Use STB image by default.

Add buffer object, try to reduce binary size.
This commit is contained in:
castano 2011-04-02 07:41:55 +00:00
parent ad7a618222
commit 43b16d85f4
7 changed files with 906 additions and 859 deletions

View File

@ -1,6 +1,7 @@
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
INCLUDE_DIRECTORIES(${NV_SOURCE_DIR}/extern/poshlib)
INCLUDE_DIRECTORIES(${NV_SOURCE_DIR}/extern/stb)
SUBDIRS(nvcore)
SUBDIRS(nvmath)
@ -81,7 +82,7 @@ ELSE(FREEIMAGE_FOUND)
ENDIF(FREEIMAGE_FOUND)
# JPEG
INCLUDE(FindJPEG)
#INCLUDE(FindJPEG)
IF(JPEG_FOUND)
SET(HAVE_JPEG ${JPEG_FOUND} CACHE BOOL "Set to TRUE if JPEG is found, FALSE otherwise")
MESSAGE(STATUS "Looking for JPEG - found")
@ -90,7 +91,7 @@ ELSE(JPEG_FOUND)
ENDIF(JPEG_FOUND)
# PNG
INCLUDE(FindPNG)
#INCLUDE(FindPNG)
IF(PNG_FOUND)
SET(HAVE_PNG ${PNG_FOUND} CACHE BOOL "Set to TRUE if PNG is found, FALSE otherwise")
MESSAGE(STATUS "Looking for PNG - found")
@ -99,7 +100,7 @@ ELSE(PNG_FOUND)
ENDIF(PNG_FOUND)
# TIFF
SET(TIFF_NAMES libtiff)
#SET(TIFF_NAMES libtiff)
INCLUDE(FindTIFF)
IF(TIFF_FOUND)
SET(HAVE_TIFF ${TIFF_FOUND} CACHE BOOL "Set to TRUE if TIFF is found, FALSE otherwise")
@ -109,7 +110,7 @@ ELSE(TIFF_FOUND)
ENDIF(TIFF_FOUND)
# OpenEXR
INCLUDE(${NV_CMAKE_DIR}/FindOpenEXR.cmake)
#INCLUDE(${NV_CMAKE_DIR}/FindOpenEXR.cmake)
IF(OPENEXR_FOUND)
SET(HAVE_OPENEXR ${OPENEXR_FOUND} CACHE BOOL "Set to TRUE if OpenEXR is found, FALSE otherwise")
MESSAGE(STATUS "Looking for OpenEXR - found")

View File

@ -10,11 +10,12 @@
#cmakedefine HAVE_OPENMP
#cmakedefine HAVE_DISPATCH_H
#cmakedefine HAVE_PNG
#cmakedefine HAVE_JPEG
#cmakedefine HAVE_TIFF
#cmakedefine HAVE_OPENEXR
#cmakedefine HAVE_FREEIMAGE
#define HAVE_STBIMAGE
//#cmakedefine HAVE_PNG
//#cmakedefine HAVE_JPEG
//#cmakedefine HAVE_TIFF
//#cmakedefine HAVE_OPENEXR
//#cmakedefine HAVE_FREEIMAGE
#cmakedefine HAVE_MAYA

