Merge optimizations from official squish release.
This commit is contained in:
parent
fd73484bfc
commit
c05c4e155b
@ -129,6 +129,8 @@ void FastClusterFit::Compress3( void* block )
|
||||
Vec4 const zero = VEC4_CONST(0.0f);
|
||||
Vec4 const half = VEC4_CONST(0.5f);
|
||||
Vec4 const two = VEC4_CONST(2.0);
|
||||
Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f );
|
||||
Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f );
|
||||
|
||||
// declare variables
|
||||
Vec4 beststart = VEC4_CONST( 0.0f );
|
||||
@ -160,25 +162,22 @@ void FastClusterFit::Compress3( void* block )
|
||||
Vec4 a = NegativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor;
|
||||
Vec4 b = NegativeMultiplySubtract(alphax_sum, alphabeta_sum, betax_sum*alpha2_sum) * factor;
|
||||
|
||||
// clamp the output to [0, 1]
|
||||
// clamp to the grid
|
||||
a = Min( one, Max( zero, a ) );
|
||||
b = Min( one, Max( zero, b ) );
|
||||
|
||||
// clamp to the grid
|
||||
Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f );
|
||||
Vec4 const gridrcp( 0.03227752766457f, 0.01583151765563f, 0.03227752766457f, 0.0f );
|
||||
a = Truncate( MultiplyAdd( grid, a, half ) ) * gridrcp;
|
||||
b = Truncate( MultiplyAdd( grid, b, half ) ) * gridrcp;
|
||||
|
||||
// compute the error
|
||||
Vec4 e1 = MultiplyAdd( a, alphax_sum, b*betax_sum );
|
||||
Vec4 e2 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
|
||||
Vec4 e3 = MultiplyAdd( a*b*alphabeta_sum - e1, two, e2 );
|
||||
|
||||
// compute the error (we skip the constant xxsum)
|
||||
Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
|
||||
Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum );
|
||||
Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 );
|
||||
Vec4 e4 = MultiplyAdd( two, e3, e1 );
|
||||
|
||||
// apply the metric to the error term
|
||||
Vec4 e4 = e3 * m_metricSqr;
|
||||
Vec4 error = e4.SplatX() + e4.SplatY() + e4.SplatZ();
|
||||
|
||||
Vec4 e5 = e4 * m_metricSqr;
|
||||
Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ();
|
||||
|
||||
// keep the solution if it wins
|
||||
if( CompareAnyLessThan( error, besterror ) )
|
||||
{
|
||||
@ -274,7 +273,7 @@ void FastClusterFit::Compress4( void* block )
|
||||
Vec4 const factor = constants.SplatW();
|
||||
i++;
|
||||
|
||||
Vec4 const alphax_sum = x0 + MultiplyAdd(x1, twothirds, x2 * onethird);
|
||||
Vec4 const alphax_sum = MultiplyAdd(x2, onethird, MultiplyAdd(x1, twothirds, x0));
|
||||
Vec4 const betax_sum = m_xsum - alphax_sum;
|
||||
|
||||
Vec4 a = NegativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor;
|
||||
@ -286,18 +285,19 @@ void FastClusterFit::Compress4( void* block )
|
||||
|
||||
// clamp to the grid
|
||||
Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f );
|
||||
Vec4 const gridrcp( 0.03227752766457f, 0.01583151765563f, 0.03227752766457f, 0.0f );
|
||||
Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f );
|
||||
a = Truncate( MultiplyAdd( grid, a, half ) ) * gridrcp;
|
||||
b = Truncate( MultiplyAdd( grid, b, half ) ) * gridrcp;
|
||||
|
||||
// compute the error
|
||||
Vec4 e1 = MultiplyAdd( a, alphax_sum, b*betax_sum );
|
||||
Vec4 e2 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
|
||||
Vec4 e3 = MultiplyAdd( a*b*alphabeta_sum - e1, two, e2 );
|
||||
|
||||
// compute the error (we skip the constant xxsum)
|
||||
Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
|
||||
Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum );
|
||||
Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 );
