seamless cubemap filtering.
This commit is contained in:
parent
2ec37026be
commit
d11d7a5f38
@ -36,32 +36,9 @@
|
||||
|
||||
using namespace nv;
|
||||
|
||||
|
||||
const uint nv::FOURCC_NVTT = MAKEFOURCC('N', 'V', 'T', 'T');
|
||||
|
||||
const uint nv::FOURCC_DDS = MAKEFOURCC('D', 'D', 'S', ' ');
|
||||
const uint nv::FOURCC_DXT1 = MAKEFOURCC('D', 'X', 'T', '1');
|
||||
const uint nv::FOURCC_DXT2 = MAKEFOURCC('D', 'X', 'T', '2');
|
||||
const uint nv::FOURCC_DXT3 = MAKEFOURCC('D', 'X', 'T', '3');
|
||||
const uint nv::FOURCC_DXT4 = MAKEFOURCC('D', 'X', 'T', '4');
|
||||
const uint nv::FOURCC_DXT5 = MAKEFOURCC('D', 'X', 'T', '5');
|
||||
const uint nv::FOURCC_RXGB = MAKEFOURCC('R', 'X', 'G', 'B');
|
||||
const uint nv::FOURCC_ATI1 = MAKEFOURCC('A', 'T', 'I', '1');
|
||||
const uint nv::FOURCC_ATI2 = MAKEFOURCC('A', 'T', 'I', '2');
|
||||
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
static const uint FOURCC_A2XY = MAKEFOURCC('A', '2', 'X', 'Y');
|
||||
|
||||
static const uint FOURCC_DX10 = MAKEFOURCC('D', 'X', '1', '0');
|
||||
|
||||
static const uint FOURCC_UVER = MAKEFOURCC('U', 'V', 'E', 'R');
|
||||
|
||||
|
||||
|
||||
static const uint DDSD_CAPS = 0x00000001U;
|
||||
static const uint DDSD_PIXELFORMAT = 0x00001000U;
|
||||
static const uint DDSD_WIDTH = 0x00000004U;
|
||||
@ -210,16 +187,16 @@ namespace
|
||||
#undef CASE
|
||||
}
|
||||
|
||||
const char * getD3d10ResourceDimensionString(D3D10_RESOURCE_DIMENSION resourceDimension)
|
||||
const char * getD3d10ResourceDimensionString(DDS_DIMENSION resourceDimension)
|
||||
{
|
||||
switch(resourceDimension)
|
||||
{
|
||||
default:
|
||||
case D3D10_RESOURCE_DIMENSION_UNKNOWN: return "UNKNOWN";
|
||||
case D3D10_RESOURCE_DIMENSION_BUFFER: return "BUFFER";
|
||||
case D3D10_RESOURCE_DIMENSION_TEXTURE1D: return "TEXTURE1D";
|
||||
case D3D10_RESOURCE_DIMENSION_TEXTURE2D: return "TEXTURE2D";
|
||||
case D3D10_RESOURCE_DIMENSION_TEXTURE3D: return "TEXTURE3D";
|
||||
case DDS_DIMENSION_UNKNOWN: return "UNKNOWN";
|
||||
case DDS_DIMENSION_BUFFER: return "BUFFER";
|
||||
case DDS_DIMENSION_TEXTURE1D: return "TEXTURE1D";
|
||||
case DDS_DIMENSION_TEXTURE2D: return "TEXTURE2D";
|
||||
case DDS_DIMENSION_TEXTURE3D: return "TEXTURE3D";
|
||||
}
|
||||
}
|
||||
|
||||
@ -531,7 +508,7 @@ DDSHeader::DDSHeader()
|
||||
this->notused = 0;
|
||||
|
||||
this->header10.dxgiFormat = DXGI_FORMAT_UNKNOWN;
|
||||
this->header10.resourceDimension = D3D10_RESOURCE_DIMENSION_UNKNOWN;
|
||||
this->header10.resourceDimension = DDS_DIMENSION_UNKNOWN;
|
||||
this->header10.miscFlag = 0;
|
||||
this->header10.arraySize = 0;
|
||||
this->header10.reserved = 0;
|
||||
@ -580,7 +557,8 @@ void DDSHeader::setMipmapCount(uint count)
|
||||
|
||||
void DDSHeader::setTexture2D()
|
||||
{
|
||||
this->header10.resourceDimension = D3D10_RESOURCE_DIMENSION_TEXTURE2D;
|
||||
this->header10.resourceDimension = DDS_DIMENSION_TEXTURE2D;
|
||||
this->header10.miscFlag = 0;
|
||||
this->header10.arraySize = 1;
|
||||
}
|
||||
|
||||
@ -588,7 +566,8 @@ void DDSHeader::setTexture3D()
|
||||
{
|
||||
this->caps.caps2 = DDSCAPS2_VOLUME;
|
||||
|
||||
this->header10.resourceDimension = D3D10_RESOURCE_DIMENSION_TEXTURE3D;
|
||||
this->header10.resourceDimension = DDS_DIMENSION_TEXTURE3D;
|
||||
this->header10.miscFlag = 0;
|
||||
this->header10.arraySize = 1;
|
||||
}
|
||||
|
||||
@ -597,8 +576,9 @@ void DDSHeader::setTextureCube()
|
||||
this->caps.caps1 |= DDSCAPS_COMPLEX;
|
||||
this->caps.caps2 = DDSCAPS2_CUBEMAP | DDSCAPS2_CUBEMAP_ALL_FACES;
