diff --git a/src/nvtt/CMakeLists.txt b/src/nvtt/CMakeLists.txt index 501ce4a..7b92379 100644 --- a/src/nvtt/CMakeLists.txt +++ b/src/nvtt/CMakeLists.txt @@ -5,7 +5,6 @@ ADD_SUBDIRECTORY(squish) SET(NVTT_SRCS nvtt.h nvtt.cpp nvtt_wrapper.h nvtt_wrapper.cpp - ClusterFit.h ClusterFit.cpp Compressor.h BlockCompressor.h BlockCompressor.cpp CompressorDX9.h CompressorDX9.cpp diff --git a/src/nvtt/ClusterFit.cpp b/src/nvtt/ClusterFit.cpp deleted file mode 100644 index 4e8728e..0000000 --- a/src/nvtt/ClusterFit.cpp +++ /dev/null @@ -1,617 +0,0 @@ -// MIT license see full LICENSE text at end of file - -#include "ClusterFit.h" -#include "nvmath/Vector.inl" - -#include // FLT_MAX - -using namespace nv; - - -static Vector3 computeCentroid(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric) -{ - Vector3 centroid(0.0f); - float total = 0.0f; - - for (int i = 0; i < n; i++) - { - total += weights[i]; - centroid += weights[i] * points[i]; - } - centroid *= (1.0f / total); - - return centroid; -} - -static Vector3 computeCovariance(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric, float *__restrict covariance) -{ - // compute the centroid - Vector3 centroid = computeCentroid(n, points, weights, metric); - - // compute covariance matrix - for (int i = 0; i < 6; i++) - { - covariance[i] = 0.0f; - } - - for (int i = 0; i < n; i++) - { - Vector3 a = (points[i] - centroid) * metric; // @@ I think weight should be squared, but that seems to increase the error slightly. - Vector3 b = weights[i] * a; - - covariance[0] += a.x * b.x; - covariance[1] += a.x * b.y; - covariance[2] += a.x * b.z; - covariance[3] += a.y * b.y; - covariance[4] += a.y * b.z; - covariance[5] += a.z * b.z; - } - - return centroid; -} - -// @@ We should be able to do something cheaper... -static Vector3 estimatePrincipalComponent(const float * __restrict matrix) -{ - const Vector3 row0(matrix[0], matrix[1], matrix[2]); - const Vector3 row1(matrix[1], matrix[3], matrix[4]); - const Vector3 row2(matrix[2], matrix[4], matrix[5]); - - float r0 = lengthSquared(row0); - float r1 = lengthSquared(row1); - float r2 = lengthSquared(row2); - - if (r0 > r1 && r0 > r2) return row0; - if (r1 > r2) return row1; - return row2; -} - -static inline Vector3 firstEigenVector_PowerMethod(const float *__restrict matrix) -{ - if (matrix[0] == 0 && matrix[3] == 0 && matrix[5] == 0) - { - return Vector3(0.0f); - } - - Vector3 v = estimatePrincipalComponent(matrix); - - const int NUM = 8; - for (int i = 0; i < NUM; i++) - { - float x = v.x * matrix[0] + v.y * matrix[1] + v.z * matrix[2]; - float y = v.x * matrix[1] + v.y * matrix[3] + v.z * matrix[4]; - float z = v.x * matrix[2] + v.y * matrix[4] + v.z * matrix[5]; - - float norm = max(max(x, y), z); - - v = Vector3(x, y, z) * (1.0f / norm); - } - - return v; -} - -static Vector3 computePrincipalComponent_PowerMethod(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric) -{ - float matrix[6]; - computeCovariance(n, points, weights, metric, matrix); - - return firstEigenVector_PowerMethod(matrix); -} - -void ClusterFit::setColorSet(const Vector3 * colors, const float * weights, int count) -{ - // initialise the best error -#if NVTT_USE_SIMD - m_besterror = SimdVector( FLT_MAX ); - Vector3 metric = m_metric.toVector3(); -#else - m_besterror = FLT_MAX; - Vector3 metric = m_metric; -#endif - - m_count = count; - - // I've tried using a lower quality approximation of the principal direction, but the best fit line seems to produce