|
||||
Vec4 e4 = MultiplyAdd( two, e3, e1 );
|
||||
|
||||
// apply the metric to the error term
|
||||
Vec4 e4 = e3 * m_metricSqr;
|
||||
Vec4 error = e4.SplatX() + e4.SplatY() + e4.SplatZ();
|
||||
Vec4 e5 = e4 * m_metricSqr;
|
||||
Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ();
|
||||
|
||||
// keep the solution if it wins
|
||||
if( CompareAnyLessThan( error, besterror ) )
|
||||
@ -370,6 +370,12 @@ void FastClusterFit::Compress4( void* block )
|
||||
|
||||
void FastClusterFit::Compress3( void* block )
|
||||
{
|
||||
Vec3 const one( 1.0f );
|
||||
Vec3 const zero( 0.0f );
|
||||
Vec3 const half( 0.5f );
|
||||
Vec3 const grid( 31.0f, 63.0f, 31.0f );
|
||||
Vec3 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f );
|
||||
|
||||
// declare variables
|
||||
Vec3 beststart( 0.0f );
|
||||
Vec3 bestend( 0.0f );
|
||||
@ -399,16 +405,9 @@ void FastClusterFit::Compress3( void* block )
|
||||
Vec3 a = (alphax_sum*beta2_sum - betax_sum*alphabeta_sum) * factor;
|
||||
Vec3 b = (betax_sum*alpha2_sum - alphax_sum*alphabeta_sum) * factor;
|
||||
|
||||
// clamp the output to [0, 1]
|
||||
Vec3 const one( 1.0f );
|
||||
Vec3 const zero( 0.0f );
|
||||
// clamp to the grid
|
||||
a = Min( one, Max( zero, a ) );
|
||||
b = Min( one, Max( zero, b ) );
|
||||
|
||||
// clamp to the grid
|
||||
Vec3 const grid( 31.0f, 63.0f, 31.0f );
|
||||
Vec3 const gridrcp( 0.03227752766457f, 0.01583151765563f, 0.03227752766457f );
|
||||
Vec3 const half( 0.5f );
|
||||
a = Floor( grid*a + half )*gridrcp;
|
||||
b = Floor( grid*b + half )*gridrcp;
|
||||
|
||||
@ -477,6 +476,12 @@ void FastClusterFit::Compress3( void* block )
|
||||
|
||||
void FastClusterFit::Compress4( void* block )
|
||||
{
|
||||
Vec3 const one( 1.0f );
|
||||
Vec3 const zero( 0.0f );
|
||||
Vec3 const half( 0.5f );
|
||||
Vec3 const grid( 31.0f, 63.0f, 31.0f );
|
||||
Vec3 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f );
|
||||
|
||||
// declare variables
|
||||
Vec3 beststart( 0.0f );
|
||||
Vec3 bestend( 0.0f );
|
||||
@ -511,16 +516,9 @@ void FastClusterFit::Compress4( void* block )
|
||||
Vec3 a = ( alphax_sum*beta2_sum - betax_sum*alphabeta_sum )*factor;
|
||||
Vec3 b = ( betax_sum*alpha2_sum - alphax_sum*alphabeta_sum )*factor;
|
||||
|
||||
// clamp the output to [0, 1]
|
||||
Vec3 const one( 1.0f );
|
||||
Vec3 const zero( 0.0f );
|
||||
// clamp to the grid
|
||||
a = Min( one, Max( zero, a ) );
|
||||
b = Min( one, Max( zero, b ) );
|
||||
|
||||
// clamp to the grid
|
||||
Vec3 const grid( 31.0f, 63.0f, 31.0f );
|
||||
Vec3 const gridrcp( 0.03227752766457f, 0.01583151765563f, 0.03227752766457f );
|
||||
Vec3 const half( 0.5f );
|
||||
a = Floor( grid*a + half )*gridrcp;
|
||||
b = Floor( grid*b + half )*gridrcp;
|
||||
|
||||
|
@ -59,28 +59,189 @@ Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weight
|
||||
return covariance;
|
||||
}
|
||||
|
||||
#if 1
|
||||
|
||||
Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
|
||||
{
|
||||
const int NUM = 8;
|
||||
|
||||
Vec3 v(1, 1, 1);
|
||||
for(int i = 0; i < NUM; i++) {
|
||||
for (int i = 0; i < NUM; i++)
|
||||
{
|
||||
float x = v.X() * matrix[0] + v.Y() * matrix[1] + v.Z() * matrix[2];
|
||||
float y = v.X() * matrix[1] + v.Y() * matrix[3] + v.Z() * matrix[4];
|
||||
float z = v.X() * matrix[2] + v.Y() * matrix[4] + v.Z() * matrix[5];
|
||||
|
||||
float norm = std::max(std::max(x, y), z);
|
||||
|
||||
float iv = 1.0f / norm;
|
||||
if (norm == 0.0f) { // @@ I think this is not necessary in this case!!