|
||||
|
||||
this->header10.resourceDimension = D3D10_RESOURCE_DIMENSION_TEXTURE2D;
|
||||
this->header10.arraySize = 6;
|
||||
this->header10.resourceDimension = DDS_DIMENSION_TEXTURE2D;
|
||||
this->header10.miscFlag = DDS_MISC_TEXTURECUBE;
|
||||
this->header10.arraySize = 1;
|
||||
}
|
||||
|
||||
void DDSHeader::setLinearSize(uint size)
|
||||
@ -1084,7 +1064,7 @@ bool DirectDrawSurface::isTexture1D() const
|
||||
nvDebugCheck(isValid());
|
||||
if (header.hasDX10Header())
|
||||
{
|
||||
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE1D;
|
||||
return header.header10.resourceDimension == DDS_DIMENSION_TEXTURE1D;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
@ -1094,7 +1074,7 @@ bool DirectDrawSurface::isTexture2D() const
|
||||
nvDebugCheck(isValid());
|
||||
if (header.hasDX10Header())
|
||||
{
|
||||
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE2D;
|
||||
return header.header10.resourceDimension == DDS_DIMENSION_TEXTURE2D;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -1107,7 +1087,7 @@ bool DirectDrawSurface::isTexture3D() const
|
||||
nvDebugCheck(isValid());
|
||||
if (header.hasDX10Header())
|
||||
{
|
||||
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE3D;
|
||||
return header.header10.resourceDimension == DDS_DIMENSION_TEXTURE3D;
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -1597,7 +1577,7 @@ void DirectDrawSurface::printInfo() const
|
||||
{
|
||||
printf("DX10 Header:\n");
|
||||
printf("\tDXGI Format: %u (%s)\n", header.header10.dxgiFormat, getDxgiFormatString((DXGI_FORMAT)header.header10.dxgiFormat));
|
||||
printf("\tResource dimension: %u (%s)\n", header.header10.resourceDimension, getD3d10ResourceDimensionString((D3D10_RESOURCE_DIMENSION)header.header10.resourceDimension));
|
||||
printf("\tResource dimension: %u (%s)\n", header.header10.resourceDimension, getD3d10ResourceDimensionString((DDS_DIMENSION)header.header10.resourceDimension));
|
||||
printf("\tMisc flag: %u\n", header.header10.miscFlag);
|
||||
printf("\tArray size: %u\n", header.header10.arraySize);
|
||||
}
|
||||
|
@ -39,17 +39,6 @@ namespace nv
|
||||
class Stream;
|
||||
struct ColorBlock;
|
||||
|
||||
extern const uint FOURCC_NVTT;
|
||||
extern const uint FOURCC_DDS;
|
||||
extern const uint FOURCC_DXT1;
|
||||
extern const uint FOURCC_DXT2;
|
||||
extern const uint FOURCC_DXT3;
|
||||
extern const uint FOURCC_DXT4;
|
||||
extern const uint FOURCC_DXT5;
|
||||
extern const uint FOURCC_RXGB;
|
||||
extern const uint FOURCC_ATI1;
|
||||
extern const uint FOURCC_ATI2;
|
||||
|
||||
enum DDPF
|
||||
{
|
||||
DDPF_ALPHAPIXELS = 0x00000001U,
|
||||
@ -110,15 +99,37 @@ namespace nv
|
||||
D3DFMT_A32B32G32R32F = 116,
|
||||
};
|
||||
|
||||
enum FOURCC
|
||||
{
|
||||
FOURCC_NVTT = MAKEFOURCC('N', 'V', 'T', 'T'),
|
||||
FOURCC_DDS = MAKEFOURCC('D', 'D', 'S', ' '),
|
||||
FOURCC_DXT1 = MAKEFOURCC('D', 'X', 'T', '1'),
|
||||
FOURCC_DXT2 = MAKEFOURCC('D', 'X', 'T', '2'),
|
||||
FOURCC_DXT3 = MAKEFOURCC('D', 'X', 'T', '3'),
|
||||
FOURCC_DXT4 = MAKEFOURCC('D', 'X', 'T', '4'),
|
||||
FOURCC_DXT5 = MAKEFOURCC('D', 'X', 'T', '5'),
|
||||
FOURCC_RXGB = MAKEFOURCC('R', 'X', 'G', 'B'),
|
||||
FOURCC_ATI1 = MAKEFOURCC('A', 'T', 'I', '1'),
|
||||
FOURCC_ATI2 = MAKEFOURCC('A', 'T', 'I', '2'),
|
||||
FOURCC_A2XY = MAKEFOURCC('A', '2', 'X', 'Y'),
|
||||
FOURCC_DX10 = MAKEFOURCC('D', 'X', '1', '0'),
|
||||
FOURCC_UVER = MAKEFOURCC('U', 'V', 'E', 'R'),
|
||||
};
|
||||
|
||||
|
||||
// D3D1x resource dimensions.
