Add PCA, and 4-means implementation.
This commit is contained in:
parent
e1916d43c8
commit
48da357385
150
src/nvmath/Fitting.cpp
Normal file
150
src/nvmath/Fitting.cpp
Normal file
@ -0,0 +1,150 @@
|
||||
// This code is in the public domain -- icastano@gmail.com
|
||||
|
||||
using namespace nv;
|
||||
|
||||
|
||||
Vector3 nv::ComputeCentroid(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, float * covariance)
|
||||
{
|
||||
Vector3 centroid(zero);
|
||||
float total = 0.0f;
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
total += weights[i];
|
||||
centroid += weights[i]*points[i];
|
||||
}
|
||||
centroid /= total;
|
||||
|
||||
return centroid;
|
||||
}
|
||||
|
||||
|
||||
void nv::ComputeCovariance(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, float * covariance)
|
||||
{
|
||||
// compute the centroid
|
||||
Vector3 centroid = ComputeCentroid(n, points, weights, metric);
|
||||
|
||||
// compute covariance matrix
|
||||
for (int i = 0; i < 6; i++)
|
||||
{
|
||||
covariance[i] = 0.0f;
|
||||
}
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
Vector3 a = (points[i] - centroid) * metric;
|
||||
Vector3 b = weights[i]*a;
|
||||
|
||||
covariance[0] += a.X()*b.X();
|
||||
covariance[1] += a.X()*b.Y();
|
||||
covariance[2] += a.X()*b.Z();
|
||||
covariance[3] += a.Y()*b.Y();
|
||||
covariance[4] += a.Y()*b.Z();
|
||||
covariance[5] += a.Z()*b.Z();
|
||||
}
|
||||
}
|
||||
|
||||
Vector3 nv::ComputePrincipalComponent(int n, const Vec3 * points, const float * weights, Vector3::Arg metric)
|
||||
{
|
||||
float matrix[6];
|
||||
ComputeCovariance(n, points, weights, metric, matrix);
|
||||
|
||||
if (covariance[0] == 0 || covariance[3] == 0 || covariance[5] == 0)
|
||||
{
|
||||
return Vector3(zero);
|
||||
}
|
||||
|
||||
const int NUM = 8;
|
||||
|
||||
Vector3 v(1, 1, 1);
|
||||
for (int i = 0; i < NUM; i++)
|
||||
{
|
||||
float x = v.x() * matrix[0] + v.y() * matrix[1] + v.z() * matrix[2];
|
||||
float y = v.x() * matrix[1] + v.y() * matrix[3] + v.z() * matrix[4];
|
||||
float z = v.x() * matrix[2] + v.y() * matrix[4] + v.z() * matrix[5];
|
||||
|
||||
float norm = std::max(std::max(x, y), z);
|
||||
|
||||
v = Vector3(x, y, z) / norm;
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void nv::Compute4Means(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster)
|
||||
{
|
||||
Vector3 centroid = ComputeCentroid(n, points, weights, metric);
|
||||
|
||||
// Compute principal component.
|
||||
Vector3 principal = ComputePrincipalComponent(n, points, weights, metric);
|
||||
|
||||
// Pick initial solution.
|
||||
int mini, maxi;
|
||||
mini = maxi = 0;
|
||||
|
||||
float mindps, maxdps;
|
||||
mindps = maxdps = dot(points[0], principal);
|
||||
|
||||
for (int i = 1; i < count; ++i)
|
||||
{
|
||||
float dps = dot(points[i] - centroid, principal);
|
||||
|
||||
if (dps < mindps) {
|
||||
mindps = dps;
|
||||
mini = i;
|
||||
}
|
||||
else {
|
||||
maxdps = dps;
|
||||
maxi = i;
|
||||
}
|
||||
}
|
||||
|
||||
cluster[0] = centroid + mindps * principal;
|
||||
cluster[3] = centroid + maxdps * principal;
|
||||
cluster[1] = (2 * cluster[0] + cluster[1]) / 3;
|
||||
cluster[2] = (2 * cluster[1] + cluster[0]) / 3;
|
||||
|
||||
// Now we have to iteratively refine the clusters.
|
||||
while(true)
|
||||
{
|
||||
Vector3 newCluster[4] = { Vector3(zero), Vector3(zero), Vector3(zero), Vector3(zero) };
|
||||
float total[4] = {0, 0, 0, 0};
|
||||
|
||||
for (int i = 0; i < count; ++i)
|
||||
{
|
||||
// Find nearest cluster.
|
||||
int nearest = 0;
|
||||
float mindist = FLT_MAX;
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
float dist = lengthSquared(cluster[j] - points[i]);
|
||||
if (dist < mindist)
|
||||
{
|
||||
mindist = dist;
|
||||
nearest = j;
|
||||
}
|
||||
}
|
||||
|
||||
newCluster[nearest] += weights[i] * points[i];
|
||||
total[nearest] += weights[i];
|
||||
}
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
newCluster[j] /= total[j];
|
||||
}
|
||||
|
||||
if (equal(cluster[0], newCluster[0]) && equal(cluster[3], newCluster[3]))
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
// @@ We should choose the optimal assignment.
|
||||
cluster[0] = newCluster[0];
|
||||
cluster[3] = newCluster[3];
|
||||
cluster[1] = (2 * cluster[0] + cluster[1]) / 3;
|
||||
cluster[2] = (2 * cluster[1] + cluster[0]) / 3;
|
||||
}
|
||||
}
|
20
src/nvmath/Fitting.h
Normal file
20
src/nvmath/Fitting.h
Normal file
@ -0,0 +1,20 @@
|
||||
// This code is in the public domain -- icastano@gmail.com
|
||||
|
||||
#ifndef NV_MATH_FITTING_H
|
||||
#define NV_MATH_FITTING_H
|
||||
|
||||
#include <nvmath/nvmath.h>
|
||||
#include <nvmath/Vector.h>
|
||||
|
||||
namespace nv
|
||||
{
|
||||
|
||||
Vector3 ComputeCentroid(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, float * covariance);
|
||||
void ComputeCovariance(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, float * covariance);
|
||||
Vector3 ComputePrincipalComponent(int n, const Vec3 * points, const float * weights, Vector3::Arg metric);
|
||||
|
||||
void Compute4Means(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster);
|
||||
|
||||
} // nv namespace
|
||||
|
||||
#endif // NV_MATH_FITTING_H
|
Loading…
Reference in New Issue
Block a user