] == cmp[i]) ++cmp[tid];
}
// Resolve elements with the same index.
#pragma unroll
for (int i = 0; i < 15; i++)
{
if (tid > i && ranks[tid] == ranks[i]) ++ranks[tid];
}
#endif
}
@ -136,9 +126,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
colors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
// No need to synchronize, 16 < warp size.
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
__debugsync();
// Sort colors along the best fit line.
colorSums(colors, sums);
@ -148,17 +136,74 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
dps[idx] = dot(colors[idx], axis);
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
__debugsync();
sortColors(dps, xrefs);
float3 tmp = colors[idx];
__debugsync();
colors[xrefs[idx]] = tmp;
}
#if __DEVICE_EMULATION__
else
{
__debugsync();
__debugsync();
__debugsync();
}
#endif
}
__device__ void loadColorBlockTex(uint bn, uint w, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
__shared__ float dps[16];
if (idx < 16)
{
float x = 4 * ((bn + bid) % w) + idx % 4;
float y = 4 * ((bn + bid) / w) + idx / 4;
// Read color and copy to shared mem.
float4 c = tex2D(tex, x, y);
colors[idx].x = c.z;
colors[idx].y = c.y;
colors[idx].z = c.x;
// No need to synchronize, 16 < warp size.
__debugsync();
// Sort colors along the best fit line.
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
dps[idx] = dot(colors[idx], axis);
__debugsync();
sortColors(dps, xrefs);
float3 tmp = colors[idx];
__debugsync();
colors[xrefs[idx]] = tmp;
}
#if __DEVICE_EMULATION__
else
{
__debugsync();
__debugsync();
__debugsync();
}
#endif
}
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
@ -179,11 +224,8 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
colors[idx] = rawColors[idx] * weights[idx];
// No need to synchronize, 16 < warp size.
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
__debugsync();
// Sort colors along the best fit line.
colorSums(colors, sums);
@ -193,18 +235,24 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
dps[idx] = dot(rawColors[idx], axis);
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
__debugsync();
sortColors(dps, xrefs);
float3 tmp = colors[idx];
colors[xrefs[idx]] = tmp;
float w = weights[idx];
__debugsync();
colors[xrefs[idx]] = tmp;
weights[xrefs[idx]] = w;
}
#if __DEVICE_EMULATION__
else
{
__debugsync();
__debugsync();
__debugsync();
}
#endif
}
__device__ void loadColorBlock(const uint * image, float2 colors[16], float2 sums[16], int xrefs[16], int * sameColor)
@ -223,9 +271,7 @@ __device__ void loadColorBlock(const uint * image, float2 colors[16], float2 sum
colors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
// No need to synchronize, 16 < warp size.
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
__debugsync();
// Sort colors along the best fit line.
colorSums(colors, sums);
@ -235,15 +281,22 @@ __device__ void loadColorBlock(const uint * image, float2 colors[16], float2 sum
dps[idx] = dot(colors[idx], axis);
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
__debugsync();
sortColors(dps, xrefs);
float2 tmp = colors[idx];
__debugsync();
colors[xrefs[idx]] = tmp;
}
#if __DEVICE_EMULATION__
else
{
__debugsync();
__debugsync();
__debugsync();
}
#endif
}
@ -951,7 +1004,6 @@ __device__ int findMinError(float * errors)
}
}
}
#else
for(int d = NUM_THREADS/2; d > 32; d >>= 1)
{
@ -1135,6 +1187,41 @@ __global__ void compressDXT1(const uint * permutations, const uint * image, uint
}
}
__global__ void compressDXT1_Tex(uint bn, uint w, const uint * permutations, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlockTex(bn, w, colors, sums, xrefs, &sameColor);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalAllPermutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
__global__ void compressLevel4DXT1(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
@ -1452,6 +1539,125 @@ __global__ void compressDXT5(const uint * permutations, const uint * image, uint