|
||||
enum D3D10_RESOURCE_DIMENSION
|
||||
enum DDS_DIMENSION // D3D10_RESOURCE_DIMENSION
|
||||
{
|
||||
D3D10_RESOURCE_DIMENSION_UNKNOWN = 0,
|
||||
D3D10_RESOURCE_DIMENSION_BUFFER = 1,
|
||||
D3D10_RESOURCE_DIMENSION_TEXTURE1D = 2,
|
||||
D3D10_RESOURCE_DIMENSION_TEXTURE2D = 3,
|
||||
D3D10_RESOURCE_DIMENSION_TEXTURE3D = 4,
|
||||
DDS_DIMENSION_UNKNOWN = 0,
|
||||
DDS_DIMENSION_BUFFER = 1,
|
||||
DDS_DIMENSION_TEXTURE1D = 2,
|
||||
DDS_DIMENSION_TEXTURE2D = 3,
|
||||
DDS_DIMENSION_TEXTURE3D = 4,
|
||||
};
|
||||
|
||||
enum DDS_MISC_FLAG
|
||||
{
|
||||
DDS_MISC_TEXTURECUBE = 0x4,
|
||||
};
|
||||
|
||||
// DXGI formats.
|
||||
|
@ -2,13 +2,14 @@ PROJECT(nvmath)
|
||||
|
||||
SET(MATH_SRCS
|
||||
nvmath.h
|
||||
Vector.h
|
||||
Matrix.h
|
||||
Plane.h Plane.cpp
|
||||
Box.h
|
||||
Color.h
|
||||
Box.h Box.inl
|
||||
Color.h Color.inl
|
||||
Fitting.h Fitting.cpp
|
||||
Half.h Half.cpp
|
||||
Fitting.h Fitting.cpp)
|
||||
Matrix.h
|
||||
Plane.h Plane.inl Plane.cpp
|
||||
SphericalHarmonic.h SphericalHarmonic.cpp
|
||||
Vector.h Vector.inl)
|
||||
|
||||
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
|
@ -11,13 +11,13 @@
|
||||
namespace nv
|
||||
{
|
||||
|
||||
/// Clamp color components.
|
||||
// Clamp color components.
|
||||
inline Vector3 colorClamp(Vector3::Arg c)
|
||||
{
|
||||
return Vector3(clamp(c.x, 0.0f, 1.0f), clamp(c.y, 0.0f, 1.0f), clamp(c.z, 0.0f, 1.0f));
|
||||
}
|
||||
|
||||
/// Clamp without allowing the hue to change.
|
||||
// Clamp without allowing the hue to change.
|
||||
inline Vector3 colorNormalize(Vector3::Arg c)
|
||||
{
|
||||
float scale = 1.0f;
|
||||
@ -27,7 +27,7 @@ namespace nv
|
||||
return c / scale;
|
||||
}
|
||||
|
||||
/// Convert Color32 to Color16.
|
||||
// Convert Color32 to Color16.
|
||||
inline Color16 toColor16(Color32 c)
|
||||
{
|
||||
Color16 color;
|
||||
@ -44,7 +44,7 @@ namespace nv
|
||||
}
|
||||
|
||||
|
||||
/// Promote 16 bit color to 32 bit using regular bit expansion.
|
||||
// Promote 16 bit color to 32 bit using regular bit expansion.
|
||||
inline Color32 toColor32(Color16 c)
|
||||
{
|
||||
Color32 color;
|
||||
|
243
src/nvmath/SphericalHarmonic.cpp
Normal file
243
src/nvmath/SphericalHarmonic.cpp
Normal file
@ -0,0 +1,243 @@
|
||||
// This code is in the public domain -- castanyo@yahoo.es
|
||||
|
||||
#include <nvmath/SphericalHarmonic.h>
|
||||
|
||||
using namespace nv;
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
// Basic integer factorial.
|
||||
inline static int factorial( int v )
|
||||
{
|
||||
const static int fac_table[] = { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800 };
|
||||
|
||||
if(v <= 11){
|
||||
return fac_table[v];
|
||||
}
|
||||
|
||||
int result = v;
|
||||
while (--v > 0) {
|
||||
result *= v;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// Double factorial.
|
||||
// Defined as: n!! = n*(n - 2)*(n - 4)..., n!!(0,-1) = 1.
|
||||
inline static int doubleFactorial( int x )
|
||||
{
|
||||
if (x == 0 || x == -1) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int result = x;
|
||||
while ((x -= 2) > 0) {
|
||||
result *= x;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/// Normalization constant for spherical harmonic.
|
||||
/// @param l is the band.
