seamless cubemap filtering.

This commit is contained in:
castano 2011-10-11 06:40:40 +00:00
parent 2ec37026be
commit d11d7a5f38
12 changed files with 981 additions and 385 deletions

View File

@ -36,32 +36,9 @@
using namespace nv;
const uint nv::FOURCC_NVTT = MAKEFOURCC('N', 'V', 'T', 'T');
const uint nv::FOURCC_DDS = MAKEFOURCC('D', 'D', 'S', ' ');
const uint nv::FOURCC_DXT1 = MAKEFOURCC('D', 'X', 'T', '1');
const uint nv::FOURCC_DXT2 = MAKEFOURCC('D', 'X', 'T', '2');
const uint nv::FOURCC_DXT3 = MAKEFOURCC('D', 'X', 'T', '3');
const uint nv::FOURCC_DXT4 = MAKEFOURCC('D', 'X', 'T', '4');
const uint nv::FOURCC_DXT5 = MAKEFOURCC('D', 'X', 'T', '5');
const uint nv::FOURCC_RXGB = MAKEFOURCC('R', 'X', 'G', 'B');
const uint nv::FOURCC_ATI1 = MAKEFOURCC('A', 'T', 'I', '1');
const uint nv::FOURCC_ATI2 = MAKEFOURCC('A', 'T', 'I', '2');
namespace
{
static const uint FOURCC_A2XY = MAKEFOURCC('A', '2', 'X', 'Y');
static const uint FOURCC_DX10 = MAKEFOURCC('D', 'X', '1', '0');
static const uint FOURCC_UVER = MAKEFOURCC('U', 'V', 'E', 'R');
static const uint DDSD_CAPS = 0x00000001U;
static const uint DDSD_PIXELFORMAT = 0x00001000U;
static const uint DDSD_WIDTH = 0x00000004U;
@ -210,16 +187,16 @@ namespace
#undef CASE
}
const char * getD3d10ResourceDimensionString(D3D10_RESOURCE_DIMENSION resourceDimension)
const char * getD3d10ResourceDimensionString(DDS_DIMENSION resourceDimension)
{
switch(resourceDimension)
{
default:
case D3D10_RESOURCE_DIMENSION_UNKNOWN: return "UNKNOWN";
case D3D10_RESOURCE_DIMENSION_BUFFER: return "BUFFER";
case D3D10_RESOURCE_DIMENSION_TEXTURE1D: return "TEXTURE1D";
case D3D10_RESOURCE_DIMENSION_TEXTURE2D: return "TEXTURE2D";
case D3D10_RESOURCE_DIMENSION_TEXTURE3D: return "TEXTURE3D";
case DDS_DIMENSION_UNKNOWN: return "UNKNOWN";
case DDS_DIMENSION_BUFFER: return "BUFFER";
case DDS_DIMENSION_TEXTURE1D: return "TEXTURE1D";
case DDS_DIMENSION_TEXTURE2D: return "TEXTURE2D";
case DDS_DIMENSION_TEXTURE3D: return "TEXTURE3D";
}
}
@ -531,7 +508,7 @@ DDSHeader::DDSHeader()
this->notused = 0;
this->header10.dxgiFormat = DXGI_FORMAT_UNKNOWN;
this->header10.resourceDimension = D3D10_RESOURCE_DIMENSION_UNKNOWN;
this->header10.resourceDimension = DDS_DIMENSION_UNKNOWN;
this->header10.miscFlag = 0;
this->header10.arraySize = 0;
this->header10.reserved = 0;
@ -580,7 +557,8 @@ void DDSHeader::setMipmapCount(uint count)
void DDSHeader::setTexture2D()
{
this->header10.resourceDimension = D3D10_RESOURCE_DIMENSION_TEXTURE2D;
this->header10.resourceDimension = DDS_DIMENSION_TEXTURE2D;
this->header10.miscFlag = 0;
this->header10.arraySize = 1;
}
@ -588,7 +566,8 @@ void DDSHeader::setTexture3D()
{
this->caps.caps2 = DDSCAPS2_VOLUME;
this->header10.resourceDimension = D3D10_RESOURCE_DIMENSION_TEXTURE3D;
this->header10.resourceDimension = DDS_DIMENSION_TEXTURE3D;
this->header10.miscFlag = 0;
this->header10.arraySize = 1;
}
@ -597,8 +576,9 @@ void DDSHeader::setTextureCube()
this->caps.caps1 |= DDSCAPS_COMPLEX;
this->caps.caps2 = DDSCAPS2_CUBEMAP | DDSCAPS2_CUBEMAP_ALL_FACES;
this->header10.resourceDimension = D3D10_RESOURCE_DIMENSION_TEXTURE2D;
this->header10.arraySize = 6;
this->header10.resourceDimension = DDS_DIMENSION_TEXTURE2D;
this->header10.miscFlag = DDS_MISC_TEXTURECUBE;
this->header10.arraySize = 1;
}
void DDSHeader::setLinearSize(uint size)
@ -1084,7 +1064,7 @@ bool DirectDrawSurface::isTexture1D() const
nvDebugCheck(isValid());
if (header.hasDX10Header())
{
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE1D;
return header.header10.resourceDimension == DDS_DIMENSION_TEXTURE1D;
}
return false;
}
@ -1094,7 +1074,7 @@ bool DirectDrawSurface::isTexture2D() const
nvDebugCheck(isValid());
if (header.hasDX10Header())
{
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE2D;
return header.header10.resourceDimension == DDS_DIMENSION_TEXTURE2D;
}
else
{
@ -1107,7 +1087,7 @@ bool DirectDrawSurface::isTexture3D() const
nvDebugCheck(isValid());
if (header.hasDX10Header())
{
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE3D;
return header.header10.resourceDimension == DDS_DIMENSION_TEXTURE3D;
}
else
{
@ -1597,7 +1577,7 @@ void DirectDrawSurface::printInfo() const
{
printf("DX10 Header:\n");
printf("\tDXGI Format: %u (%s)\n", header.header10.dxgiFormat, getDxgiFormatString((DXGI_FORMAT)header.header10.dxgiFormat));
printf("\tResource dimension: %u (%s)\n", header.header10.resourceDimension, getD3d10ResourceDimensionString((D3D10_RESOURCE_DIMENSION)header.header10.resourceDimension));
printf("\tResource dimension: %u (%s)\n", header.header10.resourceDimension, getD3d10ResourceDimensionString((DDS_DIMENSION)header.header10.resourceDimension));
printf("\tMisc flag: %u\n", header.header10.miscFlag);
printf("\tArray size: %u\n", header.header10.arraySize);
}

