Large refactoring of compressor codes:

- Define compressor interface.
- Implement compressor interface for different compressors.
- Add parallel compressor using OpenMP. Experimental.
- Add generic GPU compressor, so far only DXT1 enabled.
This commit is contained in:
castano
2009-10-21 07:48:27 +00:00
parent 18a3abf794
commit 8820c43175
8 changed files with 1559 additions and 1325 deletions

View File

@ -296,6 +296,51 @@ __device__ float3 blockError3(const float3 * colors, uint permutation, float3 a,
// Sort colors
////////////////////////////////////////////////////////////////////////////////
// @@ Experimental code to avoid duplicate colors for faster compression.
// We could first sort along the best fit line and only compare colors that have the same projection.
// The hardest part is to maintain the indices to map packed/sorted colors to the input colors.
// We also need to update several functions that assume the number of colors is fixed to 16.
// And compute different bit maps for the different color counts.
// This is a fairly high amount of work.
__device__ int packColors(float3 * values, float * weights, int * ranks)
{
const int tid = threadIdx.x;
__shared__ int count;
count = 0;
bool alive = true;
// Append this
for (int i = 0; i < 16; i++)
{
// One thread leads on each iteration.
if (tid == i) {
// If thread alive, then append element.
if (alive) {
values[count] = values[i];
weights[count] = weights[i];
count++;
}
// Otherwise update weight.
else {
weights[ranks[i]] += weights[i];
}
}
// Kill all threads that have the same element and record rank.
if (values[i] == values[tid]) {
alive = false;
ranks[tid] = count - 1;
}
}
return count;
}
__device__ void sortColors(const float * values, int * ranks)
{
#if __DEVICE_EMULATION__
@ -343,12 +388,60 @@ __device__ void sortColors(const float * values, int * ranks)
#endif
}
__device__ void sortColors(const float * values, int * ranks, int count)
{
#if __DEVICE_EMULATION__
if (threadIdx.x == 0)
{
for (int tid = 0; tid < count; tid++)
{
int rank = 0;
for (int i = 0; i < count; i++)
{
rank += (values[i] < values[tid]);
}
ranks[tid] = rank;
}
// Resolve elements with the same index.
for (int i = 0; i < count-1; i++)
{
for (int tid = 0; tid < count; tid++)
{
if (tid > i && ranks[tid] == ranks[i]) ++ranks[tid];
}
}
}
#else
const int tid = threadIdx.x;
int rank = 0;
#pragma unroll
for (int i = 0; i < count; i++)
{
rank += (values[i] < values[tid]);
}
ranks[tid] = rank;
// Resolve elements with the same index.
#pragma unroll
for (int i = 0; i < count-1; i++)
{
if ((tid > i) & (ranks[tid] == ranks[i])) ++ranks[tid];
}
#endif
}
////////////////////////////////////////////////////////////////////////////////
// Load color block to shared mem
////////////////////////////////////////////////////////////////////////////////
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
/*__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
@ -389,9 +482,9 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
__debugsync();
}
#endif
}
}*/
__device__ void loadColorBlockTex(uint bn, uint w, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
__device__ void loadColorBlockTex(uint firstBlock, uint width, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
@ -400,8 +493,8 @@ __device__ void loadColorBlockTex(uint bn, uint w, float3 colors[16], float3 sum
if (idx < 16)
{
float x = 4 * ((bn + bid) % w) + idx % 4; // @@ Avoid mod and div by using 2D grid?
float y = 4 * ((bn + bid) / w) + idx / 4;
float x = 4 * ((firstBlock + bid) % width) + idx % 4; // @@ Avoid mod and div by using 2D grid?
float y = 4 * ((firstBlock + bid) / width) + idx / 4;
// Read color and copy to shared mem.