|
||||
/// @param m is the argument, in the range [0, m]
|
||||
inline static float K( int l, int m )
|
||||
{
|
||||
nvDebugCheck( m >= 0 );
|
||||
return sqrtf(((2 * l + 1) * factorial(l - m)) / (4 * PI * factorial(l + m)));
|
||||
}
|
||||
|
||||
/// Normalization constant for hemispherical harmonic.
|
||||
inline static float HK( int l, int m )
|
||||
{
|
||||
nvDebugCheck( m >= 0 );
|
||||
return sqrtf(((2 * l + 1) * factorial(l - m)) / (2 * PI * factorial(l + m)));
|
||||
}
|
||||
|
||||
/// Evaluate Legendre polynomial. */
|
||||
static float legendre( int l, int m, float x )
|
||||
{
|
||||
// piDebugCheck( m >= 0 );
|
||||
// piDebugCheck( m <= l );
|
||||
// piDebugCheck( fabs(x) <= 1 );
|
||||
|
||||
// Rule 2 needs no previous results
|
||||
if (l == m) {
|
||||
return powf(-1.0f, float(m)) * doubleFactorial(2 * m - 1) * powf(1 - x*x, 0.5f * m);
|
||||
}
|
||||
|
||||
// Rule 3 requires the result for the same argument of the previous band
|
||||
if (l == m + 1) {
|
||||
return x * (2 * m + 1) * legendrePolynomial(m, m, x);
|
||||
}
|
||||
|
||||
// Main reccurence used by rule 1 that uses result of the same argument from
|
||||
// the previous two bands
|
||||
return (x * (2 * l - 1) * legendrePolynomial(l - 1, m, x) - (l + m - 1) * legendrePolynomial(l - 2, m, x)) / (l - m);
|
||||
}
|
||||
|
||||
|
||||
template <int l, int m> float legendre(float x);
|
||||
|
||||
template <> float legendre<0, 0>(float ) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
template <> float legendre<1, 0>(float x) {
|
||||
return x;
|
||||
}
|
||||
template <> float legendre<1, 1>(float x) {
|
||||
return -sqrtf(1 - x * x);
|
||||
}
|
||||
|
||||
template <> float legendre<2, 0>(float x) {
|
||||
return -0.5f + (3 * x * x) / 2;
|
||||
}
|
||||
template <> float legendre<2, 1>(float x) {
|
||||
return -3 * x * sqrtf(1 - x * x);
|
||||
}
|
||||
template <> float legendre<2, 2>(float x) {
|
||||
return -3 * (-1 + x * x);
|
||||
}
|
||||
|
||||
template <> float legendre<3, 0>(float x) {
|
||||
return -(3 * x) / 2 + (5 * x * x * x) / 2;
|
||||
}
|
||||
template <> float legendre<3, 1>(float x) {
|
||||
return -3 * sqrtf(1 - x * x) / 2 * (-1 + 5 * x * x);
|
||||
}
|
||||
template <> float legendre<3, 2>(float x) {
|
||||
return -15 * (-x + x * x * x);
|
||||
}
|
||||
template <> float legendre<3, 3>(float x) {
|
||||
return -15 * powf(1 - x * x, 1.5f);
|
||||
}
|
||||
|
||||
template <> float legendre<4, 0>(float x) {
|
||||
return 0.125f * (3.0f - 30.0f * x * x + 35.0f * x * x * x * x);
|
||||
}
|
||||
template <> float legendre<4, 1>(float x) {
|
||||
return -2.5f * x * sqrtf(1.0f - x * x) * (7.0f * x * x - 3.0f);
|
||||
}
|
||||
template <> float legendre<4, 2>(float x) {
|
||||
return -7.5f * (1.0f - 8.0f * x * x + 7.0f * x * x * x * x);
|
||||
}
|
||||
template <> float legendre<4, 3>(float x) {
|
||||
return -105.0f * x * powf(1 - x * x, 1.5f);
|
||||
}
|
||||
template <> float legendre<4, 4>(float x) {
|
||||
return 105.0f * (x * x - 1.0f) * (x * x - 1.0f);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
float nv::legendrePolynomial(int l, int m, float x)
|
||||
{
|
||||
switch(l)
|
||||
{
|
||||
case 0:
|
||||
return legendre<0, 0>(x);
|
||||
case 1:
|
||||
if(m == 0) return legendre<1, 0>(x);
|
||||
return legendre<1, 1>(x);
|
||||
case 2:
|
||||
if(m == 0) return legendre<2, 0>(x);
|
||||
else if(m == 1) return legendre<2, 1>(x);
|
||||
return legendre<2, 2>(x);
|
||||
case 3:
|
||||
if(m == 0) return legendre<3, 0>(x);
|
||||
else if(m == 1) return legendre<3, 1>(x);
|
||||
else if(m == 2) return legendre<3, 2>(x);
|
||||
return legendre<3, 3>(x);
|
||||
case 4:
|
||||
if(m == 0) return legendre<4, 0>(x);
|
||||
else if(m == 1) return legendre<4, 1>(x);
|
||||
else if(m == 2) return legendre<4, 2>(x);
|
||||
else if(m == 3) return legendre<4, 3>(x);
|
||||
else return legendre<4, 4>(x);
|
||||
}
|
||||
|
||||
// Fallback to the expensive version.