best results. - Vector3 principal = computePrincipalComponent_PowerMethod(count, colors, weights, metric); - - // build the list of values - int order[16]; - float dps[16]; - for (uint i = 0; i < m_count; ++i) - { - dps[i] = dot(colors[i], principal); - order[i] = i; - } - - // stable sort - for (uint i = 0; i < m_count; ++i) - { - for (uint j = i; j > 0 && dps[j] < dps[j - 1]; --j) - { - swap(dps[j], dps[j - 1]); - swap(order[j], order[j - 1]); - } - } - - // weight all the points -#if NVTT_USE_SIMD - m_xxsum = SimdVector( 0.0f ); - m_xsum = SimdVector( 0.0f ); -#else - m_xxsum = Vector3(0.0f); - m_xsum = Vector3(0.0f); - m_wsum = 0.0f; -#endif - - for (uint i = 0; i < m_count; ++i) - { - int p = order[i]; -#if NVTT_USE_SIMD - NV_ALIGN_16 Vector4 tmp(colors[p], 1); - m_weighted[i] = SimdVector(tmp.component) * SimdVector(weights[p]); - m_xxsum += m_weighted[i] * m_weighted[i]; - m_xsum += m_weighted[i]; -#else - m_weighted[i] = colors[p] * weights[p]; - m_xxsum += m_weighted[i] * m_weighted[i]; - m_xsum += m_weighted[i]; - m_weights[i] = weights[p]; - m_wsum += m_weights[i]; -#endif - } -} - - - -void ClusterFit::setColorWeights(Vector4::Arg w) -{ -#if NVTT_USE_SIMD - NV_ALIGN_16 Vector4 tmp(w.xyz(), 1); - m_metric = SimdVector(tmp.component); -#else - m_metric = w.xyz(); -#endif - m_metricSqr = m_metric * m_metric; -} - -float ClusterFit::bestError() const -{ -#if NVTT_USE_SIMD - SimdVector x = m_xxsum * m_metricSqr; - SimdVector error = m_besterror + x.splatX() + x.splatY() + x.splatZ(); - return error.toFloat(); -#else - return m_besterror + dot(m_xxsum, m_metricSqr); -#endif - -} - -#if NVTT_USE_SIMD - -bool ClusterFit::compress3( Vector3 * start, Vector3 * end ) -{ - const int count = m_count; - const SimdVector one = SimdVector(1.0f); - const SimdVector zero = SimdVector(0.0f); - const SimdVector half(0.5f, 0.5f, 0.5f, 0.25f); - const SimdVector two = SimdVector(2.0); - const SimdVector grid( 31.0f, 63.0f, 31.0f, 0.0f ); - const SimdVector gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); - - // declare variables - SimdVector beststart = SimdVector( 0.0f ); - SimdVector bestend = SimdVector( 0.0f ); - SimdVector besterror = SimdVector( FLT_MAX ); - - SimdVector x0 = zero; - - // check all possible clusters for this total order - for (int c0 = 0; c0 <= count; c0++) - { - SimdVector x1 = zero; - - for (int c1 = 0; c1 <= count-c0; c1++) - { - const SimdVector x2 = m_xsum - x1 - x0; - - //Vector3 alphax_sum = x0 + x1 * 0.5f; - //float alpha2_sum = w0 + w1 * 0.25f; - const SimdVector alphax_sum = multiplyAdd(x1, half, x0); // alphax_sum, alpha2_sum - const SimdVector alpha2_sum = alphax_sum.splatW(); - - //const Vector3 betax_sum = x2 + x1 * 0.5f; - //const float beta2_sum = w2 + w1 * 0.25f; - const SimdVector betax_sum = multiplyAdd(x1, half, x2); // betax_sum, beta2_sum - const SimdVector beta2_sum = betax_sum.splatW(); - - //const float alphabeta_sum = w1 * 0.25f; - const SimdVector alphabeta_sum = (x1 * half).splatW(); // alphabeta_sum - - // const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); - const SimdVector factor = reciprocal( negativeMultiplySubtract(alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum) ); - - SimdVector a = negativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor; - SimdVector b = negativeMultiplySubtract(alphax_sum, alphabeta_sum, betax_sum*alpha2_sum) * factor; - - // clamp to the grid - a = min( one, max( zero, a ) ); - b = min( one, max( zero, b ) ); - a = truncate( multiplyAdd( grid, a, half ) ) * gridrcp; - b = truncate( multiplyAdd( grid, b, half ) ) * gridrcp; - - // compute the error (we skip the constant xxsum) - SimdVector e1 = multiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); - SimdVector e2 = negativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); - SimdVector e3 = negativeMultiplySubtract( b, betax_sum, e2 ); - SimdVector e4 = multiplyAdd( two, e3, e1 ); - - // apply the metric to the error term - SimdVector e5 = e4 * m_metricSqr; - SimdVector error = e5.splatX() + e5.splatY() + e5.splatZ(); - - // keep the solution if it wins - if (compareAnyLessThan(error, besterror)) - { - besterror = error; - beststart = a; - bestend = b; - } - - x1 += m_weighted[c0+c1]; - } - - x0 += m_weighted[c0]; - } - - // save the block if necessary - if (compareAnyLessThan(besterror, m_besterror)) - { - *start = beststart.toVector3(); - *end = bestend.toVector3(); - - // save the error - m_besterror = besterror; - - return true; - } - - return false; -} - -bool ClusterFit::compress4( Vector3 * start, Vector3 * end ) -{ - const int count = m_count; - const SimdVector one = SimdVector(1.0f); - const SimdVector zero = SimdVector(0.0f); - const SimdVector half = SimdVector(0.5f); - const SimdVector two = SimdVector(2.0); - const SimdVector onethird( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f ); - const SimdVector twothirds( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f ); - const SimdVector twonineths = SimdVector( 2.0f/9.0f ); - const SimdVector grid( 31.0f, 63.0f, 31.0f, 0.0f ); - const SimdVector gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); - - // declare variables - SimdVector beststart = SimdVector( 0.0f ); - SimdVector bestend = SimdVector( 0.0f ); - SimdVector besterror = SimdVector( FLT_MAX ); - - SimdVector x0 = zero; - - // check all possible clusters for this total order - for (int c0 = 0; c0 <= count; c0++) - { - SimdVector x1 = zero; - - for (int c1 = 0; c1 <= count-c0; c1++) - { - SimdVector x2 = zero; - - for (int c2 = 0; c2 <= count-c0-c1; c2++) - { - const SimdVector x3 = m_xsum - x2 - x1 - x0; - - //const Vector3 alphax_sum = x0 + x1 * (2.0f / 3.0f) + x2 * (1.0f / 3.0f); - //const float alpha2_sum = w0 + w1 * (4.0f/9.0f) + w2 * (1.0f/9.0f); - const SimdVector alphax_sum = multiplyAdd(x2, onethird, multiplyAdd(x1, twothirds, x0)); // alphax_sum, alpha2_sum - const SimdVector alpha2_sum = alphax_sum.splatW(); - - //const Vector3 betax_sum = x3 + x2 * (2.0f / 3.0f) + x1 * (1.0f / 3.0f); - //const float beta2_sum = w3 + w2 * (4.0f/9.0f) + w1 * (1.0f/9.0f); - const SimdVector betax_sum = multiplyAdd(x2, twothirds, multiplyAdd(x1, onethird, x3)); // betax_sum, beta2_sum - const SimdVector beta2_sum = betax_sum.splatW(); - - //const float alphabeta_sum = (w1 + w2) * (2.0f/9.0f); - const SimdVector alphabeta_sum = twonineths*( x1 + x2 ).splatW(); // alphabeta_sum - - //const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); - const SimdVector factor = reciprocal( negativeMultiplySubtract(alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum) ); - - SimdVector a = negativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor; - SimdVector b = negativeMultiplySubtract(alphax_sum, alphabeta_sum, betax_sum*alpha2_sum) * factor; - - // clamp to the grid - a = min( one, max( zero, a ) ); - b = min( one, max( zero, b ) ); - a = truncate( multiplyAdd( grid, a, half ) ) * gridrcp; - b = truncate( multiplyAdd( grid, b, half ) ) * gridrcp; - - // compute the error (we skip the constant xxsum) - // error = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum ); - SimdVector e1 = multiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); - SimdVector e2 = negativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); - SimdVector e3 = negativeMultiplySubtract( b, betax_sum, e2 ); - SimdVector e4 = multiplyAdd( two, e3, e1 ); - - // apply the metric to the error term - SimdVector e5 = e4 * m_metricSqr; - SimdVector error = e5.splatX() + e5.splatY() + e5.splatZ(); - - // keep the solution if it wins - if (compareAnyLessThan(error, besterror)) - { - besterror = error; - beststart = a; - bestend = b; - } - - x2 += m_weighted[c0+c1+c2]; - } - - x1 += m_weighted[c0+c1]; - } - - x0 += m_weighted[c0]; - } - - // save the block if necessary - if (compareAnyLessThan(besterror, m_besterror)) - { - *start = beststart.toVector3(); - *end = bestend.toVector3(); - - // save the error - m_besterror = besterror; - - return true; - } - - return false; -} - -#else - -static const float midpoints5[32] = { - 0.015686f, 0.047059f, 0.078431f, 0.111765f, 0.145098f, 0.176471f, 0.207843f, 0.241176f, 0.274510f, 0.305882f, 0.337255f, 0.370588f, 0.403922f, 0.435294f, 0.466667f, 0.5f, - 0.533333f, 0.564706f, 0.596078f, 0.629412f, 0.662745f, 0.694118f, 0.725490f, 0.758824f, 0.792157f, 0.823529f, 0.854902f, 0.888235f, 0.921569f, 0.952941f, 0.984314f, 1.0f -}; - -static const float midpoints6[64] = { - 0.007843f, 0.023529f, 0.039216f, 0.054902f, 0.070588f, 0.086275f, 0.101961f, 0.117647f, 0.133333f, 0.149020f, 0.164706f, 0.180392f, 0.196078f, 0.211765f, 0.227451f, 0.245098f, - 0.262745f, 0.278431f, 0.294118f, 0.309804f, 0.325490f, 0.341176f, 0.356863f, 0.372549f, 0.388235f, 0.403922f, 0.419608f, 0.435294f, 0.450980f, 0.466667f, 0.482353f, 0.500000f, - 0.517647f, 0.533333f, 0.549020f, 0.564706f, 0.580392f, 0.596078f, 0.611765f, 0.627451f, 0.643137f, 0.658824f, 0.674510f, 0.690196f, 0.705882f, 0.721569f, 0.737255f, 0.754902f, - 0.772549f, 0.788235f, 0.803922f, 0.819608f, 0.835294f, 0.850980f, 0.866667f, 0.882353f, 0.898039f, 0.913725f, 0.929412f, 0.945098f, 0.960784f, 0.976471f, 0.992157f, 1.0f -}; - -// This is the ideal way to round, but it's too expensive to do this in the inner loop. -inline Vector3 round565(const Vector3 & v) { - const Vector3 grid(31.0f, 63.0f, 31.0f); - const Vector3 gridrcp(1.0f / 31.0f, 1.0f / 63.0f, 1.0f / 31.0f); - - Vector3 q = floor(grid * v); - q.x += (v.x > midpoints5[int(q.x)]); - q.y += (v.y > midpoints6[int(q.y)]); - q.z += (v.z > midpoints5[int(q.z)]); - q *= gridrcp; - return q; -} - -bool ClusterFit::compress3(Vector3 * start, Vector3 * end) -{ - const uint count = m_count; - const Vector3 grid( 31.0f, 63.0f, 31.0f ); - const Vector3 gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f ); - - // declare variables - Vector3 beststart( 0.0f ); - Vector3 bestend( 0.0f ); - float besterror = FLT_MAX; - - Vector3 x0(0.0f); - float w0 = 0.0f; - - int b0 = 0, b1 = 0; - - // check all possible clusters for this total order - for (uint c0 = 0; c0 <= count; c0++) - { - Vector3 x1(0.0f); - float w1 = 0.0f; - - for (uint c1 = 0; c1 <= count-c0; c1++) - { - float w2 = m_wsum - w0 - w1; - - // These factors could be entirely precomputed. - float const alpha2_sum = w0 + w1 * 0.25f; - float const beta2_sum = w2 + w1 * 0.25f; - float const alphabeta_sum = w1 * 0.25f; - float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); - - Vector3 