float4 c = tex2D(tex, x, y);
@ -437,10 +530,107 @@ __device__ void loadColorBlockTex(uint bn, uint w, float3 colors[16], float3 sum
__debugsync();
}
#endif
}
/*
__device__ void loadColorBlockTex(uint firstBlock, uint w, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
__shared__ float dps[16];
if (idx < 16)
{
float x = 4 * ((firstBlock + bid) % w) + idx % 4; // @@ Avoid mod and div by using 2D grid?
float y = 4 * ((firstBlock + bid) / w) + idx / 4;
// Read color and copy to shared mem.
float4 c = tex2D(tex, x, y);
colors[idx].x = c.z;
colors[idx].y = c.y;
colors[idx].z = c.x;
weights[idx] = 1;
int count = packColors(colors, weights);
if (idx < count)
{
// Sort colors along the best fit line.
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
dps[idx] = dot(colors[idx], axis);
sortColors(dps, xrefs);
float3 tmp = colors[idx];
colors[xrefs[idx]] = tmp;
}
}
}
*/
__device__ void loadColorBlockTex(uint firstBlock, uint width, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
__shared__ float3 rawColors[16];
__shared__ float dps[16];
if (idx < 16)
{
float x = 4 * ((firstBlock + bid) % width) + idx % 4; // @@ Avoid mod and div by using 2D grid?
float y = 4 * ((firstBlock + bid) / width) + idx / 4;
// Read color and copy to shared mem.
float4 c = tex2D(tex, x, y);
rawColors[idx].x = c.z;
rawColors[idx].y = c.y;
rawColors[idx].z = c.x;
weights[idx] = c.w;
colors[idx] = rawColors[idx] * weights[idx];
// No need to synchronize, 16 < warp size.
__debugsync();
// Sort colors along the best fit line.
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
// Single color compressor needs unweighted colors.
if (*sameColor) colors[idx] = rawColors[idx];
dps[idx] = dot(colors[idx], axis);
__debugsync();
sortColors(dps, xrefs);
float3 tmp = colors[idx];
float w = weights[idx];
__debugsync();
colors[xrefs[idx]] = tmp;
weights[xrefs[idx]] = w;
}
#if __DEVICE_EMULATION__
else
{
__debugsync();
__debugsync();
__debugsync();
}
#endif
}
/*
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
@ -494,6 +684,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
}
#endif
}
*/
__device__ void loadColorBlock(const uint * image, float2 colors[16], float2 sums[16], int xrefs[16], int * sameColor)
{
@ -1457,48 +1648,15 @@ __device__ void saveSingleColorBlockCTX1(float2 color, uint2 * result)
////////////////////////////////////////////////////////////////////////////////
// Compress color block
////////////////////////////////////////////////////////////////////////////////
__global__ void compressDXT1(const uint * permutations, const uint * image, uint2 * result)
__global__ void compressDXT1(uint firstBlock, uint w, const uint * permutations, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, xrefs, &sameColor);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalAllPermutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
__global__ void compressDXT1_Tex(uint bn, uint w, const uint * permutations, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlockTex(bn, w, colors, sums, xrefs, &sameColor);
loadColorBlockTex(firstBlock, w, colors, sums, xrefs, &sameColor);
__syncthreads();
@ -1534,14 +1692,14 @@ __global__ void compressDXT1_Tex(uint bn, uint w, const uint * permutations, uin
}
__global__ void compressLevel4DXT1(const uint * permutations, const uint * image, uint2 * result)
__global__ void compressLevel4DXT1(uint firstBlock, uint w, const uint * permutations, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, xrefs, &sameColor);
loadColorBlockTex(firstBlock, w, colors, sums, xrefs, &sameColor);
__syncthreads();
@ -1568,7 +1726,7 @@ __global__ void compressLevel4DXT1(const uint * permutations, const uint * image
}
}
__global__ void compressWeightedDXT1(const uint * permutations, const uint * image, uint2 * result)
__global__ void compressWeightedDXT1(uint firstBlock, uint w, const uint * permutations, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
@ -1576,7 +1734,7 @@ __global__ void compressWeightedDXT1(const uint * permutations, const uint * ima
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, weights, xrefs, &sameColor);
loadColorBlockTex(firstBlock, w, colors, sums, weights, xrefs, &sameColor);
__syncthreads();
@ -1987,17 +2145,7 @@ extern "C" void setupCompressKernel(const float weights[3])
