Add PCA, and 4-means implementation.

This commit is contained in:
castano 2008-11-22 08:30:20 +00:00
parent e1916d43c8
commit 48da357385
2 changed files with 170 additions and 0 deletions

150
src/nvmath/Fitting.cpp Normal file
View File

@ -0,0 +1,150 @@
// This code is in the public domain -- icastano@gmail.com
using namespace nv;
Vector3 nv::ComputeCentroid(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, float * covariance)
{
Vector3 centroid(zero);
float total = 0.0f;
for (int i = 0; i < n; i++)
{
total += weights[i];
centroid += weights[i]*points[i];
}
centroid /= total;
return centroid;
}
void nv::ComputeCovariance(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, float * covariance)
{
// compute the centroid
Vector3 centroid = ComputeCentroid(n, points, weights, metric);
// compute covariance matrix
for (int i = 0; i < 6; i++)
{
covariance[i] = 0.0f;
}
for (int i = 0; i < n; i++)
{
Vector3 a = (points[i] - centroid) * metric;
Vector3 b = weights[i]*a;
covariance[0] += a.X()*b.X();
covariance[1] += a.X()*b.Y();
covariance[2] += a.X()*b.Z();
covariance[3] += a.Y()*b.Y();
covariance[4] += a.Y()*b.Z();
covariance[5] += a.Z()*b.Z();
}
}
Vector3 nv::ComputePrincipalComponent(int n, const Vec3 * points, const float * weights, Vector3::Arg metric)
{
float matrix[6];
ComputeCovariance(n, points, weights, metric, matrix);
if (covariance[0] == 0 || covariance[3] == 0 || covariance[5] == 0)
{
return Vector3(zero);
}
const int NUM = 8;
Vector3 v(1, 1, 1);
for (int i = 0; i < NUM; i++)
{
float x = v.x() * matrix[0] + v.y() * matrix[1] + v.z() * matrix[2];
float y = v.x() * matrix[1] + v.y() * matrix[3] + v.z() * matrix[4];
float z = v.x() * matrix[2] + v.y() * matrix[4] + v.z() * matrix[5];
float norm = std::max(std::max(x, y), z);
v = Vector3(x, y, z) / norm;
}
return v;
}
void nv::Compute4Means(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster)
{
Vector3 centroid = ComputeCentroid(n, points, weights, metric);
// Compute principal component.
Vector3 principal = ComputePrincipalComponent(n, points, weights, metric);
// Pick initial solution.
int mini, maxi;
mini = maxi = 0;
float mindps, maxdps;
mindps = maxdps = dot(points[0], principal);
for (int i = 1; i < count; ++i)
{
float dps = dot(points[i] - centroid, principal);
if (dps < mindps) {
mindps = dps;
mini = i;
}
else {
maxdps = dps;
maxi = i;
}
}
cluster[0] = centroid + mindps * principal;
cluster[3] = centroid + maxdps * principal;
cluster[1] = (2 * cluster[0] + cluster[1]) / 3;
cluster[2] = (2 * cluster[1] + cluster[0]) / 3;
// Now we have to iteratively refine the clusters.
while(true)
{
Vector3 newCluster[4] = { Vector3(zero), Vector3(zero), Vector3(zero), Vector3(zero) };
float total[4] = {0, 0, 0, 0};
for (int i = 0; i < count; ++i)
{
// Find nearest cluster.
int nearest = 0;
float mindist = FLT_MAX;
for (int j = 0; j < 4; j++)
{
float dist = lengthSquared(cluster[j] - points[i]);
if (dist < mindist)
{
mindist = dist;
nearest = j;
}
}
newCluster[nearest] += weights[i] * points[i];
total[nearest] += weights[i];
}
for (int j = 0; j < 4; j++)
{
newCluster[j] /= total[j];
}
if (equal(cluster[0], newCluster[0]) && equal(cluster[3], newCluster[3]))
{
break;
}
// @@ We should choose the optimal assignment.
cluster[0] = newCluster[0];
cluster[3] = newCluster[3];
cluster[1] = (2 * cluster[0] + cluster[1]) / 3;
cluster[2] = (2 * cluster[1] + cluster[0]) / 3;
}
}

20
src/nvmath/Fitting.h Normal file
View File

@ -0,0 +1,20 @@
// This code is in the public domain -- icastano@gmail.com
#ifndef NV_MATH_FITTING_H
#define NV_MATH_FITTING_H
#include <nvmath/nvmath.h>
#include <nvmath/Vector.h>
namespace nv
{
Vector3 ComputeCentroid(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, float * covariance);
void ComputeCovariance(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, float * covariance);
Vector3 ComputePrincipalComponent(int n, const Vec3 * points, const float * weights, Vector3::Arg metric);
void Compute4Means(int n, const Vec3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster);
} // nv namespace
#endif // NV_MATH_FITTING_H