View File

@ -39,17 +39,6 @@ namespace nv
class Stream;
struct ColorBlock;
extern const uint FOURCC_NVTT;
extern const uint FOURCC_DDS;
extern const uint FOURCC_DXT1;
extern const uint FOURCC_DXT2;
extern const uint FOURCC_DXT3;
extern const uint FOURCC_DXT4;
extern const uint FOURCC_DXT5;
extern const uint FOURCC_RXGB;
extern const uint FOURCC_ATI1;
extern const uint FOURCC_ATI2;
enum DDPF
{
DDPF_ALPHAPIXELS = 0x00000001U,
@ -110,15 +99,37 @@ namespace nv
D3DFMT_A32B32G32R32F = 116,
};
enum FOURCC
{
FOURCC_NVTT = MAKEFOURCC('N', 'V', 'T', 'T'),
FOURCC_DDS = MAKEFOURCC('D', 'D', 'S', ' '),
FOURCC_DXT1 = MAKEFOURCC('D', 'X', 'T', '1'),
FOURCC_DXT2 = MAKEFOURCC('D', 'X', 'T', '2'),
FOURCC_DXT3 = MAKEFOURCC('D', 'X', 'T', '3'),
FOURCC_DXT4 = MAKEFOURCC('D', 'X', 'T', '4'),
FOURCC_DXT5 = MAKEFOURCC('D', 'X', 'T', '5'),
FOURCC_RXGB = MAKEFOURCC('R', 'X', 'G', 'B'),
FOURCC_ATI1 = MAKEFOURCC('A', 'T', 'I', '1'),
FOURCC_ATI2 = MAKEFOURCC('A', 'T', 'I', '2'),
FOURCC_A2XY = MAKEFOURCC('A', '2', 'X', 'Y'),
FOURCC_DX10 = MAKEFOURCC('D', 'X', '1', '0'),
FOURCC_UVER = MAKEFOURCC('U', 'V', 'E', 'R'),
};
// D3D1x resource dimensions.
enum D3D10_RESOURCE_DIMENSION
enum DDS_DIMENSION // D3D10_RESOURCE_DIMENSION
{
D3D10_RESOURCE_DIMENSION_UNKNOWN = 0,
D3D10_RESOURCE_DIMENSION_BUFFER = 1,
D3D10_RESOURCE_DIMENSION_TEXTURE1D = 2,
D3D10_RESOURCE_DIMENSION_TEXTURE2D = 3,
D3D10_RESOURCE_DIMENSION_TEXTURE3D = 4,
DDS_DIMENSION_UNKNOWN = 0,
DDS_DIMENSION_BUFFER = 1,
DDS_DIMENSION_TEXTURE1D = 2,
DDS_DIMENSION_TEXTURE2D = 3,
DDS_DIMENSION_TEXTURE3D = 4,
};
enum DDS_MISC_FLAG
{
DDS_MISC_TEXTURECUBE = 0x4,
};
// DXGI formats.

View File

@ -2,13 +2,14 @@ PROJECT(nvmath)
SET(MATH_SRCS
nvmath.h
Vector.h
Matrix.h
Plane.h Plane.cpp
Box.h
Color.h
Box.h Box.inl
Color.h Color.inl
Fitting.h Fitting.cpp
Half.h Half.cpp
Fitting.h Fitting.cpp)
Matrix.h
Plane.h Plane.inl Plane.cpp
SphericalHarmonic.h SphericalHarmonic.cpp
Vector.h Vector.inl)
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})

View File

@ -11,13 +11,13 @@
namespace nv
{
/// Clamp color components.
// Clamp color components.
inline Vector3 colorClamp(Vector3::Arg c)
{
return Vector3(clamp(c.x, 0.0f, 1.0f), clamp(c.y, 0.0f, 1.0f), clamp(c.z, 0.0f, 1.0f));
}
/// Clamp without allowing the hue to change.
// Clamp without allowing the hue to change.
inline Vector3 colorNormalize(Vector3::Arg c)
{
float scale = 1.0f;
@ -27,15 +27,15 @@ namespace nv
return c / scale;
}
/// Convert Color32 to Color16.
// Convert Color32 to Color16.
inline Color16 toColor16(Color32 c)
{
Color16 color;
// rrrrrggggggbbbbb
// rrrrr000gggggg00bbbbb000
// color.u = (c.u >> 3) & 0x1F;
// color.u |= (c.u >> 5) & 0x7E0;
// color.u |= (c.u >> 8) & 0xF800;
// color.u = (c.u >> 3) & 0x1F;
// color.u |= (c.u >> 5) & 0x7E0;
// color.u |= (c.u >> 8) & 0xF800;
color.r = c.r >> 3;
color.g = c.g >> 2;
@ -44,13 +44,13 @@ namespace nv
}
/// Promote 16 bit color to 32 bit using regular bit expansion.
// Promote 16 bit color to 32 bit using regular bit expansion.
inline Color32 toColor32(Color16 c)
{
Color32 color;
// c.u = ((col0.u << 3) & 0xf8) | ((col0.u << 5) & 0xfc00) | ((col0.u << 8) & 0xf80000);
// c.u |= (c.u >> 5) & 0x070007;
// c.u |= (c.u >> 6) & 0x000300;
// c.u = ((col0.u << 3) & 0xf8) | ((col0.u << 5) & 0xfc00) | ((col0.u << 8) & 0xf80000);
// c.u |= (c.u >> 5) & 0x070007;
// c.u |= (c.u >> 6) & 0x000300;
color.b = (c.b << 3) | (c.b >> 2);
color.g = (c.g << 2) | (c.g >> 4);