cudaMemcpyToSymbol(kColorMetricSqr, weightsSqr, sizeof(float) * 3, 0);
}
////////////////////////////////////////////////////////////////////////////////
// Launch kernel
////////////////////////////////////////////////////////////////////////////////
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressKernelDXT1_Tex(uint bn, uint blockNum, uint w, cudaArray * d_data, uint * d_result, uint * d_bitmaps)
extern "C" void bindTextureToArray(cudaArray * d_data)
{
// Setup texture
tex.normalized = false;
@ -2006,21 +2154,61 @@ extern "C" void compressKernelDXT1_Tex(uint bn, uint blockNum, uint w, cudaArray
tex.addressMode[1] = cudaAddressModeClamp;
cudaBindTextureToArray(tex, d_data);
compressDXT1_Tex<<<blockNum, NUM_THREADS>>>(bn, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
////////////////////////////////////////////////////////////////////////////////
// Launch kernel
////////////////////////////////////////////////////////////////////////////////
// DXT1 compressors:
extern "C" void compressKernelDXT1(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
compressDXT1<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
extern "C" void compressKernelDXT1_Level4(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
compressWeightedDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT1(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
compressWeightedDXT1<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
// @@ DXT1a compressors.
// @@ DXT3 compressors:
extern "C" void compressKernelDXT3(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
//compressDXT3<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT3(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
//compressWeightedDXT3<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
// @@ DXT5 compressors.
extern "C" void compressKernelDXT5(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
//compressDXT5<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT5(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
//compressWeightedDXT5<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
/*
extern "C" void compressNormalKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressNormalDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
@ -2030,16 +2218,10 @@ extern "C" void compressKernelCTX1(uint blockNum, uint * d_data, uint * d_result
{
compressCTX1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
*/
/*
extern "C" void compressKernelDXT5n(uint blockNum, cudaArray * d_data, uint * d_result)
{
// Setup texture
tex.normalized = false;
tex.filterMode = cudaFilterModePoint;
tex.addressMode[0] = cudaAddressModeClamp;
tex.addressMode[1] = cudaAddressModeClamp;
cudaBindTextureToArray(tex, d_data);
// compressDXT5n<<<blockNum/128, 128>>>(blockNum, (uint2 *)d_result);
}
*/

View File

@ -52,16 +52,20 @@ using namespace nvtt;
extern "C" void setupCompressKernel(const float weights[3]);
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT1_Tex(uint bn, uint blockNum, uint w, cudaArray * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void bindTextureToArray(cudaArray * d_data);
extern "C" void compressKernelDXT1(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressNormalKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelCTX1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT3(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps);
//extern "C" void compressNormalKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
//extern "C" void compressKernelCTX1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
#include "Bitmaps.h" // @@ Rename to BitmapTable.h
#pragma message(NV_FILE_LINE "TODO: Rename Bitmaps.h to BitmapTable.h")
#include "Bitmaps.h"
/*
// Convert linear image to block linear.
static void convertToBlockLinear(const Image * image, uint * blockLinearImage)
{
@ -81,45 +85,49 @@ static void convertToBlockLinear(const Image * image, uint * blockLinearImage)
}
}
}
*/
#endif
CudaCompressor::CudaCompressor() : m_bitmapTable(NULL), m_bitmapTableCTX(NULL), m_data(NULL), m_result(NULL)
{
CudaContext::CudaContext() :
bitmapTable(NULL),
bitmapTableCTX(NULL),
data(NULL),
result(NULL)
{
#if defined HAVE_CUDA
// Allocate and upload bitmaps.