|
||||
return legendre(l, m, x);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Evaluate the spherical harmonic function for the given angles.
|
||||
* @param l is the band.
|
||||
* @param m is the argument, in the range [-l,l]
|
||||
* @param theta is the altitude, in the range [0, PI]
|
||||
* @param phi is the azimuth, in the range [0, 2*PI]
|
||||
*/
|
||||
float nv::shBasis( int l, int m, float theta, float phi )
|
||||
{
|
||||
if( m == 0 ) {
|
||||
// K(l, 0) = sqrt((2*l+1)/(4*PI))
|
||||
return sqrtf((2 * l + 1) / (4 * PI)) * legendrePolynomial(l, 0, cosf(theta));
|
||||
}
|
||||
else if( m > 0 ) {
|
||||
return sqrtf(2.0f) * K(l, m) * cosf(m * phi) * legendrePolynomial(l, m, cosf(theta));
|
||||
}
|
||||
else {
|
||||
return sqrtf(2.0f) * K(l, -m) * sinf(-m * phi) * legendrePolynomial(l, -m, cosf(theta));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Real spherical harmonic function of an unit vector. Uses the following
|
||||
* equalities to call the angular function:
|
||||
* x = sin(theta)*cos(phi)
|
||||
* y = sin(theta)*sin(phi)
|
||||
* z = cos(theta)
|
||||
*/
|
||||
float nv::shBasis( int l, int m, Vector3::Arg v )
|
||||
{
|
||||
float theta = acosf(v.z);
|
||||
float phi = atan2f(v.y, v.x);
|
||||
return shBasis( l, m, theta, phi );
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Evaluate the hemispherical harmonic function for the given angles.
|
||||
* @param l is the band.
|
||||
* @param m is the argument, in the range [-l,l]
|
||||
* @param theta is the altitude, in the range [0, PI/2]
|
||||
* @param phi is the azimuth, in the range [0, 2*PI]
|
||||
*/
|
||||
float nv::hshBasis( int l, int m, float theta, float phi )
|
||||
{
|
||||
if( m == 0 ) {
|
||||
// HK(l, 0) = sqrt((2*l+1)/(2*PI))
|
||||
return sqrtf((2 * l + 1) / (2 * PI)) * legendrePolynomial(l, 0, 2*cosf(theta)-1);
|
||||
}
|
||||
else if( m > 0 ) {
|
||||
return sqrtf(2.0f) * HK(l, m) * cosf(m * phi) * legendrePolynomial(l, m, 2*cosf(theta)-1);
|
||||
}
|
||||
else {
|
||||
return sqrtf(2.0f) * HK(l, -m) * sinf(-m * phi) * legendrePolynomial(l, -m, 2*cosf(theta)-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Real hemispherical harmonic function of an unit vector. Uses the following
|
||||
* equalities to call the angular function:
|
||||
* x = sin(theta)*cos(phi)
|
||||
* y = sin(theta)*sin(phi)
|
||||
* z = cos(theta)
|
||||
*/
|
||||
float nv::hshBasis( int l, int m, Vector3::Arg v )
|
||||
{
|
||||
float theta = acosf(v.z);
|
||||
float phi = atan2f(v.y, v.x);
|
||||
return hshBasis( l, m, theta, phi );
|
||||
}
|
||||
|
||||
|
||||
|
418
src/nvmath/SphericalHarmonic.h
Normal file
418
src/nvmath/SphericalHarmonic.h
Normal file
@ -0,0 +1,418 @@
|
||||
// This code is in the public domain -- castanyo@yahoo.es
|
||||
|
||||
#ifndef NV_MATH_SPHERICALHARMONIC_H
|
||||
#define NV_MATH_SPHERICALHARMONIC_H
|
||||
|
||||
#include "Vector.h"
|
||||
|
||||
#include <string.h> // memcpy
|
||||
|
||||
|
||||
namespace nv
|
||||
{
|
||||
class Matrix;
|
||||
|
||||
NVMATH_API float legendrePolynomial( int l, int m, float x ) NV_CONST;
|
||||
NVMATH_API float shBasis( int l, int m, float theta, float phi ) NV_CONST;
|
||||
NVMATH_API float shBasis( int l, int m, Vector3::Arg v ) NV_CONST;
|
||||
NVMATH_API float hshBasis( int l, int m, float theta, float phi ) NV_CONST;
|
||||
NVMATH_API float hshBasis( int l, int m, Vector3::Arg v ) NV_CONST;
|
||||
|
||||
class Sh;
|
||||
float dot(const Sh & a, const Sh & b) NV_CONST;
|
||||
|
||||
|
||||
/// Spherical harmonic class.
|
||||
class Sh
|
||||
{
|
||||
friend class Sh2;
|
||||
friend class ShMatrix;
|
||||
public:
|
||||
|
||||
/// Construct a spherical harmonic of the given order.