View File

@ -6,7 +6,8 @@
/*
This array class requires the elements to be relocable; it uses memmove and realloc. Ideally I should be
using swap, but I honestly don't care.
using swap, but I honestly don't care. The only thing that you should be aware of is that internal pointers
are not supported.
The foreach macros that I use are very non-standard and somewhat confusing. It would be nice to have
standard foreach as in Qt.
@ -37,6 +38,94 @@ namespace nv
}
}
template <typename T>
void construct(T * ptr, uint count) {
for (uint i = 0; i < count; i++) {
new(ptr+i) T; // placement new
}
}
template <typename T>
void destroy(T * ptr, uint count) {
for (uint i = 0; i < count; i++) {
(ptr+i)->~T();
}
}
template <typename T>
void fill(T * restrict dst, const T & value, uint count) {
for (uint i = 0; i < count; i++) {
dst[i] = value;
}
}
template <typename T>
void copy(T * restrict dst, const T * restrict src, uint count) {
for (uint i = 0; i < count; i++) {
dst[i] = src[i];
}
}
class Buffer
{
NV_FORBID_COPY(Buffer)
public:
// Ctor.
Buffer() : m_buffer(NULL), m_buffer_size(0), m_size(0)
{
}
// Dtor.
~Buffer() {
allocate(0, 0);
}
// Get vector size.
NV_FORCEINLINE uint size() const { return m_size; }
// Get vector size.
NV_FORCEINLINE uint count() const { return m_size; }
// Is a null vector.
NV_FORCEINLINE bool isNull() const { return m_buffer == NULL; }
// Swap the members of this vector and the given vector.
friend void swap(Buffer & a, Buffer & b)
{
swap(a.m_buffer, b.m_buffer);
swap(a.m_buffer_size, b.m_buffer_size);
swap(a.m_size, b.m_size);
}
protected:
/// Change buffer size.
NV_NOINLINE void allocate(uint count, uint size)
{
if (count == 0) {
// free the buffer.
if (m_buffer != NULL) {
::free(m_buffer);
m_buffer = NULL;
}
}
else {
// realloc the buffer
m_buffer = ::realloc(m_buffer, count * size);
}
m_buffer_size = count;
}
protected:
void * m_buffer;
uint m_buffer_size;
uint m_size;
};
/**
@ -44,38 +133,30 @@ namespace nv
* some nice foreach enumerators.
*/
template<typename T>
class NVCORE_CLASS Array {
class NVCORE_CLASS Array : public Buffer {
public:
/// Ctor.
Array() : m_buffer(NULL), m_size(0), m_buffer_size(0)
{
// Default constructor.
NV_FORCEINLINE Array() : Buffer() {}
// Copy constructor.
NV_FORCEINLINE Array(const Array & a) : Buffer() {
copy(a.buffer(), a.m_size);
}
/// Copy ctor.
Array( const Array & a ) : m_buffer(NULL), m_size(0), m_buffer_size(0)
{
copy(a.m_buffer, a.m_size);
}
/// Ctor that initializes the vector with the given elements.
Array( const T * ptr, int num ) : m_buffer(NULL), m_size(0), m_buffer_size(0)
{
// Constructor that initializes the vector with the given elements.
NV_FORCEINLINE Array(const T * ptr, int num) : Buffer() {
copy(ptr, num);
}
/// Allocate array.
explicit Array(uint capacity) : m_buffer(NULL), m_size(0), m_buffer_size(0)
{
// Allocate array.
NV_FORCEINLINE explicit Array(uint capacity) : Buffer() {
allocate(capacity);
}
/// Dtor.
~Array()
{
// Destructor.
NV_FORCEINLINE ~Array() {
clear();
allocate(0);
}
@ -83,24 +164,24 @@ namespace nv
