Merge changes from The Witness.

This commit is contained in:
Ignacio
2015-03-24 12:14:49 -07:00
parent 7e2a9d1adb
commit a083337473
57 changed files with 2061 additions and 916 deletions

View File

@ -28,6 +28,8 @@
#include "CompressionOptions.h"
#include "OutputOptions.h"
#include "ClusterFit.h"
#include "CompressorDXT1.h"
#include "CompressorDXT5_RGBM.h"
// squish
#include "squish/colourset.h"
@ -113,102 +115,13 @@ void FastCompressorDXT5n::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alpha
}
namespace nv {
float compress_dxt1(const Vector3 input_colors[16], const float input_weights[16], const Vector3 & color_weights, BlockDXT1 * output);
}
#if 1
void CompressorDXT1::compressBlock(ColorSet & set, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
void CompressorDXT1::compressBlock(const Vector4 colors[16], const float weights[16], const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
#if 1
// @@ This setup is the same for all compressors.
Vector3 input_colors[16];
float input_weights[16];
uint x, y;
for (y = 0; y < set.h; y++) {
for (x = 0; x < set.w; x++) {
input_colors[4*y+x] = set.color(x, y).xyz();
input_weights[4*y+x] = 1.0f;
if (alphaMode == nvtt::AlphaMode_Transparency) input_weights[4*y+x] = set.color(x, y).z;
}
for (; x < 4; x++) {
input_colors[4*y+x] = Vector3(0);
input_weights[4*y+x] = 0.0f;
}
}
for (; y < 4; y++) {
for (x = 0; x < 4; x++) {
input_colors[4*y+x] = Vector3(0);
input_weights[4*y+x] = 0.0f;
}
}
compress_dxt1(input_colors, input_weights, compressionOptions.colorWeight.xyz(), (BlockDXT1 *)output);
#else
set.setUniformWeights();
set.createMinimalSet(/*ignoreTransparent*/false);
BlockDXT1 * block = new(output) BlockDXT1;
if (set.isSingleColor(/*ignoreAlpha*/true))
{
Color32 c = toColor32(set.colors[0]);
OptimalCompress::compressDXT1(c, block);
}
/*else if (set.colorCount == 2) {
QuickCompress::compressDXT1(..., block);
}*/
else
{
ClusterFit fit;
fit.setColorWeights(compressionOptions.colorWeight);
fit.setColorSet(&set);
Vector3 start, end;
fit.compress4(&start, &end);
if (fit.compress3(&start, &end)) {
QuickCompress::outputBlock3(set, start, end, block);
}
else {
QuickCompress::outputBlock4(set, start, end, block);
}
}
#endif
compress_dxt1(colors, weights, compressionOptions.colorWeight.xyz(), /*three_color_mode*/true, (BlockDXT1 *)output);
}
#elif 0
extern void compress_dxt1_bounding_box_exhaustive(const ColorBlock & input, BlockDXT1 * output);
void CompressorDXT1::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
BlockDXT1 * block = new(output) BlockDXT1;
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), block);
//compress_dxt1_single_color_optimal(rgba.color(0), block);
}
else
{
// Do an exhaustive search inside the bounding box.
compress_dxt1_bounding_box_exhaustive(rgba, block);
}
/*else
{
nvsquish::WeightedClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x, compressionOptions.colorWeight.y, compressionOptions.colorWeight.z);
nvsquish::ColourSet colours((uint8 *)rgba.colors(), 0);
fit.SetColourSet(&colours, nvsquish::kDxt1);
fit.Compress(output);
}*/
}
#else
void CompressorDXT1::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
@ -371,309 +284,13 @@ void CompressorDXT5n::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode
}
void CompressorBC3_RGBM::compressBlock(ColorSet & src, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
void CompressorBC3_RGBM::compressBlock(const Vector4 colors[16], const float weights[16], const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
BlockDXT5 * block = new(output)BlockDXT5;
if (alphaMode == AlphaMode_Transparency) {
src.setAlphaWeights();
}
else {
src.setUniformWeights();
}
// Decompress the color block and find the M values that reproduce the input most closely. This should compensate for some of the DXT errors.
// Compress the resulting M values optimally.
// Repeat this several times until compression error does not improve?
//Vector3 rgb_block[16];
//float m_block[16];
// Init RGB/M block.
const float threshold = 0.15f; // @@ Use compression options.