|
||||
Sh(int o) : m_order(o)
|
||||
{
|
||||
m_elemArray = new float[basisNum()];
|
||||
}
|
||||
|
||||
/// Copy constructor.
|
||||
Sh(const Sh & sh) : m_order(sh.order())
|
||||
{
|
||||
m_elemArray = new float[basisNum()];
|
||||
memcpy(m_elemArray, sh.m_elemArray, sizeof(float) * basisNum());
|
||||
}
|
||||
|
||||
/// Destructor.
|
||||
~Sh()
|
||||
{
|
||||
delete [] m_elemArray;
|
||||
m_elemArray = NULL;
|
||||
}
|
||||
|
||||
/// Get number of bands.
|
||||
static int bandNum(int m_order) {
|
||||
return m_order + 1;
|
||||
}
|
||||
|
||||
/// Get number of sh basis.
|
||||
static int basisNum(int m_order) {
|
||||
return (m_order + 1) * (m_order + 1);
|
||||
}
|
||||
|
||||
/// Get the index for the given coefficients.
|
||||
static int index( int l, int m ) {
|
||||
return l * l + l + m;
|
||||
}
|
||||
|
||||
/// Get sh order.
|
||||
int order() const
|
||||
{
|
||||
return m_order;
|
||||
}
|
||||
|
||||
/// Get sh order.
|
||||
int bandNum() const
|
||||
{
|
||||
return bandNum(m_order);
|
||||
}
|
||||
|
||||
/// Get sh order.
|
||||
int basisNum() const
|
||||
{
|
||||
return basisNum(m_order);
|
||||
}
|
||||
|
||||
/// Get sh coefficient indexed by l,m.
|
||||
float elem( int l, int m ) const
|
||||
{
|
||||
return m_elemArray[index(l, m)];
|
||||
}
|
||||
|
||||
/// Get sh coefficient indexed by l,m.
|
||||
float & elem( int l, int m )
|
||||
{
|
||||
return m_elemArray[index(l, m)];
|
||||
}
|
||||
|
||||
|
||||
/// Get sh coefficient indexed by i.
|
||||
float elemAt( int i ) const {
|
||||
return m_elemArray[i];
|
||||
}
|
||||
|
||||
/// Get sh coefficient indexed by i.
|
||||
float & elemAt( int i )
|
||||
{
|
||||
return m_elemArray[i];
|
||||
}
|
||||
|
||||
|
||||
/// Reset the sh coefficients.
|
||||
void reset()
|
||||
{
|
||||
for( int i = 0; i < basisNum(); i++ ) {
|
||||
m_elemArray[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
/// Copy spherical harmonic.
|
||||
void operator= ( const Sh & sh )
|
||||
{
|
||||
nvDebugCheck(order() <= sh.order());
|
||||
|
||||
for(int i = 0; i < basisNum(); i++) {
|
||||
m_elemArray[i] = sh.m_elemArray[i];
|
||||
}
|
||||
}
|
||||
|
||||
/// Add spherical harmonics.
|
||||
void operator+= ( const Sh & sh )
|
||||
{
|
||||
nvDebugCheck(order() == sh.order());
|
||||
|
||||
for(int i = 0; i < basisNum(); i++) {
|
||||
m_elemArray[i] += sh.m_elemArray[i];
|
||||
}
|
||||
}
|
||||
|
||||
/// Substract spherical harmonics.
|
||||
void operator-= ( const Sh & sh )
|
||||
{
|
||||
nvDebugCheck(order() == sh.order());
|
||||
|
||||
for(int i = 0; i < basisNum(); i++) {
|
||||
m_elemArray[i] -= sh.m_elemArray[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Not exactly convolution, nor product.
|
||||
void operator*= ( const Sh & sh )
|
||||
{
|
||||
nvDebugCheck(order() == sh.order());
|
||||
|
||||
for(int i = 0; i < basisNum(); i++) {
|
||||
m_elemArray[i] *= sh.m_elemArray[i];
|
||||
}
|
||||
}
|
||||
|
||||
/// Scale spherical harmonics.
|
||||
void operator*= ( float f )
|
||||
{
|
||||
for(int i = 0; i < basisNum(); i++) {
|
||||
m_elemArray[i] *= f;
|
||||
}
|
||||
}
|
||||
|
||||
/// Add scaled spherical harmonics.
|
||||
void addScaled( const Sh & sh, float f )
|
||||
{
|
||||
nvDebugCheck(order() == sh.order());
|
||||
|
||||
for(int i = 0; i < basisNum(); i++) {
|
||||
m_elemArray[i] += sh.m_elemArray[i] * f;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*/// Add a weighted sample to the sh coefficients.