View File

@ -0,0 +1,243 @@
// This code is in the public domain -- castanyo@yahoo.es
#include <nvmath/SphericalHarmonic.h>
using namespace nv;
namespace
{
// Basic integer factorial.
inline static int factorial( int v )
{
const static int fac_table[] = { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800 };
if(v <= 11){
return fac_table[v];
}
int result = v;
while (--v > 0) {
result *= v;
}
return result;
}
// Double factorial.
// Defined as: n!! = n*(n - 2)*(n - 4)..., n!!(0,-1) = 1.
inline static int doubleFactorial( int x )
{
if (x == 0 || x == -1) {
return 1;
}
int result = x;
while ((x -= 2) > 0) {
result *= x;
}
return result;
}
/// Normalization constant for spherical harmonic.
/// @param l is the band.
/// @param m is the argument, in the range [0, m]
inline static float K( int l, int m )
{
nvDebugCheck( m >= 0 );
return sqrtf(((2 * l + 1) * factorial(l - m)) / (4 * PI * factorial(l + m)));
}
/// Normalization constant for hemispherical harmonic.
inline static float HK( int l, int m )
{
nvDebugCheck( m >= 0 );
return sqrtf(((2 * l + 1) * factorial(l - m)) / (2 * PI * factorial(l + m)));
}
/// Evaluate Legendre polynomial. */
static float legendre( int l, int m, float x )
{
// piDebugCheck( m >= 0 );
// piDebugCheck( m <= l );
// piDebugCheck( fabs(x) <= 1 );
// Rule 2 needs no previous results
if (l == m) {
return powf(-1.0f, float(m)) * doubleFactorial(2 * m - 1) * powf(1 - x*x, 0.5f * m);
}
// Rule 3 requires the result for the same argument of the previous band
if (l == m + 1) {
return x * (2 * m + 1) * legendrePolynomial(m, m, x);
}
// Main reccurence used by rule 1 that uses result of the same argument from
// the previous two bands
return (x * (2 * l - 1) * legendrePolynomial(l - 1, m, x) - (l + m - 1) * legendrePolynomial(l - 2, m, x)) / (l - m);
}
template <int l, int m> float legendre(float x);
template <> float legendre<0, 0>(float ) {
return 1;
}
template <> float legendre<1, 0>(float x) {
return x;
}
template <> float legendre<1, 1>(float x) {
return -sqrtf(1 - x * x);
}
template <> float legendre<2, 0>(float x) {
return -0.5f + (3 * x * x) / 2;
}
template <> float legendre<2, 1>(float x) {
return -3 * x * sqrtf(1 - x * x);
}
template <> float legendre<2, 2>(float x) {
return -3 * (-1 + x * x);
}
template <> float legendre<3, 0>(float x) {
return -(3 * x) / 2 + (5 * x * x * x) / 2;
}
template <> float legendre<3, 1>(float x) {
return -3 * sqrtf(1 - x * x) / 2 * (-1 + 5 * x * x);
}
template <> float legendre<3, 2>(float x) {
return -15 * (-x + x * x * x);
}
template <> float legendre<3, 3>(float x) {
return -15 * powf(1 - x * x, 1.5f);
}
template <> float legendre<4, 0>(float x) {
return 0.125f * (3.0f - 30.0f * x * x + 35.0f * x * x * x * x);
}
template <> float legendre<4, 1>(float x) {
return -2.5f * x * sqrtf(1.0f - x * x) * (7.0f * x * x - 3.0f);
}
template <> float legendre<4, 2>(float x) {
return -7.5f * (1.0f - 8.0f * x * x + 7.0f * x * x * x * x);
}
template <> float legendre<4, 3>(float x) {
return -105.0f * x * powf(1 - x * x, 1.5f);
}
template <> float legendre<4, 4>(float x) {
return 105.0f * (x * x - 1.0f) * (x * x - 1.0f);
}
} // namespace
float nv::legendrePolynomial(int l, int m, float x)
{
switch(l)
{
case 0:
return legendre<0, 0>(x);
case 1:
if(m == 0) return legendre<1, 0>(x);
return legendre<1, 1>(x);
case 2:
if(m == 0) return legendre<2, 0>(x);
else if(m == 1) return legendre<2, 1>(x);
return legendre<2, 2>(x);
case 3:
if(m == 0) return legendre<3, 0>(x);
else if(m == 1) return legendre<3, 1>(x);
else if(m == 2) return legendre<3, 2>(x);
return legendre<3, 3>(x);
case 4:
if(m == 0) return legendre<4, 0>(x);
else if(m == 1) return legendre<4, 1>(x);
else if(m == 2) return legendre<4, 2>(x);
else if(m == 3) return legendre<4, 3>(x);
else return legendre<4, 4>(x);
}
// Fallback to the expensive version.
return legendre(l, m, x);
}
/**
* Evaluate the spherical harmonic function for the given angles.
* @param l is the band.
* @param m is the argument, in the range [-l,l]
* @param theta is the altitude, in the range [0, PI]
* @param phi is the azimuth, in the range [0, 2*PI]
*/
float nv::shBasis( int l, int m, float theta, float phi )
{
if( m == 0 ) {
// K(l, 0) = sqrt((2*l+1)/(4*PI))
return sqrtf((2 * l + 1) / (4 * PI)) * legendrePolynomial(l, 0, cosf(theta));
}
else if( m > 0 ) {
return sqrtf(2.0f) * K(l, m) * cosf(m * phi) * legendrePolynomial(l, m, cosf(theta));
}
else {
return sqrtf(2.0f) * K(l, -m) * sinf(-m * phi) * legendrePolynomial(l, -m, cosf(theta));
}
}
/**
* Real spherical harmonic function of an unit vector. Uses the following
* equalities to call the angular function:
* x = sin(theta)*cos(phi)
* y = sin(theta)*sin(phi)
* z = cos(theta)
*/
float nv::shBasis( int l, int m, Vector3::Arg v )
{
float theta = acosf(v.z);
float phi = atan2f(v.y, v.x);
return shBasis( l, m, theta, phi );
}
/**
* Evaluate the hemispherical harmonic function for the given angles.
* @param l is the band.
* @param m is the argument, in the range [-l,l]
* @param theta is the altitude, in the range [0, PI/2]
* @param phi is the azimuth, in the range [0, 2*PI]
*/
float nv::hshBasis( int l, int m, float theta, float phi )
{
if( m == 0 ) {
// HK(l, 0) = sqrt((2*l+1)/(2*PI))
return sqrtf((2 * l + 1) / (2 * PI)) * legendrePolynomial(l, 0, 2*cosf(theta)-1);
}
else if( m > 0 ) {
return sqrtf(2.0f) * HK(l, m) * cosf(m * phi) * legendrePolynomial(l, m, 2*cosf(theta)-1);
}
else {
return sqrtf(2.0f) * HK(l, -m) * sinf(-m * phi) * legendrePolynomial(l, -m, 2*cosf(theta)-1);
}
}
/**
* Real hemispherical harmonic function of an unit vector. Uses the following
* equalities to call the angular function:
* x = sin(theta)*cos(phi)
* y = sin(theta)*sin(phi)
* z = cos(theta)
*/
float nv::hshBasis( int l, int m, Vector3::Arg v )
{
float theta = acosf(v.z);
float phi = atan2f(v.y, v.x);
return hshBasis( l, m, theta, phi );
}

