Fix errors and optimize kernel.

This commit is contained in:
castano 2007-07-08 09:46:18 +00:00
parent 25f977318f
commit 50a71f78b5
2 changed files with 178 additions and 89 deletions

View File

@ -55,7 +55,7 @@ __constant__ float3 kColorMetric = { 1.0f, 1.0f, 1.0f };
////////////////////////////////////////////////////////////////////////////////
// Sort colors
////////////////////////////////////////////////////////////////////////////////
__device__ void sortColors(float * values, int * cmp)
__device__ void sortColors(const float * values, int * cmp)
{
int tid = threadIdx.x;
@ -98,7 +98,7 @@ __device__ void sortColors(float * values, int * cmp)
////////////////////////////////////////////////////////////////////////////////
// Load color block to shared mem
////////////////////////////////////////////////////////////////////////////////
__device__ void loadColorBlock(const uint * image, float3 colors[16], int xrefs[16])
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], int xrefs[16])
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
@ -120,7 +120,8 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], int xrefs[
#endif
// Sort colors along the best fit line.
float3 axis = bestFitLine(colors);
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0]);
dps[idx] = dot(colors[idx], axis);
@ -135,7 +136,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], int xrefs[
}
}
__device__ void loadColorBlock(const uint * image, float3 colors[16], float weights[16], int xrefs[16])
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16])
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
@ -158,8 +159,9 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float weig
#endif
// Sort colors along the best fit line.
float3 axis = bestFitLine(colors);
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0]);
dps[idx] = dot(colors[idx], axis);
#if __DEVICE_EMULATION__
@ -276,6 +278,81 @@ __device__ float evalPermutation3(const float3 * colors, uint permutation, ushor
return dot(e, kColorMetric);
}
__constant__ float alphaTable4[4] = { 9.0f, 0.0f, 6.0f, 3.0f };
__constant__ float alphaTable3[4] = { 4.0f, 0.0f, 2.0f, 2.0f };
__constant__ const uint prods4[4] = { 0x090000,0x000900,0x040102,0x010402 };
__constant__ const uint prods3[4] = { 0x040000,0x000400,0x040101,0x010401 };
__device__ float evalPermutation4(const float3 * colors, uint permutation, ushort * start, ushort * end, float3 color_sum)
{
// Compute endpoints using least squares.
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
uint akku = 0;
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
alphax_sum += alphaTable4[bits & 3] * colors[i];
akku += prods4[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float(akku & 0xff);
float3 betax_sum = 9.0f * color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (1.0f / 9.0f) * dot(e, kColorMetric);
}
__device__ float evalPermutation3(const float3 * colors, uint permutation, ushort * start, ushort * end, float3 color_sum)
{
// Compute endpoints using least squares.
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
uint akku = 0;
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
alphax_sum += alphaTable3[bits & 3] * colors[i];
akku += prods3[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float(akku & 0xff);
float3 betax_sum = 4.0f * color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (1.0f / 4.0f) * dot(e, kColorMetric);
}
__device__ float evalPermutation4(const float3 * colors, const float * weights, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
@ -360,7 +437,7 @@ __device__ float evalPermutation3(const float3 * colors, const float * weights,
////////////////////////////////////////////////////////////////////////////////
// Evaluate all permutations
////////////////////////////////////////////////////////////////////////////////
__device__ void evalAllPermutations(const float3 * colors, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
__device__ void evalAllPermutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
@ -377,7 +454,7 @@ __device__ void evalAllPermutations(const float3 * colors, const uint * permutat
uint permutation = permutations[pidx];
if (pidx < 160) s_permutations[pidx] = permutation;
float error = evalPermutation4(colors, permutation, &start, &end);
float error = evalPermutation4(colors, permutation, &start, &end, colorSum);
if (error < bestError)
{
@ -401,7 +478,7 @@ __device__ void evalAllPermutations(const float3 * colors, const uint * permutat
ushort start, end;
uint permutation = s_permutations[pidx];
float error = evalPermutation3(colors, permutation, &start, &end);
float error = evalPermutation3(colors, permutation, &start, &end, colorSum);
if (error < bestError)
{
@ -563,8 +640,10 @@ __device__ int findMinError(float * errors)
}
}
__syncthreads();
// unroll last 6 iterations
if (idx <= 32)
if (idx < 32)
{
if (errors[idx + 32] < errors[idx]) {
errors[idx] = errors[idx + 32];
@ -612,7 +691,7 @@ __device__ void saveBlockDXT1(ushort start, ushort end, uint permutation, int xr
}
// Reorder permutation.
uint indices = permutation;
uint indices = 0;
for(int i = 0; i < 16; i++)
{
int ref = xrefs[i];
@ -635,9 +714,10 @@ __device__ void saveBlockDXT1(ushort start, ushort end, uint permutation, int xr
__global__ void compress(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
loadColorBlock(image, colors, xrefs);
loadColorBlock(image, colors, sums, xrefs);
__syncthreads();
@ -646,7 +726,7 @@ __global__ void compress(const uint * permutations, const uint * image, uint2 *
__shared__ float errors[NUM_THREADS];
evalAllPermutations(colors, permutations, bestStart, bestEnd, bestPermutation, errors);
evalAllPermutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
@ -662,10 +742,11 @@ __global__ void compress(const uint * permutations, const uint * image, uint2 *
__global__ void compressWeighted(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ float weights[16];
__shared__ int xrefs[16];
loadColorBlock(image, colors, weights, xrefs);
loadColorBlock(image, colors, sums, weights, xrefs);
__syncthreads();
@ -836,10 +917,11 @@ __device__ void compressAlpha(const float alphas[16], uint4 * result)
__global__ void compressDXT5(const uint * permutations, const uint * image, uint4 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ float weights[16];
__shared__ int xrefs[16];
loadColorBlock(image, colors, weights, xrefs);
loadColorBlock(image, colors, sums, weights, xrefs);
__syncthreads();