const alphax_sum = x0 + x1 * 0.5f; - Vector3 const betax_sum = m_xsum - alphax_sum; - - Vector3 a = (alphax_sum*beta2_sum - betax_sum*alphabeta_sum) * factor; - Vector3 b = (betax_sum*alpha2_sum - alphax_sum*alphabeta_sum) * factor; - - // clamp to the grid - a = clamp(a, 0, 1); - b = clamp(b, 0, 1); -#if 1 - a = floor(grid * a + 0.5f) * gridrcp; - b = floor(grid * b + 0.5f) * gridrcp; -#else - a = round565(a); - b = round565(b); -#endif - - // compute the error - Vector3 e1 = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum ); - - // apply the metric to the error term - float error = dot(e1, m_metricSqr); - - // keep the solution if it wins - if (error < besterror) - { - besterror = error; - beststart = a; - bestend = b; - b0 = c0; - b1 = c1; - } - - x1 += m_weighted[c0+c1]; - w1 += m_weights[c0+c1]; - } - - x0 += m_weighted[c0]; - w0 += m_weights[c0]; - } - - // save the block if necessary - if (besterror < m_besterror) - { - - *start = beststart; - *end = bestend; - - // save the error - m_besterror = besterror; - - return true; - } - - return false; -} - -bool ClusterFit::compress4(Vector3 * start, Vector3 * end) -{ - const uint count = m_count; - const Vector3 grid( 31.0f, 63.0f, 31.0f ); - const Vector3 gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f ); - - // declare variables - Vector3 beststart( 0.0f ); - Vector3 bestend( 0.0f ); - float besterror = FLT_MAX; - - Vector3 x0(0.0f); - float w0 = 0.0f; - int b0 = 0, b1 = 0, b2 = 0; - - // check all possible clusters for this total order - for (uint c0 = 0; c0 <= count; c0++) - { - Vector3 x1(0.0f); - float w1 = 0.0f; - - for (uint c1 = 0; c1 <= count-c0; c1++) - { - Vector3 x2(0.0f); - float w2 = 0.0f; - - for (uint c2 = 0; c2 <= count-c0-c1; c2++) - { - float w3 = m_wsum - w0 - w1 - w2; - - float const alpha2_sum = w0 + w1 * (4.0f/9.0f) + w2 * (1.0f/9.0f); - float const beta2_sum = w3 + w2 * (4.0f/9.0f) + w1 * (1.0f/9.0f); - float const alphabeta_sum = (w1 + w2) * (2.0f/9.0f); - float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); - - Vector3 const alphax_sum = x0 + x1 * (2.0f / 3.0f) + x2 * (1.0f / 3.0f); - Vector3 const betax_sum = m_xsum - alphax_sum; - - Vector3 a = ( alphax_sum*beta2_sum - betax_sum*alphabeta_sum )*factor; - Vector3 b = ( betax_sum*alpha2_sum - alphax_sum*alphabeta_sum )*factor; - - // clamp to the grid - a = clamp(a, 0, 1); - b = clamp(b, 0, 1); -#if 1 - a = floor(a * grid + 0.5f) * gridrcp; - b = floor(b * grid + 0.5f) * gridrcp; -#else - a = round565(a); - b = round565(b); -#endif - // @@ It would be much more accurate to evaluate the error exactly. - - // compute the error - Vector3 e1 = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum ); - - // apply the metric to the error term - float error = dot( e1, m_metricSqr ); - - // keep the solution if it wins - if (error < besterror) - { - besterror = error; - beststart = a; - bestend = b; - b0 = c0; - b1 = c1; - b2 = c2; - } - - x2 += m_weighted[c0+c1+c2]; - w2 += m_weights[c0+c1+c2]; - } - - x1 += m_weighted[c0+c1]; - w1 += m_weights[c0+c1]; - } - - x0 += m_weighted[c0]; - w0 += m_weights[c0]; - } - - // save the block if necessary - if (besterror < m_besterror) - { - *start = beststart; - *end = bestend; - - // save the error - m_besterror = besterror; - - return true; - } - - return false; -} - -#endif // NVTT_USE_SIMD - -// Copyright (c) 2006-2020 Ignacio Castano icastano@nvidia.com -// Copyright (c) 2006 Simon Brown si@sjbrown.co.uk -// -// Permission