View File

@ -0,0 +1,418 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_SPHERICALHARMONIC_H
#define NV_MATH_SPHERICALHARMONIC_H
#include "Vector.h"
#include <string.h> // memcpy
namespace nv
{
class Matrix;
NVMATH_API float legendrePolynomial( int l, int m, float x ) NV_CONST;
NVMATH_API float shBasis( int l, int m, float theta, float phi ) NV_CONST;
NVMATH_API float shBasis( int l, int m, Vector3::Arg v ) NV_CONST;
NVMATH_API float hshBasis( int l, int m, float theta, float phi ) NV_CONST;
NVMATH_API float hshBasis( int l, int m, Vector3::Arg v ) NV_CONST;
class Sh;
float dot(const Sh & a, const Sh & b) NV_CONST;
/// Spherical harmonic class.
class Sh
{
friend class Sh2;
friend class ShMatrix;
public:
/// Construct a spherical harmonic of the given order.
Sh(int o) : m_order(o)
{
m_elemArray = new float[basisNum()];
}
/// Copy constructor.
Sh(const Sh & sh) : m_order(sh.order())
{
m_elemArray = new float[basisNum()];
memcpy(m_elemArray, sh.m_elemArray, sizeof(float) * basisNum());
}
/// Destructor.
~Sh()
{
delete [] m_elemArray;
m_elemArray = NULL;
}
/// Get number of bands.
static int bandNum(int m_order) {
return m_order + 1;
}
/// Get number of sh basis.
static int basisNum(int m_order) {
return (m_order + 1) * (m_order + 1);
}
/// Get the index for the given coefficients.
static int index( int l, int m ) {
return l * l + l + m;
}
/// Get sh order.
int order() const
{
return m_order;
}
/// Get sh order.
int bandNum() const
{
return bandNum(m_order);
}
/// Get sh order.
int basisNum() const
{
return basisNum(m_order);
}
/// Get sh coefficient indexed by l,m.
float elem( int l, int m ) const
{
return m_elemArray[index(l, m)];
}
/// Get sh coefficient indexed by l,m.
float & elem( int l, int m )
{
return m_elemArray[index(l, m)];
}
/// Get sh coefficient indexed by i.
float elemAt( int i ) const {
return m_elemArray[i];
}
/// Get sh coefficient indexed by i.
float & elemAt( int i )
{
return m_elemArray[i];
}
/// Reset the sh coefficients.
void reset()
{
for( int i = 0; i < basisNum(); i++ ) {
m_elemArray[i] = 0.0f;
}
}
/// Copy spherical harmonic.
void operator= ( const Sh & sh )
{
nvDebugCheck(order() <= sh.order());
for(int i = 0; i < basisNum(); i++) {
m_elemArray[i] = sh.m_elemArray[i];
}
}
/// Add spherical harmonics.
void operator+= ( const Sh & sh )
{
nvDebugCheck(order() == sh.order());
for(int i = 0; i < basisNum(); i++) {
m_elemArray[i] += sh.m_elemArray[i];
}
}
/// Substract spherical harmonics.
void operator-= ( const Sh & sh )
{
nvDebugCheck(order() == sh.order());
for(int i = 0; i < basisNum(); i++) {
m_elemArray[i] -= sh.m_elemArray[i];
}
}
// Not exactly convolution, nor product.
void operator*= ( const Sh & sh )
{
nvDebugCheck(order() == sh.order());
for(int i = 0; i < basisNum(); i++) {
m_elemArray[i] *= sh.m_elemArray[i];
}
}
/// Scale spherical harmonics.
void operator*= ( float f )
{
for(int i = 0; i < basisNum(); i++) {
m_elemArray[i] *= f;
}
}
/// Add scaled spherical harmonics.
void addScaled( const Sh & sh, float f )
{
nvDebugCheck(order() == sh.order());
for(int i = 0; i < basisNum(); i++) {
m_elemArray[i] += sh.m_elemArray[i] * f;
}
}
/*/// Add a weighted sample to the sh coefficients.
void AddSample( const Vec3 & dir, const Color3f & color, float w=1.0f ) {
for(int l = 0; l <= order; l++) {
for(int m = -l; m <= l; m++) {
Color3f & elem = GetElem(l, m);
elem.Mad( elem, color, w * shBasis(l, m, dir) );
}
}
}*/
/// Evaluate
void eval(Vector3::Arg dir)
{
for(int l = 0; l <= m_order; l++) {
for(int m = -l; m <= l; m++) {
elem(l, m) = shBasis(l, m, dir);
}
}
}
/// Evaluate the spherical harmonic function.
float sample(Vector3::Arg dir) const
{
Sh sh(order());
sh.eval(dir);
return dot(sh, *this);
}
protected:
const int m_order;
float * m_elemArray;
};
/// Compute dot product of the spherical harmonics.
inline float dot(const Sh & a, const Sh & b)
{
nvDebugCheck(a.order() == b.order());
float sum = 0;
for( int i = 0; i < Sh::basisNum(a.order()); i++ ) {
sum += a.elemAt(i) * b.elemAt(i);
}
return sum;
}
/// Second order spherical harmonic.
class Sh2 : public Sh
{
public:
/// Constructor.
Sh2() : Sh(2) {}
/// Copy constructor.
Sh2(const Sh2 & sh) : Sh(sh) {}
/// Spherical harmonic resulting from projecting the clamped cosine transfer function to the SH basis.
void cosineTransfer()
{
const float c1 = 0.282095f; // K(0, 0)
const float c2 = 0.488603f; // K(1, 0)
const float c3 = 1.092548f; // sqrt(15.0f / PI) / 2.0f = K(2, -2)
const float c4 = 0.315392f; // sqrt(5.0f / PI) / 4.0f) = K(2, 0)
const float c5 = 0.546274f; // sqrt(15.0f / PI) / 4.0f) = K(2, 2)
const float normalization = PI * 16.0f / 17.0f;
const float const1 = c1 * normalization * 1.0f;
const float const2 = c2 * normalization * (2.0f / 3.0f);
const float const3 = c3 * normalization * (1.0f / 4.0f);
const float const4 = c4 * normalization * (1.0f / 4.0f);
const float const5 = c5 * normalization * (1.0f / 4.0f);
m_elemArray[0] = const1;
m_elemArray[1] = -const2;
m_elemArray[2] = const2;
m_elemArray[3] = -const2;
m_elemArray[4] = const3;
m_elemArray[5] = -const3;
m_elemArray[6] = const4;
m_elemArray[7] = -const3;
m_elemArray[8] = const5;
}
};
/// Spherical harmonic matrix.
class ShMatrix
{
public:
/// Create an identity matrix of the given order.
ShMatrix(int o = 2) : m_order(o), m_identity(true)
{
nvCheck(m_order > 0);
m_e = new float[size()];
m_band = new float *[bandNum()];
setupBands();
}
/// Destroy and free matrix elements.
~ShMatrix()
{
delete m_e;
delete m_band;
}
/// Set identity matrix.
void setIdentity()
{
m_identity = true;
}
/// Return true if this is an identity matrix, false in other case.
bool isIdentity() const {
return m_identity;
}
/// Get number of bands of this matrix.
int bandNum() const
{
return m_order+1;
}
/// Get total number of elements in the matrix.
int size() const
{
int size = 0;
for (int i = 0; i < bandNum(); i++) {
size += square(i * 2 + 1);
}
return size;
}
/// Get element at the given raw index.
float element(int idx) const
{
return m_e[idx];
}
/// Get element at the given with the given indices.
float & element(int b, int x, int y)
{
nvDebugCheck(b >= 0);
nvDebugCheck(b < bandNum());
return m_band[b][(b + y) * (b * 2 + 1) + (b + x)];
}
/// Get element at the given with the given indices.
float element(int b, int x, int y) const
{
nvDebugCheck(b >= 0);
nvDebugCheck(b < bandNum());
return m_band[b][(b + y) * (b * 2 + 1) + (b + x)];
}
/// Copy matrix.
void copy(const ShMatrix & m)
{
nvDebugCheck(m_order == m.m_order);
memcpy(m_e, m.m_e, size() * sizeof(float));
}
/// Rotate the given coefficients.
/*void transform( const Sh & restrict source, Sh * restrict dest ) const {
nvCheck( &source != dest ); // Make sure there's no aliasing.
nvCheck( dest->m_order <= m_order );
nvCheck( m_order <= source.m_order );
if (m_identity) {
*dest = source;
return;
}
// Loop through each band.
for (int l = 0; l <= dest->m_order; l++) {
for (int mo = -l; mo <= l; mo++) {
Color3f rgb = Color3f::Black;
for( int mi = -l; mi <= l; mi++ ) {
rgb.Mad( rgb, source.elem(l, mi), elem(l, mo, mi) );
}
dest->elem(l, mo) = rgb;
}
}
}*/
NVMATH_API void multiply( const ShMatrix &A, const ShMatrix &B );
NVMATH_API void rotation( const Matrix & m );
NVMATH_API void rotation( int axis, float angles );
NVMATH_API void print();
private:
// @@ These could be static indices precomputed only once.
/// Setup the band pointers.
void setupBands()
{
int size = 0;
for( int i = 0; i < bandNum(); i++ ) {
m_band[i] = &m_e[size];
size += square(i * 2 + 1);
}
}
private:
// Matrix order.
const int m_order;
// Identity flag for quick transform.
bool m_identity;
// Array of elements.
float * m_e;
// Band pointers.
float ** m_band;
};
} // nv namespace
#endif // NV_MATH_SPHERICALHARMONIC_H