NV_FORCEINLINE const T & operator[]( uint index ) const
{
nvDebugCheck(index < m_size);
return m_buffer[index];
return buffer()[index];
}
NV_FORCEINLINE const T & at( uint index ) const
{
nvDebugCheck(index < m_size);
return m_buffer[index];
return buffer()[index];
}
/// Element access.
NV_FORCEINLINE T & operator[] ( uint index )
{
nvDebugCheck(index < m_size);
return m_buffer[index];
return buffer()[index];
}
NV_FORCEINLINE T & at( uint index )
{
nvDebugCheck(index < m_size);
return m_buffer[index];
return buffer()[index];
}
/// Get vector size.
@ -110,10 +191,10 @@ namespace nv
NV_FORCEINLINE uint count() const { return m_size; }
/// Get const vector pointer.
NV_FORCEINLINE const T * buffer() const { return m_buffer; }
NV_FORCEINLINE const T * buffer() const { return (const T *)m_buffer; }
/// Get vector pointer.
NV_FORCEINLINE T * mutableBuffer() { return m_buffer; }
NV_FORCEINLINE T * buffer() { return (T *)m_buffer; }
/// Is vector empty.
NV_FORCEINLINE bool isEmpty() const { return m_size == 0; }
@ -131,12 +212,12 @@ namespace nv
{
const T copy(val); // create a copy in case value is inside of this array.
resize(new_size);
m_buffer[new_size-1] = copy;
buffer()[new_size-1] = copy;
}
else
{
m_size = new_size;
new(m_buffer+new_size-1) T(val);
new(buffer()+new_size-1) T(val);
}
}
NV_FORCEINLINE void pushBack( const T & val )
@ -155,8 +236,8 @@ namespace nv
return *this;
}
/// Pop and return element at the end of the vector.
void pop_back()
/// Pop the element at the end of the vector.
NV_FORCEINLINE void pop_back()
{
nvDebugCheck( m_size > 0 );
resize( m_size - 1 );
@ -170,28 +251,28 @@ namespace nv
NV_FORCEINLINE const T & back() const
{
nvDebugCheck( m_size > 0 );
return m_buffer[m_size-1];
return buffer()[m_size-1];
}
/// Get back element.
NV_FORCEINLINE T & back()
{
nvDebugCheck( m_size > 0 );
return m_buffer[m_size-1];
return buffer()[m_size-1];
}
/// Get front element.
NV_FORCEINLINE const T & front() const
{
nvDebugCheck( m_size > 0 );
return m_buffer[0];
return buffer()[0];
}
/// Get front element.
NV_FORCEINLINE T & front()
{
nvDebugCheck( m_size > 0 );
return m_buffer[0];
return buffer()[0];
}
/// Return true if element found.
@ -204,7 +285,7 @@ namespace nv
bool find(const T & element, uint first, uint count, uint * index) const
{
for (uint i = first; i < first+count; i++) {
if (m_buffer[i] == element) {
if (buffer()[i] == element) {
if (index != NULL) *index = i;
return true;
}
@ -219,17 +300,17 @@ namespace nv
}
/// Remove the element at the given index. This is an expensive operation!
void removeAt( uint index )
void removeAt(uint index)
{
nvCheck(index >= 0 && index < m_size);
if( m_size == 1 ) {
if (m_size == 1) {
clear();
}
else {
m_buffer[index].~T();
buffer()[index].~T();
memmove( m_buffer+index, m_buffer+index+1, sizeof(T) * (m_size - 1 - index) );
memmove(buffer()+index, buffer()+index+1, sizeof(T) * (m_size - 1 - index));
m_size--;
}
}
@ -246,35 +327,35 @@ namespace nv
}
/// Insert the given element at the given index shifting all the elements up.
void insertAt( uint index, const T & val = T() )