cudaMalloc((void**) &m_bitmapTable, 992 * sizeof(uint));
if (m_bitmapTable != NULL)
cudaMalloc((void**) &bitmapTable, 992 * sizeof(uint));
if (bitmapTable != NULL)
{
cudaMemcpy(m_bitmapTable, s_bitmapTable, 992 * sizeof(uint), cudaMemcpyHostToDevice);
cudaMemcpy(bitmapTable, s_bitmapTable, 992 * sizeof(uint), cudaMemcpyHostToDevice);
}
cudaMalloc((void**) &m_bitmapTableCTX, 704 * sizeof(uint));
if (m_bitmapTableCTX != NULL)
cudaMalloc((void**) &bitmapTableCTX, 704 * sizeof(uint));
if (bitmapTableCTX != NULL)
{
cudaMemcpy(m_bitmapTableCTX, s_bitmapTableCTX, 704 * sizeof(uint), cudaMemcpyHostToDevice);
cudaMemcpy(bitmapTableCTX, s_bitmapTableCTX, 704 * sizeof(uint), cudaMemcpyHostToDevice);
}
// Allocate scratch buffers.
cudaMalloc((void**) &m_data, MAX_BLOCKS * 64U);
cudaMalloc((void**) &m_result, MAX_BLOCKS * 8U);
cudaMalloc((void**) &data, MAX_BLOCKS * 64U);
cudaMalloc((void**) &result, MAX_BLOCKS * 8U);
#endif
}
CudaCompressor::~CudaCompressor()
{
}
CudaContext::~CudaContext()
{
#if defined HAVE_CUDA
// Free device mem allocations.
cudaFree(m_data);
cudaFree(m_result);
cudaFree(m_bitmapTable);
cudaFree(m_bitmapTableCTX);
cudaFree(bitmapTableCTX);
cudaFree(bitmapTable);
cudaFree(data);
cudaFree(result);
#endif
}
}
bool CudaCompressor::isValid() const
bool CudaContext::isValid() const
{
#if defined HAVE_CUDA
cudaError_t err = cudaGetLastError();
@ -129,185 +137,178 @@ bool CudaCompressor::isValid() const
return false;
}
#endif
return m_data != NULL && m_result != NULL && m_bitmapTable != NULL;
return bitmapTable != NULL && bitmapTableCTX != NULL && data != NULL && result != NULL;
}
CudaCompressor::CudaCompressor(CudaContext & ctx) : m_ctx(ctx)
{
}
void CudaCompressor::compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Allocate image as a cuda array.
cudaArray * d_image;
if (inputFormat == nvtt::InputFormat_BGRA_8UB)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(8, 8, 8, 8, cudaChannelFormatKindUnsigned);
cudaMallocArray(&d_image, &channelDesc, w, h);
const int imageSize = w * h * sizeof(uint);
cudaMemcpyToArray(d_image, 0, 0, data, imageSize, cudaMemcpyHostToDevice);
}
else
{
#pragma message(NV_FILE_LINE "FIXME: Floating point textures not really supported by CUDA compressors.")
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 32, 32, 32, cudaChannelFormatKindFloat);
cudaMallocArray(&d_image, &channelDesc, w, h);
const int imageSize = w * h * sizeof(uint);
cudaMemcpyToArray(d_image, 0, 0, data, imageSize, cudaMemcpyHostToDevice);
}
// Image size in blocks.
const uint bw = (w + 3) / 4;
const uint bh = (h + 3) / 4;
const uint bs = blockSize();
const uint blockNum = bw * bh;
const uint compressedSize = blockNum * bs;
void * h_result = malloc(min(blockNum, MAX_BLOCKS) * bs);
setup(d_image, compressionOptions);
// Timer timer;
// timer.start();
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
compressBlocks(bn, count, w, h, alphaMode, compressionOptions, h_result);
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
//nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Output result.
if (outputOptions.outputHandler != NULL)
{
outputOptions.outputHandler->writeData(h_result, count * bs);
}
bn += count;
}
//timer.stop();
//printf("\rCUDA time taken: %.3f seconds\n", timer.elapsed() / CLOCKS_PER_SEC);
free(h_result);
cudaFreeArray(d_image);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
void CudaCompressorDXT1::setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions)
{
setupCompressKernel(compressionOptions.colorWeight.ptr());
bindTextureToArray(image);
}
void CudaCompressorDXT1::compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
// Launch kernel.