View File

@ -6,7 +6,7 @@
#include "nvcore/nvcore.h"
#include "nvcore/Debug.h" // nvDebugCheck
#include "nvcore/Utils.h" // clamp
#include "nvcore/Utils.h" // max, clamp
#include <math.h>
@ -109,7 +109,7 @@ namespace nv
inline bool equal(const float f0, const float f1, const float epsilon = NV_EPSILON)
{
//return fabs(f0-f1) <= epsilon;
return fabs(f0-f1) <= epsilon * max(1.0f, fabs(f0), fabs(f1));
return fabs(f0-f1) <= epsilon * max(1.0f, fabsf(f0), fabsf(f1));
}
inline bool isZero(const float f, const float epsilon = NV_EPSILON)

View File

@ -7,7 +7,7 @@
using namespace nv;
#define ENABLE_PARALLEL_FOR 1
#define ENABLE_PARALLEL_FOR 0
void worker(void * arg) {

View File

@ -37,6 +37,199 @@ using namespace nvtt;
// Solid angle of an axis aligned quad from (0,0,1) to (x,y,1)
// See: http://www.fizzmoll11.com/thesis/ for a derivation of this formula.
static float areaElement(float x, float y) {
return atan2(x*y, sqrtf(x*x + y*y + 1));
}
// Solid angle of a hemicube texel.
static float solidAngleTerm(uint x, uint y, float inverseEdgeLength) {
// Transform x,y to [-1, 1] range, offset by 0.5 to point to texel center.
float u = (float(x) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
float v = (float(y) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
nvDebugCheck(u >= -1.0f && u <= 1.0f);
nvDebugCheck(v >= -1.0f && v <= 1.0f);
#if 1
// Exact solid angle:
float x0 = u - inverseEdgeLength;
float y0 = v - inverseEdgeLength;
float x1 = u + inverseEdgeLength;
float y1 = v + inverseEdgeLength;
float solidAngle = areaElement(x0, y0) - areaElement(x0, y1) - areaElement(x1, y0) + areaElement(x1, y1);
nvDebugCheck(solidAngle > 0.0f);
return solidAngle;
#else
// This formula is equivalent, but not as precise.
float pixel_area = nv::square(2.0f * inverseEdgeLength);
float dist_square = 1.0f + nv::square(u) + nv::square(v);
float cos_theta = 1.0f / sqrt(dist_square);
float cos_theta_d2 = cos_theta / dist_square; // Funny this is just 1/dist^3 or cos(tetha)^3
return pixel_area * cos_theta_d2;
#endif
}
static Vector3 texelDirection(uint face, uint x, uint y, int edgeLength, bool seamless)
{
float u, v;
if (seamless) {
// Transform x,y to [-1, 1] range, match up edges exactly.
u = float(x) * 2 / (edgeLength - 1) - 1.0f;
v = float(y) * 2 / (edgeLength - 1) - 1.0f;
}
else {
// Transform x,y to [-1, 1] range, offset by 0.5 to point to texel center.
u = (float(x) + 0.5f) * (2 / edgeLength) - 1.0f;
v = (float(y) + 0.5f) * (2 / edgeLength) - 1.0f;
}
nvDebugCheck(u >= -1.0f && u <= 1.0f);
nvDebugCheck(v >= -1.0f && v <= 1.0f);
Vector3 n;
if (face == 0) {
n.x = 1;
n.y = -v;
n.z = -u;
}
if (face == 1) {
n.x = -1;
n.y = -v;
n.z = u;
}
if (face == 2) {
n.x = u;
n.y = 1;
n.z = v;
}
if (face == 3) {
n.x = u;
n.y = -1;
n.z = -v;
}
if (face == 4) {
n.x = u;
n.y = -v;
n.z = 1;
}
if (face == 5) {
n.x = -u;
n.y = -v;
n.z = -1;
}
return normalizeFast(n);
}
TexelTable::TexelTable(uint edgeLength, bool seamless) : size(edgeLength) {
uint hsize = size/2;
// Allocate a small solid angle table that takes into account cube map symmetry.
solidAngleArray.resize(hsize * hsize);
for (uint y = 0; y < hsize; y++) {
for (uint x = 0; x < hsize; x++) {
solidAngleArray[y * hsize + x] = solidAngleTerm(hsize+x, hsize+y, edgeLength);
}
}
directionArray.resize(size*size*6);
for (uint f = 0; f < 6; f++) {
for (uint y = 0; y < size; y++) {
for (uint x = 0; x < size; x++) {
directionArray[(f * size + y) * size + x] = texelDirection(f, x, y, edgeLength, seamless);
}
}
}
}
const Vector3 & TexelTable::direction(uint f, uint x, uint y) const {
nvDebugCheck(f < 6 && x < size && y < size);
return directionArray[(f * size + y) * size + x];
}
float TexelTable::solidAngle(uint f, uint x, uint y) const {
uint hsize = size/2;
if (x >= hsize) x -= hsize;
else if (x < hsize) x = hsize - x - 1;
if (y >= hsize) y -= hsize;
else if (y < hsize) y = hsize - y - 1;
return solidAngleArray[y * hsize + x];
}
static const Vector3 faceNormals[6] = {
Vector3(1, 0, 0),
Vector3(-1, 0, 0),
Vector3(0, 1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, 1),
Vector3(0, 0, -1),
};
static const Vector3 faceU[6] = {
Vector3(0, 0, -1),
Vector3(0, 0, 1),
Vector3(1, 0, 0),
Vector3(1, 0, 0),
Vector3(1, 0, 0),
Vector3(-1, 0, 0),
};
static const Vector3 faceV[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, 1),
Vector3(0, 0, -1),
Vector3(0, -1, 0),
Vector3(0, -1, 0),
};
static Vector2 toPolar(Vector3::Arg v) {
Vector2 p;
p.x = atan2(v.x, v.y); // theta
p.y = acosf(v.z); // phi
return p;
}
static Vector2 toPlane(float theta, float phi) {
float x = sin(phi) * cos(theta);
float y = sin(phi) * sin(theta);
float z = cos(phi);
Vector2 p;
p.x = x / fabs(z);
p.y = y / fabs(z);
//p.x = tan(phi) * cos(theta);
//p.y = tan(phi) * sin(theta);
return p;
}
static Vector2 toPlane(Vector3::Arg v) {
Vector2 p;
p.x = v.x / fabs(v.z);
p.y = v.y / fabs(v.z);
return p;
}
CubeSurface::CubeSurface() : m(new CubeSurface::Private())
{
@ -183,169 +376,50 @@ Surface CubeSurface::unfold(CubeLayout layout) const
}
float CubeSurface::average(int channel) const
#include "nvmath/SphericalHarmonic.h"
CubeSurface CubeSurface::irradianceFilter(int size, bool seamless) const
{
m->allocateTexelTable();