|
||||
void AddSample( const Vec3 & dir, const Color3f & color, float w=1.0f ) {
|
||||
for(int l = 0; l <= order; l++) {
|
||||
for(int m = -l; m <= l; m++) {
|
||||
Color3f & elem = GetElem(l, m);
|
||||
elem.Mad( elem, color, w * shBasis(l, m, dir) );
|
||||
}
|
||||
}
|
||||
}*/
|
||||
|
||||
/// Evaluate
|
||||
void eval(Vector3::Arg dir)
|
||||
{
|
||||
for(int l = 0; l <= m_order; l++) {
|
||||
for(int m = -l; m <= l; m++) {
|
||||
elem(l, m) = shBasis(l, m, dir);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Evaluate the spherical harmonic function.
|
||||
float sample(Vector3::Arg dir) const
|
||||
{
|
||||
Sh sh(order());
|
||||
sh.eval(dir);
|
||||
|
||||
return dot(sh, *this);
|
||||
}
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
const int m_order;
|
||||
float * m_elemArray;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/// Compute dot product of the spherical harmonics.
|
||||
inline float dot(const Sh & a, const Sh & b)
|
||||
{
|
||||
nvDebugCheck(a.order() == b.order());
|
||||
|
||||
float sum = 0;
|
||||
for( int i = 0; i < Sh::basisNum(a.order()); i++ ) {
|
||||
sum += a.elemAt(i) * b.elemAt(i);
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
|
||||
/// Second order spherical harmonic.
|
||||
class Sh2 : public Sh
|
||||
{
|
||||
public:
|
||||
|
||||
/// Constructor.
|
||||
Sh2() : Sh(2) {}
|
||||
|
||||
/// Copy constructor.
|
||||
Sh2(const Sh2 & sh) : Sh(sh) {}
|
||||
|
||||
/// Spherical harmonic resulting from projecting the clamped cosine transfer function to the SH basis.
|
||||
void cosineTransfer()
|
||||
{
|
||||
const float c1 = 0.282095f; // K(0, 0)
|
||||
const float c2 = 0.488603f; // K(1, 0)
|
||||
const float c3 = 1.092548f; // sqrt(15.0f / PI) / 2.0f = K(2, -2)
|
||||
const float c4 = 0.315392f; // sqrt(5.0f / PI) / 4.0f) = K(2, 0)
|
||||
const float c5 = 0.546274f; // sqrt(15.0f / PI) / 4.0f) = K(2, 2)
|
||||
|
||||
const float normalization = PI * 16.0f / 17.0f;
|
||||
|
||||
const float const1 = c1 * normalization * 1.0f;
|
||||
const float const2 = c2 * normalization * (2.0f / 3.0f);
|
||||
const float const3 = c3 * normalization * (1.0f / 4.0f);
|
||||
const float const4 = c4 * normalization * (1.0f / 4.0f);
|
||||
const float const5 = c5 * normalization * (1.0f / 4.0f);
|
||||
|
||||
m_elemArray[0] = const1;
|
||||
|
||||
m_elemArray[1] = -const2;
|
||||
m_elemArray[2] = const2;
|
||||
m_elemArray[3] = -const2;
|
||||
|
||||
m_elemArray[4] = const3;
|
||||
m_elemArray[5] = -const3;
|
||||
m_elemArray[6] = const4;
|
||||
m_elemArray[7] = -const3;
|
||||
m_elemArray[8] = const5;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
/// Spherical harmonic matrix.
|
||||
class ShMatrix
|
||||
{
|
||||
public:
|
||||
|
||||
/// Create an identity matrix of the given order.
|
||||
ShMatrix(int o = 2) : m_order(o), m_identity(true)
|
||||
{
|
||||
nvCheck(m_order > 0);
|
||||
m_e = new float[size()];
|
||||
m_band = new float *[bandNum()];
|
||||
setupBands();
|
||||
}
|
||||
|
||||
/// Destroy and free matrix elements.
|
||||
~ShMatrix()
|
||||
{
|
||||
delete m_e;
|
||||
delete m_band;
|
||||
}
|
||||
|
||||
/// Set identity matrix.
|
||||
void setIdentity()
|
||||
{
|
||||
m_identity = true;
|
||||
}
|
||||
|
||||
/// Return true if this is an identity matrix, false in other case.
|
||||
bool isIdentity() const {
|
||||
return m_identity;
|
||||
}
|
||||
|
||||
/// Get number of bands of this matrix.
|
||||
int bandNum() const
|
||||
{
|
||||
return m_order+1;
|
||||
}
|
||||
|
||||
/// Get total number of elements in the matrix.
|
||||
int size() const
|
||||
{
|
||||
int size = 0;
|
||||
for (int i = 0; i < bandNum(); i++) {
|
||||
size += square(i * 2 + 1);
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
/// Get element at the given raw index.
|
||||
float element(int idx) const
|
||||
{
|
||||
return m_e[idx];
|
||||
}
|
||||
|
||||
/// Get element at the given with the given indices.
|
||||
float & element(int b, int x, int y)
|
||||
{
|
||||
nvDebugCheck(b >= 0);
|
||||
nvDebugCheck(b < bandNum());
|
||||
return m_band[b][(b + y) * (b * 2 + 1) + (b + x)];
|
||||
}
|
||||
|
||||
/// Get element at the given with the given indices.