View File

@ -122,92 +122,99 @@ inline __device__ __host__ float3 normalize(float3 v)
// http://www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-eigenvalues-eigenvectors.html
inline __device__ __host__ float3 firstEigenVector( float matrix[6] )
{
// 8 iterations seems to be more than enough.
// 8 iterations seems to be more than enough.
float3 v = make_float3(1.0f, 1.0f, 1.0f);
for(int i = 0; i < 8; i++) {
float x = v.x * matrix[0] + v.y * matrix[1] + v.z * matrix[2];
float y = v.x * matrix[1] + v.y * matrix[3] + v.z * matrix[4];
float z = v.x * matrix[2] + v.y * matrix[4] + v.z * matrix[5];
float m = max(max(x, y), z);
float iv = 1.0f / m;
#if __DEVICE_EMULATION__
if (m == 0.0f) iv = 0.0f;
#endif
v = make_float3(x*iv, y*iv, z*iv);
}
float3 v = make_float3(1.0f, 1.0f, 1.0f);
for(int i = 0; i < 8; i++) {
float x = v.x * matrix[0] + v.y * matrix[1] + v.z * matrix[2];
float y = v.x * matrix[1] + v.y * matrix[3] + v.z * matrix[4];
float z = v.x * matrix[2] + v.y * matrix[4] + v.z * matrix[5];
float m = max(max(x, y), z);
float iv = 1.0f / m;
#if __DEVICE_EMULATION__
if (m == 0.0f) iv = 0.0f;
#endif
v = make_float3(x*iv, y*iv, z*iv);
}
return v;
return v;
}
inline __device__ float3 bestFitLine(const float3 * colors)
inline __device__ void colorSums(const float3 * colors, float3 * sums)
{
#if __DEVICE_EMULATION__
float3 color_sum = make_float3(0.0f, 0.0f, 0.0f);
for (int i = 0; i < 16; i++)
{
color_sum += colors[i];
}
// Compute covariance matrix of the given colors.
float3 center = make_float3(0.0f, 0.0f, 0.0f);
for (int i = 0; i < 16; i++)
{
center += colors[i];
}
center /= 16.0f;
float covariance[6] = {0, 0, 0, 0, 0, 0};
for (int i = 0; i < 16; i++)
{
float3 a = colors[i] - center;
covariance[0] += a.x * a.x;
covariance[1] += a.x * a.y;
covariance[2] += a.x * a.z;
covariance[3] += a.y * a.y;
covariance[4] += a.y * a.z;
covariance[5] += a.z * a.z;
}
for (int i = 0; i < 16; i++)
{
sums[i] = color_sum;
}
#else
const int idx = threadIdx.x;
const int idx = threadIdx.x;
__shared__ float3 colorSum[16];
colorSum[idx] = colors[idx];
// Unrolled parallel reduction.
if (idx < 8) {
colorSum[idx] += colorSum[idx + 8];
colorSum[idx] += colorSum[idx + 4];
colorSum[idx] += colorSum[idx + 2];
colorSum[idx] += colorSum[idx + 1];
}
// @@ Eliminate two-way bank conflicts here.
// @@ It seems that doing that and unrolling the reduction doesn't help...
__shared__ float covariance[16*6];
colorSum[idx] = colors[idx] - colorSum[0] / 16.0f;