compressKernelDXT1(first, count, w, m_ctx.result, m_ctx.bitmapTable);
// Copy result to host.
cudaMemcpy(output, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
}
void CudaCompressorDXT3::setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions)
{
setupCompressKernel(compressionOptions.colorWeight.ptr());
bindTextureToArray(image);
}
void CudaCompressorDXT3::compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
// Launch kernel.
compressKernelDXT3(first, count, w, m_ctx.result, m_ctx.bitmapTable);
// Copy result to host.
cudaMemcpy(output, m_ctx.result, count * 16, cudaMemcpyDeviceToHost);
}
void CudaCompressorDXT5::setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions)
{
setupCompressKernel(compressionOptions.colorWeight.ptr());
bindTextureToArray(image);
}
void CudaCompressorDXT5::compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
/*// Launch kernel.
compressKernelDXT5(first, count, w, m_ctx.result, m_ctx.bitmapTable);
// Copy result to host.
cudaMemcpy(output, m_ctx.result, count * 16, cudaMemcpyDeviceToHost);*/
// Launch kernel.
if (alphaMode == AlphaMode_Transparency)
{
// compressWeightedKernelDXT1(first, count, w, m_ctx.result, m_ctx.bitmapTable);
}
else
{
// compressKernelDXT1_Level4(first, count, w, m_ctx.result, m_ctx.bitmapTable);
}
// Compress alpha in parallel with the GPU.
for (uint i = 0; i < count; i++)
{
//ColorBlock rgba(blockLinearImage + (first + i) * 16);
//OptimalCompress::compressDXT3A(rgba, alphaBlocks + i);
}
// Copy result to host.
cudaMemcpy(output, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// @@ Interleave color and alpha blocks.
}
// @@ This code is very repetitive and needs to be cleaned up.
#if 0
struct CudaCompressionKernel
{
virtual void setup(const CompressionOptions::Private & compressionOptions)
{
setupCompressKernel(compressionOptions.colorWeight.ptr());
}
virtual void setBitmapTable();
virtual void runDeviceCode(int count);
virtual void runHostCode(int count);
};
void CudaCompressor::compressKernel(CudaCompressionKernel * kernel)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Image size in blocks.
const uint w = (image->width() + 3) / 4;
const uint h = (image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) malloc(imageSize);
convertToBlockLinear(image, blockLinearImage); // @@ Do this in parallel with the GPU, or in the GPU!
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
clock_t start = clock();
kernel->setup(compressionOptions);
kernel->setBitmapTable(m_bitmapTable);
// TODO: Add support for multiple GPUs.
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
kernel->runDeviceCode(count, m_data, m_result);
kernel->runHostCode(count);
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
kernel->outputResult(outputOptions.outputHandler);
if (outputOptions.outputHandler != NULL)
{
outputOptions.outputHandler->writeData(blockLinearImage, count * 8);
}
bn += count;
}
clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(blockLinearImage);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
#endif // 0
void CudaCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
{
m_image = image;
m_alphaMode = alphaMode;
}
/// Compress image using CUDA.
void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Allocate image as a cuda array.
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(8, 8, 8, 8, cudaChannelFormatKindUnsigned);
cudaArray * d_image;
const int imageSize = m_image->width() * m_image->height() * sizeof(uint);
cudaMallocArray(&d_image, &channelDesc, m_image->width(), m_image->height());
cudaMemcpyToArray(d_image, 0, 0, m_image->pixels(), imageSize, cudaMemcpyHostToDevice);
// Image size in blocks.
const uint w = (m_image->width() + 3) / 4;
const uint h = (m_image->height() + 3) / 4;
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
void * h_result = malloc(min(blockNum, MAX_BLOCKS) * 8);
//clock_t start = clock();
setupCompressKernel(compressionOptions.colorWeight.ptr());
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
// Launch kernel.