// Transform this cube to spherical harmonic basis
Sh2 sh;
// For each texel of the input cube.
const uint edgeLength = m->edgeLength;
for (uint f = 0; f < 6; f++) {
for (int y = 0; y < edgeLength; y++) {
for (int x = 0; x < edgeLength; x++) {
// These tables along with the surface so that we only compute them once.
if (m->solidAngleTable == NULL) {
m->solidAngleTable = new SolidAngleTable(edgeLength);
}
Vector3 dir = m->texelTable->direction(f, x, y);
float solidAngle = m->texelTable->solidAngle(f, x, y);
float total = 0.0f;
float sum = 0.0f;
Sh2 shDir;
shDir.eval(dir);
for (int f = 0; f < 6; f++) {
float * c = m->face[f].m->image->channel(channel);
for (uint y = 0; y < edgeLength; y++) {
for (uint x = 0; x < edgeLength; x++) {
float solidAngle = m->solidAngleTable->lookup(x, y);
total += solidAngle;
sum += c[y * edgeLength + x] * solidAngle;
sh.addScaled(sh, solidAngle);
}
}
}
return sum / total;
}
// Evaluate spherical harmonic for each output texel.
CubeSurface output;
output.m->allocate(size);
CubeSurface CubeSurface::irradianceFilter(int size) const
{
// @@ TODO
return CubeSurface();
}
// Warp uv coordinate from [-1, 1] to
float warp(float u, int size) {
// Solid angle of an axis aligned quad from (0,0,1) to (x,y,1)
// See: http://www.fizzmoll11.com/thesis/ for a derivation of this formula.
static float areaElement(float x, float y) {
return atan2(x*y, sqrtf(x*x + y*y + 1));
}
// Solid angle of a hemicube texel.
static float solidAngleTerm(uint x, uint y, float inverseEdgeLength) {
// Transform x,y to [-1, 1] range, offset by 0.5 to point to texel center.
float u = (float(x) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
float v = (float(y) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
nvDebugCheck(u >= -1.0f && u <= 1.0f);
nvDebugCheck(v >= -1.0f && v <= 1.0f);
#if 1
// Exact solid angle:
float x0 = u - inverseEdgeLength;
float y0 = v - inverseEdgeLength;
float x1 = u + inverseEdgeLength;
float y1 = v + inverseEdgeLength;
float solidAngle = areaElement(x0, y0) - areaElement(x0, y1) - areaElement(x1, y0) + areaElement(x1, y1);
nvDebugCheck(solidAngle > 0.0f);
return solidAngle;
#else
// This formula is equivalent, but not as precise.
float pixel_area = nv::square(2.0f * inverseEdgeLength);
float dist_square = 1.0f + nv::square(u) + nv::square(v);
float cos_theta = 1.0f / sqrt(dist_square);
float cos_theta_d2 = cos_theta / dist_square; // Funny this is just 1/dist^3 or cos(tetha)^3
return pixel_area * cos_theta_d2;
#endif
}
// Small solid angle table that takes into account cube map symmetry.
SolidAngleTable::SolidAngleTable(uint edgeLength) : size(edgeLength/2) {
// Allocate table.
data.resize(size * size);
// Init table.
const float inverseEdgeLength = 1.0f / edgeLength;
for (uint y = 0; y < size; y++) {
for (uint x = 0; x < size; x++) {
data[y * size + x] = solidAngleTerm(size+x, size+y, inverseEdgeLength);
}
}
}
float SolidAngleTable::lookup(uint x, uint y) const {
if (x >= size) x -= size;
else if (x < size) x = size - x - 1;
if (y >= size) y -= size;
else if (y < size) y = size - y - 1;
return data[y * size + x];
}
static Vector3 texelDirection(uint face, uint x, uint y, float inverseEdgeLength)
{
// Transform x,y to [-1, 1] range, offset by 0.5 to point to texel center.
float u = (float(x) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
float v = (float(y) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
nvDebugCheck(u >= -1.0f && u <= 1.0f);
nvDebugCheck(v >= -1.0f && v <= 1.0f);
Vector3 n;
if (face == 0) {
n.x = 1;
n.y = -v;
n.z = -u;
}
if (face == 1) {
n.x = -1;
n.y = -v;
n.z = u;
}
if (face == 2) {
n.x = u;
n.y = 1;
n.z = v;
}
if (face == 3) {
n.x = u;
n.y = -1;
n.z = -v;
}
if (face == 4) {
n.x = u;
n.y = -v;
n.z = 1;
}
if (face == 5) {
n.x = -u;
n.y = -v;
n.z = -1;
}
return normalizeFast(n);
}
VectorTable::VectorTable(uint edgeLength) : size(edgeLength) {
float invEdgeLength = 1.0f / edgeLength;
data.resize(size*size*6);
for (uint f = 0; f < 6; f++) {
for (uint y = 0; y < size; y++) {
for (uint x = 0; x < size; x++) {
data[(f * size + y) * size + x] = texelDirection(f, x, y, invEdgeLength);
}
}
}
}
const Vector3 & VectorTable::lookup(uint f, uint x, uint y) const {
nvDebugCheck(f < 6 && x < size && y < size);
return data[(f * size + y) * size + x];
}
@ -359,68 +433,9 @@ const Vector3 & VectorTable::lookup(uint f, uint x, uint y) const {
// -
// Other speedups:
// - parallelize.
// - parallelize. Done.
// - use ISPC?
static const Vector3 faceNormals[6] = {
Vector3(1, 0, 0),
Vector3(-1, 0, 0),
Vector3(0, 1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, 1),
Vector3(0, 0, -1),
};
static const Vector3 faceU[6] = {
Vector3(0, 0, -1),
Vector3(0, 0, 1),
Vector3(1, 0, 0),
Vector3(1, 0, 0),
Vector3(1, 0, 0),
Vector3(-1, 0, 0),
};
static const Vector3 faceV[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, 1),
Vector3(0, 0, -1),
Vector3(0, -1, 0),
Vector3(0, -1, 0),
};
static Vector2 toPolar(Vector3::Arg v) {
Vector2 p;
p.x = atan2(v.x, v.y); // theta
p.y = acosf(v.z); // phi
return p;
}
static Vector2 toPlane(float theta, float phi) {
float x = sin(phi) * cos(theta);
float y = sin(phi) * sin(theta);
float z = cos(phi);
Vector2 p;