#if 0
nvsquish::WeightedClusterFit fit;
ColorBlock rgba;
for (int i = 0; i < 16; i++) {
const Vector4 & c = src.color(i);
float R = saturate(c.x);
float G = saturate(c.y);
float B = saturate(c.z);
float M = max(max(R, G), max(B, threshold));
float r = R / M;
float g = G / M;
float b = B / M;
float a = c.w;
rgba.color(i) = toColor32(Vector4(r, g, b, a));
}
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block->color);
}
else
{
nvsquish::WeightedClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x, compressionOptions.colorWeight.y, compressionOptions.colorWeight.z);
int flags = 0;
if (alphaMode == nvtt::AlphaMode_Transparency) flags |= nvsquish::kWeightColourByAlpha;
nvsquish::ColourSet colours((uint8 *)rgba.colors(), flags);
fit.SetColourSet(&colours, 0);
fit.Compress(&block->color);
}
#endif
#if 1
ColorSet rgb;
rgb.allocate(src.w, src.h); // @@ Handle smaller blocks.
if (src.colorCount != 16) {
nvDebugBreak();
}
for (uint i = 0; i < src.colorCount; i++) {
const Vector4 & c = src.color(i);
float R = saturate(c.x);
float G = saturate(c.y);
float B = saturate(c.z);
float M = max(max(R, G), max(B, threshold));
float r = R / M;
float g = G / M;
float b = B / M;
float a = c.w;
rgb.colors[i] = Vector4(r, g, b, a);
rgb.indices[i] = i;
rgb.weights[i] = max(c.w, 0.001f);// src.weights[i]; // IC: For some reason 0 weights are causing problems, even if we eliminate the corresponding colors from the set.
}
rgb.createMinimalSet(/*ignoreTransparent=*/true);
if (rgb.isSingleColor(/*ignoreAlpha=*/true)) {
OptimalCompress::compressDXT1(toColor32(rgb.color(0)), &block->color);
}
else {
ClusterFit fit;
fit.setColorWeights(compressionOptions.colorWeight);
fit.setColorSet(&rgb);
Vector3 start, end;
fit.compress4(&start, &end);
QuickCompress::outputBlock4(rgb, start, end, &block->color);
}
#endif
// Decompress RGB/M block.
nv::ColorBlock RGB;
block->color.decodeBlock(&RGB);
#if 1
AlphaBlock4x4 M;
for (int i = 0; i < 16; i++) {
const Vector4 & c = src.color(i);
float R = saturate(c.x);
float G = saturate(c.y);
float B = saturate(c.z);
float r = RGB.color(i).r / 255.0f;
float g = RGB.color(i).g / 255.0f;
float b = RGB.color(i).b / 255.0f;
float m = (R / r + G / g + B / b) / 3.0f;
//float m = max((R / r + G / g + B / b) / 3.0f, threshold);
//float m = max(max(R / r, G / g), max(B / b, threshold));
//float m = max(max(R, G), max(B, threshold));
m = (m - threshold) / (1 - threshold);
M.alpha[i] = U8(ftoi_round(saturate(m) * 255.0f));
M.weights[i] = src.weights[i];
}
// Compress M.
if (compressionOptions.quality == Quality_Fastest) {
QuickCompress::compressDXT5A(M, &block->alpha);
}
else {
OptimalCompress::compressDXT5A(M, &block->alpha);
}
#else
OptimalCompress::compressDXT5A_RGBM(src, RGB, &block->alpha);
#endif
#if 0
// Decompress M.
block->alpha.decodeBlock(&M);
rgb.allocate(src.w, src.h); // @@ Handle smaller blocks.
for (uint i = 0; i < src.colorCount; i++) {
const Vector4 & c = src.color(i);
float R = saturate(c.x);
float G = saturate(c.y);
float B = saturate(c.z);
//float m = max(max(R, G), max(B, threshold));
float m = float(M.alpha[i]) / 255.0f * (1 - threshold) + threshold;
float r = R / m;
float g = G / m;
float b = B / m;
float a = c.w;
rgb.colors[i] = Vector4(r, g, b, a);
rgb.indices[i] = i;
rgb.weights[i] = max(c.w, 0.001f);// src.weights[i]; // IC: For some reason 0 weights are causing problems, even if we eliminate the corresponding colors from the set.