void insertAt(uint index, const T & val = T())
{
nvCheck( index >= 0 && index <= m_size );
resize( m_size + 1 );
if( index < m_size - 1 ) {
memmove( m_buffer+index+1, m_buffer+index, sizeof(T) * (m_size - 1 - index) );
if (index < m_size - 1) {
memmove(buffer()+index+1, buffer()+index, sizeof(T) * (m_size - 1 - index));
}
// Copy-construct into the newly opened slot.
new(m_buffer+index) T(val);
new(buffer()+index) T(val);
}
/// Append the given data to our vector.
NV_FORCEINLINE void append(const Array<T> & other)
{
append(other.m_buffer, other.m_size);
append(other.buffer(), other.m_size);
}
/// Append the given data to our vector.
void append(const T other[], uint count)
{
if( count > 0 ) {
if (count > 0) {
const uint old_size = m_size;
resize(m_size + count);
// Must use operator=() to copy elements, in case of side effects (e.g. ref-counting).
for( uint i = 0; i < count; i++ ) {
m_buffer[old_size + i] = other[i];
for (uint i = 0; i < count; i++ ) {
buffer()[old_size + i] = other[i];
}
}
}
@ -284,9 +365,8 @@ namespace nv
void replaceWithLast(uint index)
{
nvDebugCheck( index < m_size );
nv::swap(m_buffer[index], back());
//m_buffer[index] = back();
(m_buffer+m_size-1)->~T();
nv::swap(buffer()[index], back());
(buffer()+m_size-1)->~T();
m_size--;
}
@ -294,38 +374,33 @@ namespace nv
/// Resize the vector preserving existing elements.
NV_NOINLINE void resize(uint new_size)
{
uint i;
uint old_size = m_size;
m_size = new_size;
// @@ Use nv::destruct(...)
// Destruct old elements (if we're shrinking).
for( i = new_size; i < old_size; i++ ) {
(m_buffer+i)->~T(); // Explicit call to the destructor
for (uint i = new_size; i < old_size; i++) {
(buffer()+i)->~T(); // Explicit call to the destructor
}
if( m_size == 0 ) {
//allocate(0); // Don't shrink automatically.
}
else if( m_size <= m_buffer_size/* && m_size > m_buffer_size >> 1*/) {
// don't compact yet.
nvDebugCheck(m_buffer != NULL);
}
else {
// @@ Move allocation logic to Buffer::allocate
if (new_size > m_buffer_size) {
uint new_buffer_size;
if( m_buffer_size == 0 ) {
if (m_buffer_size == 0) {
// first allocation
new_buffer_size = m_size;
new_buffer_size = new_size;
}
else {
// growing
new_buffer_size = m_size + (m_size >> 2);
new_buffer_size = new_size + (new_size >> 2);
}
allocate( new_buffer_size );
}
// @@ Use nv::construct(...)
// Call default constructors
for( i = old_size; i < new_size; i++ ) {
new(m_buffer+i) T; // placement new
for (uint i = old_size; i < new_size; i++) {
new(buffer()+i) T; // placement new
}
}
@ -334,24 +409,19 @@ namespace nv
/// new ones with the given value.
NV_NOINLINE void resize( uint new_size, const T &elem )
{
uint i;
uint old_size = m_size;
m_size = new_size;
// @@ Use nv::destruct(...)
// Destruct old elements (if we're shrinking).
for( i = new_size; i < old_size; i++ ) {
(m_buffer+i)->~T(); // Explicit call to the destructor
for (uint i = new_size; i < old_size; i++ ) {
(buffer()+i)->~T(); // Explicit call to the destructor
}
if( m_size == 0 ) {
//allocate(0); // Don't shrink automatically.
}
