Fix color weighting metric.

This commit is contained in:
castano
2007-12-13 06:29:03 +00:00
parent 5946514408
commit 6b016dae96
9 changed files with 42 additions and 202 deletions

View File

@ -36,30 +36,18 @@ ClusterFit::ClusterFit( ColourSet const* colours, int flags )
// initialise the best error
#if SQUISH_USE_SIMD
m_besterror = VEC4_CONST( FLT_MAX );
Vec3 metric = m_metric.GetVec3();
#else
m_besterror = FLT_MAX;
Vec3 metric = m_metric;
#endif
/* // initialise the metric
bool perceptual = ( ( m_flags & kColourMetricPerceptual ) != 0 );
#if SQUISH_USE_SIMD
if( perceptual )
m_metric = Vec4( 0.2126f, 0.7152f, 0.0722f, 0.0f );
else
m_metric = VEC4_CONST( 1.0f );
#else
if( perceptual )
m_metric = Vec3( 0.2126f, 0.7152f, 0.0722f );
else
m_metric = Vec3( 1.0f );
#endif
*/
// cache some values
int const count = m_colours->GetCount();
Vec3 const* values = m_colours->GetPoints();
// get the covariance matrix
Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights() );
Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights(), metric );
// compute the principle component
Vec3 principle = ComputePrincipleComponent( covariance );

View File

@ -37,8 +37,10 @@ FastClusterFit::FastClusterFit( ColourSet const* colours, int flags ) :
// initialise the best error
#if SQUISH_USE_SIMD
m_besterror = VEC4_CONST( FLT_MAX );
Vec3 metric = m_metric.GetVec3();
#else
m_besterror = FLT_MAX;
Vec3 metric = m_metric;
#endif
// cache some values
@ -46,7 +48,7 @@ FastClusterFit::FastClusterFit( ColourSet const* colours, int flags ) :
Vec3 const* values = m_colours->GetPoints();
// get the covariance matrix
Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights() );
Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights(), metric );
// compute the principle component
Vec3 principle = ComputePrincipleComponent( covariance );

View File

@ -23,18 +23,12 @@
-------------------------------------------------------------------------- */
/*! @file
The symmetric eigensystem solver algorithm is from
http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf
*/
#include "maths.h"
#include <cfloat>
namespace squish {
Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights )
Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights, Vec3::Arg metric )
{
// compute the centroid
float total = 0.0f;
@ -50,7 +44,7 @@ Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weight
Sym3x3 covariance( 0.0f );
for( int i = 0; i < n; ++i )
{
Vec3 a = points[i] - centroid;
Vec3 a = (points[i] - centroid) * metric;
Vec3 b = weights[i]*a;
covariance[0] += a.X()*b.X();
@ -65,166 +59,6 @@ Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weight
return covariance;
}
/*
static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue )
{
// compute M
Sym3x3 m;
m[0] = matrix[0] - evalue;
m[1] = matrix[1];
m[2] = matrix[2];
m[3] = matrix[3] - evalue;
m[4] = matrix[4];
m[5] = matrix[5] - evalue;
// compute U
Sym3x3 u;
u[0] = m[3]*m[5] - m[4]*m[4];
u[1] = m[2]*m[4] - m[1]*m[5];
u[2] = m[1]*m[4] - m[2]*m[3];
u[3] = m[0]*m[5] - m[2]*m[2];
u[4] = m[1]*m[2] - m[4]*m[0];
u[5] = m[0]*m[3] - m[1]*m[1];
// find the largest component
float mc = std::fabs( u[0] );
int mi = 0;
for( int i = 1; i < 6; ++i )
{
float c = std::fabs( u[i] );
if( c > mc )
{
mc = c;
mi = i;
}
}
// pick the column with this component
switch( mi )
{
case 0:
return Vec3( u[0], u[1], u[2] );
case 1:
case 3:
return Vec3( u[1], u[3], u[4] );
default:
return Vec3( u[2], u[4], u[5] );
}
}
static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue )
{
// compute M
Sym3x3 m;
m[0] = matrix[0] - evalue;
m[1] = matrix[1];
m[2] = matrix[2];
m[3] = matrix[3] - evalue;
m[4] = matrix[4];
m[5] = matrix[5] - evalue;
// find the largest component
float mc = std::fabs( m[0] );
int mi = 0;
for( int i = 1; i < 6; ++i )
{
float c = std::fabs( m[i] );
if( c > mc )
{
mc = c;
mi = i;
}
}
// pick the first eigenvector based on this index
switch( mi )
{
case 0:
case 1:
return Vec3( -m[1], m[0], 0.0f );
case 2:
return Vec3( m[2], 0.0f, -m[0] );
case 3:
case 4:
return Vec3( 0.0f, -m[4], m[3] );
default:
return Vec3( 0.0f, -m[5], m[4] );
}
}
Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
{
// compute the cubic coefficients
float c0 = matrix[0]*matrix[3]*matrix[5]
+ 2.0f*matrix[1]*matrix[2]*matrix[4]
- matrix[0]*matrix[4]*matrix[4]
- matrix[3]*matrix[2]*matrix[2]
- matrix[5]*matrix[1]*matrix[1];
float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5]
- matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4];
float c2 = matrix[0] + matrix[3] + matrix[5];
// compute the quadratic coefficients
float a = c1 - ( 1.0f/3.0f )*c2*c2;
float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0;
// compute the root count check
float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a;
// test the multiplicity
if( FLT_EPSILON < Q )
{
// only one root, which implies we have a multiple of the identity
return Vec3( 1.0f );
}
else if( Q < -FLT_EPSILON )
{
// three distinct roots
float theta = std::atan2( std::sqrt( -Q ), -0.5f*b );
float rho = std::sqrt( 0.25f*b*b - Q );
float rt = std::pow( rho, 1.0f/3.0f );
float ct = std::cos( theta/3.0f );
float st = std::sin( theta/3.0f );
float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct;
float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st );
float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st );
// pick the larger
if( std::fabs( l2 ) > std::fabs( l1 ) )
l1 = l2;
if( std::fabs( l3 ) > std::fabs( l1 ) )
l1 = l3;
// get the eigenvector
return GetMultiplicity1Evector( matrix, l1 );
}
else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON )
{
// two roots
float rt;
if( b < 0.0f )
rt = -std::pow( -0.5f*b, 1.0f/3.0f );
else
rt = std::pow( 0.5f*b, 1.0f/3.0f );
float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated
float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt;
// get the eigenvector
if( std::fabs( l1 ) > std::fabs( l2 ) )
return GetMultiplicity2Evector( matrix, l1 );
else
return GetMultiplicity1Evector( matrix, l2 );
}
}
*/
Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
{

View File

@ -231,7 +231,7 @@ private:
float m_x[6];
};
Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights );
Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights, Vec3::Arg metric );
Vec3 ComputePrincipleComponent( Sym3x3 const& matrix );
} // namespace squish

View File

@ -38,8 +38,10 @@ WeightedClusterFit::WeightedClusterFit( ColourSet const* colours, int flags ) :
// initialise the best error
#if SQUISH_USE_SIMD
m_besterror = VEC4_CONST( FLT_MAX );
Vec3 metric = m_metric.GetVec3();
#else
m_besterror = FLT_MAX;
Vec3 metric = m_metric;
#endif
// cache some values
@ -47,7 +49,7 @@ WeightedClusterFit::WeightedClusterFit( ColourSet const* colours, int flags ) :
Vec3 const* values = m_colours->GetPoints();
// get the covariance matrix
Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights() );
Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights(), metric );
// compute the principle component
Vec3 principle = ComputePrincipleComponent( covariance );