covariance[6 * idx + 0] = colorSum[idx].x * colorSum[idx].x; // 0, 6, 12, 2, 8, 14, 4, 10, 0
covariance[6 * idx + 1] = colorSum[idx].x * colorSum[idx].y;
covariance[6 * idx + 2] = colorSum[idx].x * colorSum[idx].z;
covariance[6 * idx + 3] = colorSum[idx].y * colorSum[idx].y;
covariance[6 * idx + 4] = colorSum[idx].y * colorSum[idx].z;
covariance[6 * idx + 5] = colorSum[idx].z * colorSum[idx].z;
for(int d = 8; d > 0; d >>= 1)
{
if (idx < d)
{
covariance[6 * idx + 0] += covariance[6 * (idx+d) + 0];
covariance[6 * idx + 1] += covariance[6 * (idx+d) + 1];
covariance[6 * idx + 2] += covariance[6 * (idx+d) + 2];
covariance[6 * idx + 3] += covariance[6 * (idx+d) + 3];
covariance[6 * idx + 4] += covariance[6 * (idx+d) + 4];
covariance[6 * idx + 5] += covariance[6 * (idx+d) + 5];
}
}
sums[idx] = colors[idx];
sums[idx] += sums[idx^8];
sums[idx] += sums[idx^4];
sums[idx] += sums[idx^2];
sums[idx] += sums[idx^1];
#endif
// Compute first eigen vector.
return firstEigenVector(covariance);
}
inline __device__ float3 bestFitLine(const float3 * colors, float3 color_sum)
{
// Compute covariance matrix of the given colors.
#if __DEVICE_EMULATION__
float covariance[6] = {0, 0, 0, 0, 0, 0};
for (int i = 0; i < 16; i++)
{
float3 a = colors[i] - color_sum * (1.0f / 16.0f);
covariance[0] += a.x * a.x;
covariance[1] += a.x * a.y;
covariance[2] += a.x * a.z;
covariance[3] += a.y * a.y;
covariance[4] += a.y * a.z;
covariance[5] += a.z * a.z;
}
#else
const int idx = threadIdx.x;
float3 diff = colors[idx] - color_sum * (1.0f / 16.0f);
// @@ Eliminate two-way bank conflicts here.
// @@ It seems that doing that and unrolling the reduction doesn't help...
__shared__ float covariance[16*6];
covariance[6 * idx + 0] = diff.x * diff.x; // 0, 6, 12, 2, 8, 14, 4, 10, 0
covariance[6 * idx + 1] = diff.x * diff.y;
covariance[6 * idx + 2] = diff.x * diff.z;
covariance[6 * idx + 3] = diff.y * diff.y;
covariance[6 * idx + 4] = diff.y * diff.z;
covariance[6 * idx + 5] = diff.z * diff.z;
for(int d = 8; d > 0; d >>= 1)
{
if (idx < d)
{
covariance[6 * idx + 0] += covariance[6 * (idx+d) + 0];
covariance[6 * idx + 1] += covariance[6 * (idx+d) + 1];
covariance[6 * idx + 2] += covariance[6 * (idx+d) + 2];
covariance[6 * idx + 3] += covariance[6 * (idx+d) + 3];
covariance[6 * idx + 4] += covariance[6 * (idx+d) + 4];
covariance[6 * idx + 5] += covariance[6 * (idx+d) + 5];
}
}
#endif
// Compute first eigen vector.
return firstEigenVector(covariance);
}