else if( m_size <= m_buffer_size && m_size > m_buffer_size >> 1 ) {
// don't compact yet.
}
else {
// @@ Move allocation logic to Buffer::allocate
if (new_size > m_buffer_size) {
uint new_buffer_size;
if( m_buffer_size == 0 ) {
if (m_buffer_size == 0) {
// first allocation
new_buffer_size = m_size;
}
@ -362,9 +432,10 @@ namespace nv
allocate( new_buffer_size );
}
// @@ Use nv::fill(...)
// Call copy constructors
for( i = old_size; i < new_size; i++ ) {
new(m_buffer+i) T( elem ); // placement new
for (uint i = old_size; i < new_size; i++ ) {
new(buffer()+i) T( elem ); // placement new
}
}
@ -386,39 +457,37 @@ namespace nv
NV_FORCEINLINE void reserve(uint desired_size)
{
if (desired_size > m_buffer_size) {
allocate( desired_size );
allocate(desired_size);
}
}
/// Copy elements to this array. Resizes it if needed.
void copy(const T * ptr, uint num)
NV_FORCEINLINE void copy(const T * ptr, uint num)
{
resize( num );
for (uint i = 0; i < m_size; i++) {
m_buffer[i] = ptr[i];
}
::nv::copy(buffer(), ptr, num);
}
/// Assignment operator.
NV_FORCEINLINE Array<T> & operator=( const Array<T> & a )
{
copy(a.m_buffer, a.m_size);
copy(a.buffer(), a.m_size);
return *this;
}
// Release ownership of allocated memory and returns pointer to it.
T * release() {
T * tmp = m_buffer;
T * tmp = buffer();
m_buffer = NULL;
m_size = 0;
m_buffer_size = 0;
m_size = 0;
return tmp;
}
/// Array serialization.
friend Stream & operator<< ( Stream & s, Array<T> & p )
{
if( s.isLoading() ) {
if (s.isLoading()) {
uint size;
s << size;
p.resize( size );
@ -427,8 +496,8 @@ namespace nv
s << p.m_size;
}
for( uint i = 0; i < p.m_size; i++ ) {
s << p.m_buffer[i];
for (uint i = 0; i < p.m_size; i++) {
s << buffer()[i];
}
return s;
@ -439,54 +508,24 @@ namespace nv
typedef uint PseudoIndex;
NV_FORCEINLINE PseudoIndex start() const { return 0; }
NV_FORCEINLINE bool isDone(const PseudoIndex & i) const { nvDebugCheck(i <= this->m_size); return i == this->m_size; };
NV_FORCEINLINE bool isDone(const PseudoIndex & i) const { nvDebugCheck(i <= this->m_size); return i == this->m_size; }
NV_FORCEINLINE void advance(PseudoIndex & i) const { nvDebugCheck(i <= this->m_size); i++; }
#if NV_CC_MSVC
NV_FORCEINLINE T & operator[]( const PseudoIndexWrapper & i ) {
return m_buffer[i(this)];
return at(i(this));
}
NV_FORCEINLINE const T & operator[]( const PseudoIndexWrapper & i ) const {
return m_buffer[i(this)];
return at(i(this));
}
#endif
protected:
/// Swap the members of this vector and the given vector.
friend void swap(Array<T> & a, Array<T> & b)
{
swap(a.m_buffer, b.m_buffer);
swap(a.m_size, b.m_size);
swap(a.m_buffer_size, b.m_buffer_size);
NV_FORCEINLINE void allocate(uint count) {
Buffer::allocate(count, sizeof(T));
}
private:
/// Change buffer size.
NV_NOINLINE void allocate( uint rsize )
{
m_buffer_size = rsize;
// free the buffer.
if (m_buffer_size == 0) {
if (m_buffer) {
free( m_buffer );
m_buffer = NULL;
}
}
// realloc the buffer
else {
m_buffer = realloc<T>(m_buffer, m_buffer_size);
}
}
private:
T * m_buffer;
uint m_size;
uint m_buffer_size;
};
} // nv namespace

