DXT3 and DXT5 cuda compressors.

This commit is contained in:
castano 2007-07-09 10:30:16 +00:00
parent 83490b0b66
commit 31c9ef0413
3 changed files with 293 additions and 76 deletions

View File

@ -141,6 +141,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
const int bid = blockIdx.x;
const int idx = threadIdx.x;
__shared__ float3 rawColors[16];
__shared__ float dps[16];
if (idx < 16)
@ -148,10 +149,13 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
// Read color and copy to shared mem.
uint c = image[(bid) * 16 + idx];
colors[idx].z = ((c >> 0) & 0xFF) * (1.0f / 255.0f);
colors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f);
colors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
weights[idx] = ((c >> 24) & 0xFF) * (1.0f / 255.0f);
rawColors[idx].z = ((c >> 0) & 0xFF) * (1.0f / 255.0f);
rawColors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f);
rawColors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
weights[idx] = (((c >> 24) & 0xFF) + 1) * (1.0f / 256.0f);
colors[idx] = rawColors[idx] * weights[idx];
// No need to synchronize, 16 < warp size.
#if __DEVICE_EMULATION__
@ -162,7 +166,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0]);
dps[idx] = dot(colors[idx], axis);
dps[idx] = dot(rawColors[idx], axis);
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
@ -283,7 +287,7 @@ __constant__ float alphaTable3[4] = { 4.0f, 0.0f, 2.0f, 2.0f };
__constant__ const uint prods4[4] = { 0x090000,0x000900,0x040102,0x010402 };
__constant__ const uint prods3[4] = { 0x040000,0x000400,0x040101,0x010401 };
__device__ float evalPermutation4(const float3 * colors, uint permutation, ushort * start, ushort * end, float3 color_sum)
__device__ float evalPermutation4(const float3 * colors, float3 color_sum, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
@ -318,7 +322,7 @@ __device__ float evalPermutation4(const float3 * colors, uint permutation, ushor
return (1.0f / 9.0f) * dot(e, kColorMetric);
}
__device__ float evalPermutation3(const float3 * colors, uint permutation, ushort * start, ushort * end, float3 color_sum)
__device__ float evalPermutation3(const float3 * colors, float3 color_sum, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
@ -353,14 +357,13 @@ __device__ float evalPermutation3(const float3 * colors, uint permutation, ushor
return (1.0f / 4.0f) * dot(e, kColorMetric);
}
__device__ float evalPermutation4(const float3 * colors, const float * weights, uint permutation, ushort * start, ushort * end)
__device__ float evalPermutation4(const float3 * colors, const float * weights, float3 color_sum, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float alpha2_sum = 0.0f;
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
float3 betax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++)
@ -374,10 +377,11 @@ __device__ float evalPermutation4(const float3 * colors, const float * weights,
alpha2_sum += alpha * alpha * weights[i];
beta2_sum += beta * beta * weights[i];
alphabeta_sum += alpha * beta * weights[i];
alphax_sum += alpha * colors[i] * weights[i];
betax_sum += beta * colors[i] * weights[i];
alphax_sum += alpha * colors[i];
}
float3 betax_sum = color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
@ -393,6 +397,7 @@ __device__ float evalPermutation4(const float3 * colors, const float * weights,
return dot(e, kColorMetric);
}
/*
__device__ float evalPermutation3(const float3 * colors, const float * weights, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
@ -400,7 +405,6 @@ __device__ float evalPermutation3(const float3 * colors, const float * weights,
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
float3 betax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++)
@ -414,10 +418,11 @@ __device__ float evalPermutation3(const float3 * colors, const float * weights,
alpha2_sum += alpha * alpha * weights[i];