compressKernelDXT1_Tex(bn, count, w, d_image, m_result, m_bitmapTable);
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(h_result, m_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
{
outputOptions.outputHandler->writeData(h_result, count * 8);
}
bn += count;
}
//clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(h_result);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
/// Compress image using CUDA.
void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
@ -337,16 +338,16 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(m_ctx.data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
if (m_alphaMode == AlphaMode_Transparency)
{
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
compressWeightedKernelDXT1(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
}
else
{
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
compressKernelDXT1_Level4(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
}
// Compress alpha in parallel with the GPU.
@ -369,7 +370,7 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -428,16 +429,16 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(m_ctx.data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
if (m_alphaMode == AlphaMode_Transparency)
{
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
compressWeightedKernelDXT1(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
}
else
{
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
compressKernelDXT1_Level4(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
}
// Compress alpha in parallel with the GPU.
@ -460,7 +461,7 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -516,10 +517,10 @@ void CudaCompressor::compressDXT1n(const nvtt::CompressionOptions::Private & com
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(m_ctx.data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
compressNormalKernelDXT1(count, m_data, m_result, m_bitmapTable);
compressNormalKernelDXT1(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
// Check for errors.
cudaError_t err = cudaGetLastError();
@ -534,7 +535,7 @@ void CudaCompressor::compressDXT1n(const nvtt::CompressionOptions::Private & com
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -585,10 +586,10 @@ void CudaCompressor::compressCTX1(const nvtt::CompressionOptions::Private & comp
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(m_ctx.data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
compressKernelCTX1(count, m_data, m_result, m_bitmapTableCTX);
compressKernelCTX1(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTableCTX);
// Check for errors.
cudaError_t err = cudaGetLastError();
@ -603,7 +604,7 @@ void CudaCompressor::compressCTX1(const nvtt::CompressionOptions::Private & comp
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -643,4 +644,4 @@ void CudaCompressor::compressDXT5n(const nvtt::CompressionOptions::Private & com
#endif
}
#endif // 0

View File

@ -27,38 +27,86 @@
#include <nvimage/nvimage.h>
#include <nvtt/nvtt.h>
#include "nvtt/CompressDXT.h"
struct cudaArray;
namespace nv
{
class Image;
class CudaCompressor
class CudaContext
{
public:
CudaCompressor();
~CudaCompressor();
CudaContext();
~CudaContext();
bool isValid() const;
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressCTX1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
private:
uint * m_bitmapTable;
uint * m_bitmapTableCTX;
uint * m_data;
uint * m_result;
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
public:
// Device pointers.
uint * bitmapTable;
uint * bitmapTableCTX;
uint * data;
uint * result;
};
struct CudaCompressor : public CompressorInterface
{
CudaCompressor(CudaContext & ctx);
virtual void compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
virtual void setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions) = 0;
virtual void compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output) = 0;
virtual uint blockSize() const = 0;
protected:
CudaContext & m_ctx;
};
struct CudaCompressorDXT1 : public CudaCompressor
{
CudaCompressorDXT1(CudaContext & ctx) : CudaCompressor(ctx) {}
virtual void setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 8; };
};
/*struct CudaCompressorDXT1n : public CudaCompressor
{
virtual void setup(const CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint blockCount, const void * input, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output) = 0;
virtual uint blockSize() const { return 8; };
};*/
struct CudaCompressorDXT3 : public CudaCompressor
{
CudaCompressorDXT3(CudaContext & ctx) : CudaCompressor(ctx) {}
virtual void setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; };
};
struct CudaCompressorDXT5 : public CudaCompressor
{
CudaCompressorDXT5(CudaContext & ctx) : CudaCompressor(ctx) {}
virtual void setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; };
};
/*struct CudaCompressorCXT1 : public CudaCompressor
{
virtual void setup(const CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint blockCount, const void * input, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output) = 0;
virtual uint blockSize() const { return 8; };
};*/
} // nv namespace