View File

@ -48,7 +48,7 @@ const char * TextReader::readToEnd()
m_text.reserve(size + 1);
m_text.resize(size);
m_stream->serialize(m_text.mutableBuffer(), size);
m_stream->serialize(m_text.buffer(), size);
m_text.pushBack('\0');
return m_text.buffer();

View File

@ -667,7 +667,7 @@ FloatImage * FloatImage::resize(const Filter & filter, uint w, uint h, WrapMode
float * dst_channel = dst_image->channel(c);
for (uint x = 0; x < w; x++) {
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.mutableBuffer());
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.buffer());
for (uint y = 0; y < h; y++) {
dst_channel[y * w + x] = tmp_column[y];
@ -741,7 +741,7 @@ FloatImage * FloatImage::resize(const Filter & filter, uint w, uint h, WrapMode
float * dst_channel = dst_image->channel(c);
for (uint x = 0; x < w; x++) {
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.mutableBuffer());
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.buffer());
for (uint y = 0; y < h; y++) {
dst_channel[y * w + x] = tmp_column[y];

View File

@ -48,7 +48,7 @@ extern "C" {
#if defined(HAVE_STBIMAGE)
# define STBI_NO_STDIO
# include <stb_image.c>
# include <stb_image.h>
#endif
#endif // defined(HAVE_FREEIMAGE)
@ -99,9 +99,9 @@ namespace nv
static bool saveFloatEXR(const char * fileName, const FloatImage * fimage, uint base_component, uint num_components);
#endif
#if defined(HAVE_STBIMG)
#if defined(HAVE_STBIMAGE)
static Image * loadSTB(Stream & s);
static Image * loadFloatSTB(Stream & s);
static FloatImage * loadFloatSTB(Stream & s);
#endif
#endif // defined(HAVE_FREEIMAGE)
@ -1080,7 +1080,7 @@ static void user_read_data(png_structp png_ptr, png_bytep data, png_size_t lengt
{
nvDebugCheck(png_ptr != NULL);
Stream * s = (Stream *)png_ptr->io_ptr;
Stream * s = (Stream *)png_get_io_ptr(png_ptr);
s->serialize(data, (int)length);
if (s->isError()) {
@ -1230,7 +1230,7 @@ static void user_write_data(png_structp png_ptr, png_bytep data, png_size_t leng
{
nvDebugCheck(png_ptr != NULL);
Stream * s = (Stream *)png_ptr->io_ptr;
Stream * s = (Stream *)png_get_io_ptr(png_ptr);
s->serialize(data, (int)length);
if (s->isError()) {
@ -1310,8 +1310,7 @@ bool nv::ImageIO::savePNG(Stream & s, const Image * img, const ImageMetaData * t
PNG_TRANSFORM_BGR |
// Strip alpha byte for RGB images
(img->format() == Image::Format_RGB ? PNG_TRANSFORM_STRIP_FILLER : 0)
,
NULL);
, NULL);
// Finish things up
png_destroy_write_struct(&png_ptr, &info_ptr);
@ -1329,7 +1328,7 @@ bool nv::ImageIO::savePNG(Stream & s, const Image * img, const ImageMetaData * t
static void init_source (j_decompress_ptr /*cinfo*/){
}
static boolean fill_input_buffer (j_decompress_ptr cinfo){
static boolean fill_input_buffer (j_decompress_ptr cinfo) {
struct jpeg_source_mgr * src = cinfo->src;
static JOCTET FakeEOI[] = { 0xFF, JPEG_EOI };
@ -1557,9 +1556,7 @@ FloatImage * nv::ImageIO::loadFloatTIFF(const char * fileName, Stream & s)
{
dst[x] = float(((::uint32 *)buf)[x*spp+c] >> 8) / float(0xFFFFFF);
}
}
}
}
}
@ -1772,22 +1769,21 @@ bool nv::ImageIO::saveFloatEXR(const char * fileName, const FloatImage * fimage,
#endif // defined(HAVE_OPENEXR)
#if defined(HAVE_STBIMG)
#if defined(HAVE_STBIMAGE)
Image * nv::ImageIO::loadSTB(Stream & s)
{
// @@ Assumes stream cursor is at the beginning and that image occupies the whole stream.
const int len = s.size();
const int size = s.size();
uint8 * buffer = new uint8[size];
s.serialize(buffer, len);
s.serialize(buffer, size);
int w, h, n;
uint8 * data = stbi_load_from_memory(buffer, len, &w, &h, &n, 4);
uint8 * data = stbi_load_from_memory(buffer, size, &w, &h, &n, 4);
delete buffer;
// Copy to image.
if (data != NULL) {
Image * img = new Image;
img->wrap(data, w, h);
@ -1801,27 +1797,37 @@ Image * nv::ImageIO::loadSTB(Stream & s)
FloatImage * loadFloatSTB(Stream & s)
{
// @@ Assumes stream cursor is at the beginning and that image occupies the whole stream.
const int len = s.size();
const int size = s.size();
uint8 * buffer = new uint8[size];
s.serialize(buffer, len);
s.serialize(buffer, size);
int w, h, n;
float * data = stbi_loadf_from_memory(buffer, len, &w, &h, &n, 0);
float * data = stbi_loadf_from_memory(buffer, size, &w, &h, &n, 0);
delete buffer;
// Copy to image.
if (data != NULL) {
FloatImage * img = new FloatImage;
img->wrap(n, w, h);
img->allocate(n, w, h);
const int count = w * h;
for (int c = 0; c < n; c++) {
float * dst = img->channel(c);
for (int i = 0; i < count; i++) {
dst[i] = data[i*n + c];
}
}
return img;
}
return NULL;
}
#endif // defined(HAVE_STBIMG)
#endif // defined(HAVE_STBIMAGE)
#endif // defined(HAVE_FREEIMAGE)