beta2_sum += beta * beta * weights[i];
alphabeta_sum += alpha * beta * weights[i];
alphax_sum += alpha * colors[i] * weights[i];
betax_sum += beta * colors[i] * weights[i];
alphax_sum += alpha * colors[i];
}
float3 betax_sum = color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
@ -432,6 +437,7 @@ __device__ float evalPermutation3(const float3 * colors, const float * weights,
return dot(e, kColorMetric);
}
*/
////////////////////////////////////////////////////////////////////////////////
@ -454,7 +460,7 @@ __device__ void evalAllPermutations(const float3 * colors, float3 colorSum, cons
uint permutation = permutations[pidx];
if (pidx < 160) s_permutations[pidx] = permutation;
float error = evalPermutation4(colors, permutation, &start, &end, colorSum);
float error = evalPermutation4(colors, colorSum, permutation, &start, &end);
if (error < bestError)
{
@ -478,7 +484,7 @@ __device__ void evalAllPermutations(const float3 * colors, float3 colorSum, cons
ushort start, end;
uint permutation = s_permutations[pidx];
float error = evalPermutation3(colors, permutation, &start, &end, colorSum);
float error = evalPermutation3(colors, colorSum, permutation, &start, &end);
if (error < bestError)
{
@ -498,6 +504,7 @@ __device__ void evalAllPermutations(const float3 * colors, float3 colorSum, cons
errors[idx] = bestError;
}
/*
__device__ void evalAllPermutations(const float3 * colors, const float * weights, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
@ -558,9 +565,9 @@ __device__ void evalAllPermutations(const float3 * colors, const float * weights
errors[idx] = bestError;
}
*/
__device__ void evalLevel4Permutations(const float3 * colors, const float * weights, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
__device__ void evalLevel4Permutations(const float3 * colors, const float * weights, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
@ -574,7 +581,7 @@ __device__ void evalLevel4Permutations(const float3 * colors, const float * weig
ushort start, end;
uint permutation = permutations[pidx];
float error = evalPermutation4(colors, weights, permutation, &start, &end);
float error = evalPermutation4(colors, weights, colorSum, permutation, &start, &end);
if (error < bestError)
{
@ -755,7 +762,7 @@ __global__ void compressWeighted(const uint * permutations, const uint * image,
__shared__ float errors[NUM_THREADS];
evalLevel4Permutations(colors, weights, permutations, bestStart, bestEnd, bestPermutation, errors);
evalLevel4Permutations(colors, weights, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
int minIdx = findMinError(errors);
@ -768,6 +775,7 @@ __global__ void compressWeighted(const uint * permutations, const uint * image,
}
/*
__device__ float computeError(const float weights[16], uchar a0, uchar a1)
{
float palette[6];
@ -803,7 +811,7 @@ inline __device__ uchar roundAndExpand(float a)
{
return rintf(__saturatef(a) * 255.0f);
}
*/
/*
__device__ void optimizeAlpha8(const float alphas[16], uchar & a0, uchar & a1)
{
@ -838,7 +846,7 @@ __device__ void optimizeAlpha8(const float alphas[16], uchar & a0, uchar & a1)
a1 = roundAndExpand(b);
}
*/
/*
__device__ void compressAlpha(const float alphas[16], uint4 * result)
{
const int tid = threadIdx.x;
@ -932,7 +940,7 @@ __global__ void compressDXT5(const uint * permutations, const uint * image, uint
__shared__ float errors[NUM_THREADS];
evalLevel4Permutations(colors, weights, permutations, bestStart, bestEnd, bestPermutation, errors);
evalLevel4Permutations(colors, weights, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
int minIdx = findMinError(errors);
@ -943,7 +951,7 @@ __global__ void compressDXT5(const uint * permutations, const uint * image, uint
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, (uint2 *)result);
}
}
*/
////////////////////////////////////////////////////////////////////////////////
// Setup kernel