|
||||
return Vec3(0.0f);
|
||||
}
|
||||
|
||||
v = Vec3(x*iv, y*iv, z*iv);
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue )
|
||||
{
|
||||
// compute M
|
||||
Sym3x3 m;
|
||||
m[0] = matrix[0] - evalue;
|
||||
m[1] = matrix[1];
|
||||
m[2] = matrix[2];
|
||||
m[3] = matrix[3] - evalue;
|
||||
m[4] = matrix[4];
|
||||
m[5] = matrix[5] - evalue;
|
||||
|
||||
// compute U
|
||||
Sym3x3 u;
|
||||
u[0] = m[3]*m[5] - m[4]*m[4];
|
||||
u[1] = m[2]*m[4] - m[1]*m[5];
|
||||
u[2] = m[1]*m[4] - m[2]*m[3];
|
||||
u[3] = m[0]*m[5] - m[2]*m[2];
|
||||
u[4] = m[1]*m[2] - m[4]*m[0];
|
||||
u[5] = m[0]*m[3] - m[1]*m[1];
|
||||
|
||||
// find the largest component
|
||||
float mc = std::fabs( u[0] );
|
||||
int mi = 0;
|
||||
for( int i = 1; i < 6; ++i )
|
||||
{
|
||||
float c = std::fabs( u[i] );
|
||||
if( c > mc )
|
||||
{
|
||||
mc = c;
|
||||
mi = i;
|
||||
}
|
||||
}
|
||||
|
||||
// pick the column with this component
|
||||
switch( mi )
|
||||
{
|
||||
case 0:
|
||||
return Vec3( u[0], u[1], u[2] );
|
||||
|
||||
case 1:
|
||||
case 3:
|
||||
return Vec3( u[1], u[3], u[4] );
|
||||
|
||||
default:
|
||||
return Vec3( u[2], u[4], u[5] );
|
||||
}
|
||||
}
|
||||
|
||||
static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue )
|
||||
{
|
||||
// compute M
|
||||
Sym3x3 m;
|
||||
m[0] = matrix[0] - evalue;
|
||||
m[1] = matrix[1];
|
||||
m[2] = matrix[2];
|
||||
m[3] = matrix[3] - evalue;
|
||||
m[4] = matrix[4];
|
||||
m[5] = matrix[5] - evalue;
|
||||
|
||||
// find the largest component
|
||||
float mc = std::fabs( m[0] );
|
||||
int mi = 0;
|
||||
for( int i = 1; i < 6; ++i )
|
||||
{
|
||||
float c = std::fabs( m[i] );
|
||||
if( c > mc )
|
||||
{
|
||||
mc = c;
|
||||
mi = i;
|
||||
}
|
||||
}
|
||||
|
||||
// pick the first eigenvector based on this index
|
||||
switch( mi )
|
||||
{
|
||||
case 0:
|
||||
case 1:
|
||||
return Vec3( -m[1], m[0], 0.0f );
|
||||
|
||||
case 2:
|
||||
return Vec3( m[2], 0.0f, -m[0] );
|
||||
|
||||
case 3:
|
||||
case 4:
|
||||
return Vec3( 0.0f, -m[4], m[3] );
|
||||
|
||||
default:
|
||||
return Vec3( 0.0f, -m[5], m[4] );
|
||||
}
|
||||
}
|
||||
|
||||
Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
|
||||
{
|
||||
// compute the cubic coefficients
|
||||
float c0 = matrix[0]*matrix[3]*matrix[5]
|
||||
+ 2.0f*matrix[1]*matrix[2]*matrix[4]
|
||||
- matrix[0]*matrix[4]*matrix[4]
|
||||
- matrix[3]*matrix[2]*matrix[2]
|
||||
- matrix[5]*matrix[1]*matrix[1];
|
||||
float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5]
|
||||
- matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4];
|
||||
float c2 = matrix[0] + matrix[3] + matrix[5];
|
||||
|
||||
// compute the quadratic coefficients
|
||||
float a = c1 - ( 1.0f/3.0f )*c2*c2;
|
||||
float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0;
|
||||
|
||||
// compute the root count check
|
||||
float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a;
|
||||
|
||||
// test the multiplicity
|
||||
if( FLT_EPSILON < Q )
|
||||
{
|
||||
// only one root, which implies we have a multiple of the identity
|
||||
return Vec3( 1.0f );
|
||||
}
|
||||
else if( Q < -FLT_EPSILON )
|
||||
{
|
||||
// three distinct roots
|
||||
float theta = std::atan2( std::sqrt( -Q ), -0.5f*b );
|
||||
float rho = std::sqrt( 0.25f*b*b - Q );
|
||||
|
||||
float rt = std::pow( rho, 1.0f/3.0f );
|
||||
float ct = std::cos( theta/3.0f );
|
||||
float st = std::sin( theta/3.0f );
|
||||
|
||||
float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct;
|
||||
float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st );
|
||||
float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st );
|
||||
|
||||
// pick the larger
|
||||
if( std::fabs( l2 ) > std::fabs( l1 ) )
|
||||
l1 = l2;
|
||||
if( std::fabs( l3 ) > std::fabs( l1 ) )
|
||||
l1 = l3;
|
||||
|
||||
// get the eigenvector
|
||||
return GetMultiplicity1Evector( matrix, l1 );
|
||||
}
|
||||
else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON )
|
||||
{
|
||||
// two roots
|
||||
float rt;
|
||||
if( b < 0.0f )
|
||||
rt = -std::pow( -0.5f*b, 1.0f/3.0f );
|
||||
else
|
||||
rt = std::pow( 0.5f*b, 1.0f/3.0f );
|
||||
|
||||
float l1 = ( 1.0f/3.0f )*c2 + rt; // repeated
|
||||
float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt;
|
||||
|
||||
// get the eigenvector
|
||||
if( std::fabs( l1 ) > std::fabs( l2 ) )
|
||||
return GetMultiplicity2Evector( matrix, l1 );
|
||||
else
|
||||
return GetMultiplicity1Evector( matrix, l2 );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
} // namespace squish
|
||||
|
Loading…
Reference in New Issue
Block a user