}
*/
/*__device__ void evaluatePalette(uint alpha0, uint alpha1, uint alphas[8])
{
alpha[0] = alpha0;
alpha[1] = alpha1;
alpha[2] = (6 * alpha[0] + 1 * alpha[1]) / 7; // bit code 010
alpha[3] = (5 * alpha[0] + 2 * alpha[1]) / 7; // bit code 011
alpha[4] = (4 * alpha[0] + 3 * alpha[1]) / 7; // bit code 100
alpha[5] = (3 * alpha[0] + 4 * alpha[1]) / 7; // bit code 101
alpha[6] = (2 * alpha[0] + 5 * alpha[1]) / 7; // bit code 110
alpha[7] = (1 * alpha[0] + 6 * alpha[1]) / 7; // bit code 111
}
__device__ uint computeAlphaError(const uint block[16], uint alpha0, uint alpha1, int bestError = INT_MAX)
{
uint8 alphas[8];
evaluatePalette(alpha0, alpha1, alphas);
int totalError = 0;
for (uint i = 0; i < 16; i++)
{
uint8 alpha = block[i];
// @@ It should be possible to do this much faster.
int minDist = INT_MAX;
for (uint p = 0; p < 8; p++)
{
int dist = alphaDistance(alpha, alphas[p]);
minDist = min(dist, minDist);
}
totalError += minDist;
if (totalError > bestError)
{
// early out
return totalError;
}
}
return totalError;
}
void compressDXT5A(uint alpha[16])
{
// Get min/max alpha.
for (uint i = 0; i < 16; i++)
{
mina = min(mina, alpha[i]);
maxa = max(maxa, alpha[i]);
}
dxtBlock->alpha0 = maxa;
dxtBlock->alpha1 = mina;
if (maxa - mina > 8)
{
int besterror = computeAlphaError(rgba, dxtBlock);
int besta0 = maxa;
int besta1 = mina;
// Expand search space a bit.
const int alphaExpand = 8;
mina = (mina <= alphaExpand) ? 0 : mina - alphaExpand;
maxa = (maxa <= 255-alphaExpand) ? 255 : maxa + alphaExpand;
for (int a0 = mina+9; a0 < maxa; a0++)
{
for (int a1 = mina; a1 < a0-8; a1++)
{
nvDebugCheck(a0 - a1 > 8);
dxtBlock->alpha0 = a0;
dxtBlock->alpha1 = a1;
int error = computeAlphaError(rgba, dxtBlock, besterror);
if (error < besterror)
{
besterror = error;
besta0 = a0;
besta1 = a1;
}
}
}
dxtBlock->alpha0 = besta0;
dxtBlock->alpha1 = besta1;
}
}
__global__ void compressDXT5n(uint blockNum, uint2 * d_result)
{
uint idx = blockIdx.x * 128 + threadIdx.x;
if (idx >= blockNum)
{
return;
}
// @@ Ideally we would load the data to shared mem to achieve coalesced global mem access.
// @@ Blocks would require too much shared memory (8k) and limit occupancy.
// @@ Ideally we should use SIMD processing, multiple threads (4-8) processing the same block.
// That simplifies coalescing, and reduces divergence.
// @@ Experiment with texture. That's probably the most simple approach.
uint x[16];
uint y[16];
}
*/
////////////////////////////////////////////////////////////////////////////////
// Setup kernel
////////////////////////////////////////////////////////////////////////////////
@ -1479,6 +1685,20 @@ extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result
compressDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressKernelDXT1_Tex(uint bn, uint blockNum, uint w, cudaArray * d_data, uint * d_result, uint * d_bitmaps)
{
// Setup texture
tex.normalized = false;
tex.filterMode = cudaFilterModePoint;
tex.addressMode[0] = cudaAddressModeClamp;
tex.addressMode[1] = cudaAddressModeClamp;
cudaBindTextureToArray(tex, d_data);
compressDXT1_Tex<<<blockNum, NUM_THREADS>>>(bn, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
@ -1498,3 +1718,16 @@ extern "C" void compressKernelCTX1(uint blockNum, uint * d_data, uint * d_result
{
compressCTX1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressKernelDXT5n(uint blockNum, cudaArray * d_data, uint * d_result)
{
// Setup texture
tex.normalized = false;
tex.filterMode = cudaFilterModePoint;
tex.addressMode[0] = cudaAddressModeClamp;
tex.addressMode[1] = cudaAddressModeClamp;
cudaBindTextureToArray(tex, d_data);
// compressDXT5n<<<blockNum/128, 128>>>(blockNum, (uint2 *)d_result);
}