is hereby granted, free of charge, to any person obtaining -// a copy of this software and associated documentation files (the -// "Software"), to deal in the Software without restriction, including -// without limitation the rights to use, copy, modify, merge, publish, -// distribute, sublicense, and/or sell copies of the Software, and to -// permit persons to whom the Software is furnished to do so, subject to -// the following conditions: -// -// The above copyright notice and this permission notice shall be included -// in all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS -// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY -// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, -// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE -// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. diff --git a/src/nvtt/ClusterFit.h b/src/nvtt/ClusterFit.h deleted file mode 100644 index 9a15f33..0000000 --- a/src/nvtt/ClusterFit.h +++ /dev/null @@ -1,86 +0,0 @@ -// MIT license see full LICENSE text at end of file -#pragma once - -#include "nvmath/SimdVector.h" -#include "nvmath/Vector.h" - -// Use SIMD version if altivec or SSE are available. -#define NVTT_USE_SIMD (NV_USE_ALTIVEC || NV_USE_SSE) -//#define NVTT_USE_SIMD 0 - -#include -#if (NV_USE_SSE > 1) -#include -#endif - -#ifndef NV_ALIGN_16 -#if NV_CC_GNUC -# define NV_ALIGN_16 __attribute__ ((__aligned__ (16))) -#else -# define NV_ALIGN_16 __declspec(align(16)) -#endif -#endif - -namespace nv { - - class ClusterFit - { - public: - ClusterFit() {} - - void setColorSet(const Vector3 * colors, const float * weights, int count); - - void setColorWeights(const Vector4 & w); - float bestError() const; - - bool compress3(Vector3 * start, Vector3 * end); - bool compress4(Vector3 * start, Vector3 * end); - - private: - - uint m_count; - - // IC: Color and weight arrays are larger than necessary to avoid compiler warning. - - #if NVTT_USE_SIMD - NV_ALIGN_16 SimdVector m_weighted[17]; // color | weight - SimdVector m_metric; // vec3 - SimdVector m_metricSqr; // vec3 - SimdVector m_xxsum; // color | weight - SimdVector m_xsum; // color | weight (wsum) - SimdVector m_besterror; // scalar - #else - Vector3 m_weighted[17]; - float m_weights[17]; - Vector3 m_metric; - Vector3 m_metricSqr; - Vector3 m_xxsum; - Vector3 m_xsum; - float m_wsum; - float m_besterror; - #endif - }; - -} // nv namespace - -// Copyright (c) 2006-2020 Ignacio Castano icastano@nvidia.com -// Copyright (c) 2006 Simon Brown si@sjbrown.co.uk -// -// Permission is hereby granted, free of charge, to any person obtaining -// a copy of this software and associated documentation files (the -// "Software"), to deal in the Software without restriction, including -// without limitation the rights to use, copy, modify, merge, publish, -// distribute, sublicense, and/or sell copies of the Software, and to -// permit persons to whom the Software is furnished to do so, subject to -// the following conditions: -// -// The above copyright notice and this permission notice shall be included -// in all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS -// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF -// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. -// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY -// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, -// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE -// SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.