p.x = x / fabs(z);
p.y = y / fabs(z);
//p.x = tan(phi) * cos(theta);
//p.y = tan(phi) * sin(theta);
return p;
}
static Vector2 toPlane(Vector3::Arg v) {
Vector2 p;
p.x = v.x / fabs(v.z);
p.y = v.y / fabs(v.z);
return p;
}
// Convolve filter against this cube.
Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir, float coneAngle, float cosinePower)
{
@ -503,7 +518,7 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
// Focal point in polar coordinates:
Vector2 Fp = toPolar(F);
nvCheck(Fp.y >= 0.0f); // top
//nvCheck(Fp.y <= PI/2); // horizon @@ We should cull this earlier.
nvCheck(Fp.y <= PI/2); // horizon
// If this is an ellipse:
if (Fp.y + coneAngle < PI/2) {
@ -589,11 +604,11 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
bool inside = false;
for (int x = x0; x <= x1; x++) {
Vector3 dir = vectorTable->lookup(f, x, y);
Vector3 dir = texelTable->direction(f, x, y);
float cosineAngle = dot(dir, filterDir);
if (cosineAngle > cosineConeAngle) {
float solidAngle = solidAngleTable->lookup(x, y);
float solidAngle = texelTable->solidAngle(f, x, y);
float scale = powf(saturate(cosineAngle), cosinePower);
float contribution = solidAngle * scale;
@ -641,7 +656,7 @@ void ApplyCosinePowerFilterTask(void * context, int id)
nvtt::Surface & filteredFace = ctx->filteredCube->face[f];
FloatImage * filteredImage = filteredFace.m->image;
const Vector3 filterDir = texelDirection(f, x, y, 1.0f / size);
const Vector3 filterDir = texelDirection(f, x, y, size, ctx->filteredCube->seamless);
// Convolve filter against cube.
Vector3 color = ctx->inputCube->applyCosinePowerFilter(filterDir, ctx->coneAngle, ctx->cosinePower);
@ -652,33 +667,22 @@ void ApplyCosinePowerFilterTask(void * context, int id)
}
CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower, bool seamless) const
{
const uint edgeLength = m->edgeLength;
// Allocate output cube.
CubeSurface filteredCube;
filteredCube.m->allocate(size);
filteredCube.m->seamless = seamless;
// These tables along with the surface so that we only compute them once.
if (m->solidAngleTable == NULL) {
m->solidAngleTable = new SolidAngleTable(edgeLength);
}
if (m->vectorTable == NULL) {
m->vectorTable = new VectorTable(edgeLength);
}
// Texel table is stored along with the surface so that it's compute only once.
m->allocateTexelTable();
const float threshold = 0.001f;
const float coneAngle = acosf(powf(threshold, 1.0f/cosinePower));
#if 1
// Gather approach. This should be easier to parallelize, because there's no contention in the filtered output.
// For each texel of the output cube.
// - Determine what texels of the input cube contribute to it.
// - Add weighted contributions. Normalize.
// For each texel of the output cube.
/*for (uint f = 0; f < 6; f++) {
nvtt::Surface filteredFace = filteredCube.m->face[f];
@ -687,10 +691,10 @@ CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
for (uint y = 0; y < uint(size); y++) {
for (uint x = 0; x < uint(size); x++) {
const Vector3 filterDir = texelDirection(f, x, y, 1.0f / size);
const Vector3 filterDir = texelDirection(f, x, y, size, seamless);
// Convolve filter against cube.
Vector3 color = m->applyCosinePowerFilter(filterDir, coneAngle, cosinePower);
Vector3 color = m->applyCosinePowerFilter(filterDir, coneAngle, cosinePower, seamless);
filteredImage->pixel(0, x, y, 0) = color.x;
filteredImage->pixel(1, x, y, 0) = color.y;
@ -708,68 +712,6 @@ CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
nv::ParallelFor parallelFor(ApplyCosinePowerFilterTask, &context);
parallelFor.run(6 * size * size);
#else
// Scatter approach.
// For each texel of the input cube.
// - Lookup our solid angle.
// - Determine to what texels of the output cube we contribute.
// - Add our contribution to the texels whose power is above threshold.
for (uint f = 0; f < 6; f++) {
const Surface & face = m->face[f];
for (uint y = 0; y < edgeLength; y++) {
for (uint x = 0; x < edgeLength; x++) {
float solidAngle = solidAngleTable.lookup(x, y);
float r = face.m->image->pixel(0, x, y, 0) * solidAngle;;
float g = face.m->image->pixel(1, x, y, 0) * solidAngle;;
float b = face.m->image->pixel(2, x, y, 0) * solidAngle;;
Vector3 texelDir = texelDirection(f, x, y, 1.0f / edgeLength);
for (uint ff = 0; ff < 6; ff++) {
FloatImage * filteredFace = filteredCube.m->face[ff].m->image;
for (uint yy = 0; yy < uint(size); yy++) {
for (uint xx = 0; xx < uint(size); xx++) {
Vector3 filterDir = texelDirection(ff, xx, yy, 1.0f / size);
float scale = powf(saturate(dot(texelDir, filterDir)), cosinePower);
if (scale > threshold) {
filteredFace->pixel(0, xx, yy, 0) += r * scale;
filteredFace->pixel(1, xx, yy, 0) += g * scale;
filteredFace->pixel(2, xx, yy, 0) += b * scale;
filteredFace->pixel(3, xx, yy, 0) += solidAngle * scale;
}
}
}
}
}
}
}
// Normalize contributions.
for (uint f = 0; f < 6; f++) {
FloatImage * filteredFace = filteredCube.m->face[f].m->image;
for (int i = 0; i < size*size; i++) {
float & r = filteredFace->pixel(0, i);
float & g = filteredFace->pixel(1, i);
float & b = filteredFace->pixel(2, i);
float & sum = filteredFace->pixel(3, i);
float isum = 1.0f / sum;
r *= isum;
g *= isum;
b *= isum;
sum = 1;
}
}
#endif
return filteredCube;
}