View File

@ -53,6 +53,7 @@ using namespace nvtt;
extern "C" void setupCompressKernel(const float weights[3]);
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT1_Tex(uint bn, uint blockNum, uint w, cudaArray * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressNormalKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
@ -286,7 +287,7 @@ void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressio
}
clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(blockLinearImage);
@ -298,6 +299,77 @@ void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressio
#endif
}
void CudaCompressor::compressDXT1_Tex(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Allocate image as a cuda array.
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(8, 8, 8, 8, cudaChannelFormatKindUnsigned);
cudaArray * d_image;
const int imageSize = m_image->width() * m_image->height() * sizeof(uint);
cudaMallocArray(&d_image, &channelDesc, m_image->width(), m_image->height());
cudaMemcpyToArray(d_image, 0, 0, m_image->pixels(), imageSize, cudaMemcpyHostToDevice);
// Image size in blocks.
const uint w = (m_image->width() + 3) / 4;
const uint h = (m_image->height() + 3) / 4;
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
void * h_result = malloc(MAX_BLOCKS * 8);
clock_t start = clock();
setupCompressKernel(compressionOptions.colorWeight.ptr());
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
// Launch kernel.
compressKernelDXT1_Tex(bn, count, w, d_image, m_result, m_bitmapTable);
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(h_result, m_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
{
outputOptions.outputHandler->writeData(h_result, count * 8);
}
bn += count;
}
clock_t end = clock();
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(h_result);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
/// Compress image using CUDA.
void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
@ -618,3 +690,20 @@ void CudaCompressor::compressCTX1(const nvtt::CompressionOptions::Private & comp
#endif
}
void CudaCompressor::compressDXT5n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// @@ TODO
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}

View File

@ -42,10 +42,12 @@ namespace nv
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1_Tex(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressCTX1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
private:

View File

@ -26,7 +26,6 @@
#ifndef CUDAMATH_H
#define CUDAMATH_H
#include <float.h>
inline __device__ __host__ float3 operator *(float3 a, float3 b)
@ -211,7 +210,7 @@ inline __device__ bool singleColor(const float3 * colors)
bool sameColor = false;
for (int i = 0; i < 16; i++)
{
sameColor &= (colors[idx] == colors[0]);
sameColor &= (colors[i] == colors[0]);
}
return sameColor;
#else
@ -232,16 +231,16 @@ inline __device__ bool singleColor(const float3 * colors)
inline __device__ void colorSums(const float3 * colors, float3 * sums)
{
#if __DEVICE_EMULATION__
float3 color_sum = make_float3(0.0f, 0.0f, 0.0f);
for (int i = 0; i < 16; i++)
{
color_sum += colors[i];
}
float3 color_sum = make_float3(0.0f, 0.0f, 0.0f);
for (int i = 0; i < 16; i++)
{
color_sum += colors[i];
}
for (int i = 0; i < 16; i++)
{
sums[i] = color_sum;
}
for (int i = 0; i < 16; i++)
{
sums[i] = color_sum;
}
#else
const int idx = threadIdx.x;
@ -327,7 +326,7 @@ inline __device__ __host__ float2 firstEigenVector2D( float matrix[3] )
inline __device__ void colorSums(const float2 * colors, float2 * sums)
{
#if __DEVICE_EMULATION__
float2 color_sum = make_float2(0.0f, 0.0f, 0.0f);
float2 color_sum = make_float2(0.0f, 0.0f);
for (int i = 0; i < 16; i++)
{
color_sum += colors[i];
@ -360,7 +359,7 @@ inline __device__ float2 bestFitLine(const float2 * colors, float2 color_sum)
float2 a = (colors[i] - color_sum * (1.0f / 16.0f));
covariance[0] += a.x * a.x;
covariance[1] += a.x * a.y;
covariance[3] += a.y * a.y;
covariance[2] += a.y * a.y;
}
#else