View File

@ -29,10 +29,12 @@
#include <nvimage/ColorBlock.h>
#include <nvimage/BlockDXT.h>
#include <nvimage/nvtt/CompressionOptions.h>
#include <nvimage/nvtt/FastCompressDXT.h>
#include "CudaCompressDXT.h"
#include "CudaUtils.h"
#if defined HAVE_CUDA
#include <cuda_runtime.h>
#endif
@ -186,6 +188,28 @@ static void doPrecomputation()
#endif
// Convert linear image to block linear.
static void convertToBlockLinear(const Image * image, uint * blockLinearImage)
{
const uint w = (image->width() + 3) / 4;
const uint h = (image->height() + 3) / 4;
for(uint by = 0; by < h; by++) {
for(uint bx = 0; bx < w; bx++) {
const uint bw = min(image->width() - bx * 4, 4U);
const uint bh = min(image->height() - by * 4, 4U);
for (uint i = 0; i < 16; i++) {
const int x = (i % 4) % bw;
const int y = (i / 4) % bh;
blockLinearImage[(by * w + bx) * 16 + i] = image->pixel(bx * 4 + x, by * 4 + y).u;
}
}
}
}
// @@ This code is very repetitive and needs to be cleaned up.
/// Compress image using CUDA.
void nv::cudaCompressDXT1(const Image * image, const OutputOptions & outputOptions, const CompressionOptions::Private & compressionOptions)
@ -201,24 +225,11 @@ void nv::cudaCompressDXT1(const Image * image, const OutputOptions & outputOptio
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) malloc(imageSize);
// Convert linear image to block linear.
for(uint by = 0; by < h; by++) {
for(uint bx = 0; bx < w; bx++) {
const uint bw = min(image->width() - bx * 4, 4U);
const uint bh = min(image->height() - by * 4, 4U);
for (uint i = 0; i < 16; i++) {
const int x = (i % 4) % bw;
const int y = (i / 4) % bh;
blockLinearImage[(by * w + bx) * 16 + i] = image->pixel(bx * 4 + x, by * 4 + y).u;
}
}
}
convertToBlockLinear(image, blockLinearImage);
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
const uint blockMax = 32768; // 65535
const uint blockMax = 32768; // 49152, 65535
// Allocate image in device memory.
uint * d_data = NULL;
@ -283,6 +294,201 @@ void nv::cudaCompressDXT1(const Image * image, const OutputOptions & outputOptio
}
/// Compress image using CUDA.
void nv::cudaCompressDXT3(const Image * image, const OutputOptions & outputOptions, const CompressionOptions::Private & compressionOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
doPrecomputation();
// Image size in blocks.
const uint w = (image->width() + 3) / 4;
const uint h = (image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) malloc(imageSize);
convertToBlockLinear(image, blockLinearImage);
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
const uint blockMax = 32768; // 49152, 65535
// Allocate image in device memory.
uint * d_data = NULL;
cudaMalloc((void**) &d_data, min(imageSize, blockMax * 64U));
// Allocate result.
uint * d_result = NULL;
cudaMalloc((void**) &d_result, min(compressedSize, blockMax * 8U));
AlphaBlockDXT3 * alphaBlocks = NULL;
alphaBlocks = (AlphaBlockDXT3 *)malloc(min(compressedSize, blockMax * 8U));
setupCompressKernel(compressionOptions.colorWeight.ptr());
clock_t start = clock();
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, blockMax);
cudaMemcpy(d_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
compressWeightedKernel(count, d_data, d_result, d_bitmaps);
// Compress alpha in parallel with the GPU.
for (uint i = 0; i < count; i++)
{
ColorBlock rgba(blockLinearImage + (bn + i) * 16);
compressBlock(rgba, alphaBlocks + i);
}
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, d_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
{
for (uint i = 0; i < count; i++)
{
outputOptions.outputHandler->writeData(alphaBlocks + i, 8);
outputOptions.outputHandler->writeData(blockLinearImage + i * 2, 8);
}
}
bn += count;
}
clock_t end = clock();
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(alphaBlocks);
free(blockLinearImage);
cudaFree(d_data);
cudaFree(d_result);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
/// Compress image using CUDA.
void nv::cudaCompressDXT5(const Image * image, const OutputOptions & outputOptions, const CompressionOptions::Private & compressionOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
doPrecomputation();
// Image size in blocks.
const uint w = (image->width() + 3) / 4;
const uint h = (image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) malloc(imageSize);
convertToBlockLinear(image, blockLinearImage);
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
const uint blockMax = 32768; // 49152, 65535
// Allocate image in device memory.
uint * d_data = NULL;
cudaMalloc((void**) &d_data, min(imageSize, blockMax * 64U));
// Allocate result.
uint * d_result = NULL;
cudaMalloc((void**) &d_result, min(compressedSize, blockMax * 8U));
AlphaBlockDXT5 * alphaBlocks = NULL;
alphaBlocks = (AlphaBlockDXT5 *)malloc(min(compressedSize, blockMax * 8U));
setupCompressKernel(compressionOptions.colorWeight.ptr());
clock_t start = clock();
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, blockMax);
cudaMemcpy(d_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
compressWeightedKernel(count, d_data, d_result, d_bitmaps);
// Compress alpha in parallel with the GPU.
for (uint i = 0; i < count; i++)
{
ColorBlock rgba(blockLinearImage + (bn + i) * 16);
compressBlock_Iterative(rgba, alphaBlocks + i);
}
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, d_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
{
for (uint i = 0; i < count; i++)
{
outputOptions.outputHandler->writeData(alphaBlocks + i, 8);
outputOptions.outputHandler->writeData(blockLinearImage + i * 2, 8);
}
}
bn += count;
}
clock_t end = clock();
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(alphaBlocks);
free(blockLinearImage);
cudaFree(d_data);
cudaFree(d_result);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
#if defined HAVE_CUDA
class Task
@ -429,7 +635,7 @@ void nv::cudaCompressDXT1_2(const Image * image, const OutputOptions & outputOpt
const uint h = image->height();
const uint blockNum = ((w + 3) / 4) * ((h + 3) / 4);
const uint blockMax = 32768; // 65535
const uint blockMax = 32768; // 49152, 65535
doPrecomputation();

View File

@ -32,6 +32,9 @@ namespace nv
class Image;
void cudaCompressDXT1(const Image * image, const nvtt::OutputOptions & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void cudaCompressDXT3(const Image * image, const nvtt::OutputOptions & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void cudaCompressDXT5(const Image * image, const nvtt::OutputOptions & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void cudaCompressDXT1_2(const Image * image, const nvtt::OutputOptions & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
} // nv namespace