View File

@ -38,21 +38,15 @@
namespace nvtt
{
struct SolidAngleTable {
SolidAngleTable(uint edgeLength);
float lookup(uint x, uint y) const;
struct TexelTable {
TexelTable(uint edgeLength, bool seamless);
float solidAngle(uint f, uint x, uint y) const;
const nv::Vector3 & direction(uint f, uint x, uint y) const;
uint size;
nv::Array<float> data;
};
struct VectorTable {
VectorTable(uint edgeLength);
const nv::Vector3 & lookup(uint f, uint x, uint y) const;
uint size;
nv::Array<nv::Vector3> data;
nv::Array<float> solidAngleArray;
nv::Array<nv::Vector3> directionArray;
};
@ -65,24 +59,23 @@ namespace nvtt
nvDebugCheck( refCount() == 0 );
edgeLength = 0;
solidAngleTable = NULL;
vectorTable = NULL;
seamless = false;
texelTable = NULL;
}
Private(const Private & p) : RefCounted() // Copy ctor. inits refcount to 0.
{
nvDebugCheck( refCount() == 0 );
edgeLength = p.edgeLength;
seamless = p.seamless;
for (uint i = 0; i < 6; i++) {
face[i] = p.face[i];
}
solidAngleTable = NULL; // @@ Transfer tables. Needs refcounting?
vectorTable = NULL;
texelTable = NULL; // @@ Transfer tables. Needs refcounting?
}
~Private()
{
delete solidAngleTable;
delete vectorTable;
delete texelTable;
}
void allocate(uint edgeLength)
@ -95,13 +88,20 @@ namespace nvtt
}
}
void allocateTexelTable()
{
if (texelTable == NULL) {
texelTable = new TexelTable(edgeLength, seamless);
}
}
// Filtering helpers:
nv::Vector3 applyCosinePowerFilter(const nv::Vector3 & dir, float coneAngle, float cosinePower);
uint edgeLength;
bool seamless;
Surface face[6];
SolidAngleTable * solidAngleTable;
VectorTable * vectorTable;
TexelTable * texelTable;
};
} // nvtt namespace

View File

@ -548,6 +548,7 @@ namespace nvtt
NVTT_API bool isNull() const;
NVTT_API int edgeLength() const;
NVTT_API int countMipmaps() const;
NVTT_API bool isSeamless() const;
// Texture data.
NVTT_API bool load(const char * fileName, int mipmap);
@ -569,8 +570,8 @@ namespace nvtt
NVTT_API float average(int channel) const;
// Filtering.
NVTT_API CubeSurface irradianceFilter(int size) const;
NVTT_API CubeSurface cosinePowerFilter(int size, float cosinePower) const;
NVTT_API CubeSurface irradianceFilter(int size, bool seamless) const;
NVTT_API CubeSurface cosinePowerFilter(int size, float cosinePower, bool seamless) const;
/*

View File

@ -86,7 +86,7 @@ int main(int argc, char *argv[])
printf("filtering step: %d/%d\n", m+1, mipmapCount);
filteredEnvmap[m] = envmap.cosinePowerFilter(size, cosine_power);
filteredEnvmap[m] = envmap.cosinePowerFilter(size, cosine_power, false);
filteredEnvmap[m].toGamma(2.2f);
}