}
rgb.createMinimalSet(/*ignoreTransparent=*/true);
if (rgb.isSingleColor(/*ignoreAlpha=*/true)) {
OptimalCompress::compressDXT1(toColor32(rgb.color(0)), &block->color);
}
else {
ClusterFit fit;
fit.setMetric(compressionOptions.colorWeight);
fit.setColourSet(&rgb);
Vector3 start, end;
fit.compress4(&start, &end);
QuickCompress::outputBlock4(rgb, start, end, &block->color);
}
#endif
#if 0
block->color.decodeBlock(&RGB);
//AlphaBlock4x4 M;
//M.initWeights(src);
for (int i = 0; i < 16; i++) {
const Vector4 & c = src.color(i);
float R = saturate(c.x);
float G = saturate(c.y);
float B = saturate(c.z);
float r = RGB.color(i).r / 255.0f;
float g = RGB.color(i).g / 255.0f;
float b = RGB.color(i).b / 255.0f;
float m = (R / r + G / g + B / b) / 3.0f;
//float m = max((R / r + G / g + B / b) / 3.0f, threshold);
//float m = max(max(R / r, G / g), max(B / b, threshold));
//float m = max(max(R, G), max(B, threshold));
m = (m - threshold) / (1 - threshold);
M.alpha[i] = U8(ftoi_round(saturate(m) * 255.0f));
M.weights[i] = src.weights[i];
}
// Compress M.
if (compressionOptions.quality == Quality_Fastest) {
QuickCompress::compressDXT5A(M, &block->alpha);
}
else {
OptimalCompress::compressDXT5A(M, &block->alpha);
}
#endif
#if 0
src.fromRGBM(M, threshold);
src.createMinimalSet(/*ignoreTransparent=*/true);
if (src.isSingleColor(/*ignoreAlpha=*/true)) {
OptimalCompress::compressDXT1(src.color(0), &block->color);
}
else {
// @@ Use our improved compressor.
ClusterFit fit;
fit.setMetric(compressionOptions.colorWeight);
fit.setColourSet(&src);
Vector3 start, end;
fit.compress4(&start, &end);
if (fit.compress3(&start, &end)) {
QuickCompress::outputBlock3(src, start, end, block->color);
}
else {
QuickCompress::outputBlock4(src, start, end, block->color);
}
}
#endif // 0
// @@ Decompress color and compute M that best approximates src with these colors? Then compress M again?
// RGBM encoding.
// Maximize precision.
// - Number of possible grey levels:
// - Naive: 2^3 = 8
// - Better: 2^3 + 2^2 = 12
// - How to choose threshold?
// - Ideal = Adaptive per block, don't know where to store.
// - Adaptive per lightmap. How to compute optimal?
// - Fixed: 0.25 in our case. Lightmaps scaled to a fixed [0, 1] range.
// - Optimal compressor: Interpolation artifacts.
// - Color transform.
// - Measure error in post-tone-mapping color space.
// - Assume a simple tone mapping operator. We know minimum and maximum exposure, but don't know exact exposure in game.
// - Guess based on average lighmap color? Use fixed exposure, in scaled lightmap space.
// - Enhanced DXT compressor.
// - Typical RGBM encoding as follows:
// rgb -> M = max(rgb), RGB=rgb/M -> RGBM
// - If we add a compression step (M' = M) and M' < M, then rgb may be greater than 1.
// - We could ensure that M' >= M during compression.
// - We could clamp RGB anyway.
// - We could add a fixed scale value to take into account compression errors and avoid clamping.
// Compress color.
/*if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block->color);
}
else
{
nvsquish::WeightedClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x, compressionOptions.colorWeight.y, compressionOptions.colorWeight.z);
int flags = 0;
if (alphaMode == nvtt::AlphaMode_Transparency) flags |= nvsquish::kWeightColourByAlpha;
nvsquish::ColourSet colours((uint8 *)rgba.colors(), flags);
fit.SetColourSet(&colours, 0);
fit.Compress(&block->color);
}*/
float min_m = 0.25f; // @@ Get from compression options.
compress_dxt5_rgbm(colors, weights, min_m, (BlockDXT5 *)output);
}
#if defined(HAVE_ATITC)
void AtiCompressorDXT1::compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, uint d, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)