|
||||
float element(int b, int x, int y) const
|
||||
{
|
||||
nvDebugCheck(b >= 0);
|
||||
nvDebugCheck(b < bandNum());
|
||||
return m_band[b][(b + y) * (b * 2 + 1) + (b + x)];
|
||||
}
|
||||
|
||||
/// Copy matrix.
|
||||
void copy(const ShMatrix & m)
|
||||
{
|
||||
nvDebugCheck(m_order == m.m_order);
|
||||
memcpy(m_e, m.m_e, size() * sizeof(float));
|
||||
}
|
||||
|
||||
/// Rotate the given coefficients.
|
||||
/*void transform( const Sh & restrict source, Sh * restrict dest ) const {
|
||||
nvCheck( &source != dest ); // Make sure there's no aliasing.
|
||||
nvCheck( dest->m_order <= m_order );
|
||||
nvCheck( m_order <= source.m_order );
|
||||
|
||||
if (m_identity) {
|
||||
*dest = source;
|
||||
return;
|
||||
}
|
||||
|
||||
// Loop through each band.
|
||||
for (int l = 0; l <= dest->m_order; l++) {
|
||||
|
||||
for (int mo = -l; mo <= l; mo++) {
|
||||
|
||||
Color3f rgb = Color3f::Black;
|
||||
|
||||
for( int mi = -l; mi <= l; mi++ ) {
|
||||
rgb.Mad( rgb, source.elem(l, mi), elem(l, mo, mi) );
|
||||
}
|
||||
|
||||
dest->elem(l, mo) = rgb;
|
||||
}
|
||||
}
|
||||
}*/
|
||||
|
||||
|
||||
NVMATH_API void multiply( const ShMatrix &A, const ShMatrix &B );
|
||||
NVMATH_API void rotation( const Matrix & m );
|
||||
NVMATH_API void rotation( int axis, float angles );
|
||||
NVMATH_API void print();
|
||||
|
||||
|
||||
private:
|
||||
|
||||
// @@ These could be static indices precomputed only once.
|
||||
/// Setup the band pointers.
|
||||
void setupBands()
|
||||
{
|
||||
int size = 0;
|
||||
for( int i = 0; i < bandNum(); i++ ) {
|
||||
m_band[i] = &m_e[size];
|
||||
size += square(i * 2 + 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
|
||||
// Matrix order.
|
||||
const int m_order;
|
||||
|
||||
// Identity flag for quick transform.
|
||||
bool m_identity;
|
||||
|
||||
// Array of elements.
|
||||
float * m_e;
|
||||
|
||||
// Band pointers.
|
||||
float ** m_band;
|
||||
|
||||
};
|
||||
|
||||
|
||||
} // nv namespace
|
||||
|
||||
#endif // NV_MATH_SPHERICALHARMONIC_H
|
@ -6,7 +6,7 @@
|
||||
|
||||
#include "nvcore/nvcore.h"
|
||||
#include "nvcore/Debug.h" // nvDebugCheck
|
||||
#include "nvcore/Utils.h" // clamp
|
||||
#include "nvcore/Utils.h" // max, clamp
|
||||
|
||||
#include <math.h>
|
||||
|
||||
@ -109,7 +109,7 @@ namespace nv
|
||||
inline bool equal(const float f0, const float f1, const float epsilon = NV_EPSILON)
|
||||
{
|
||||
//return fabs(f0-f1) <= epsilon;
|
||||
return fabs(f0-f1) <= epsilon * max(1.0f, fabs(f0), fabs(f1));
|
||||
return fabs(f0-f1) <= epsilon * max(1.0f, fabsf(f0), fabsf(f1));
|
||||
}
|
||||
|
||||
inline bool isZero(const float f, const float epsilon = NV_EPSILON)
|
||||
|
@ -7,7 +7,7 @@
|
||||
|
||||
using namespace nv;
|
||||
|
||||
#define ENABLE_PARALLEL_FOR 1
|
||||
#define ENABLE_PARALLEL_FOR 0
|
||||
|
||||
|
||||
void worker(void * arg) {
|
||||
|
@ -37,6 +37,199 @@ using namespace nvtt;
|
||||
|
||||
|
||||
|
||||
// Solid angle of an axis aligned quad from (0,0,1) to (x,y,1)
|
||||
// See: http://www.fizzmoll11.com/thesis/ for a derivation of this formula.
|
||||
static float areaElement(float x, float y) {
|
||||
return atan2(x*y, sqrtf(x*x + y*y + 1));
|
||||
}
|
||||
|
||||
// Solid angle of a hemicube texel.
|
||||
static float solidAngleTerm(uint x, uint y, float inverseEdgeLength) {
|
||||
// Transform x,y to [-1, 1] range, offset by 0.5 to point to texel center.
|
||||
float u = (float(x) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
|
||||
float v = (float(y) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
|
||||
nvDebugCheck(u >= -1.0f && u <= 1.0f);
|
||||
nvDebugCheck(v >= -1.0f && v <= 1.0f);
|
||||
|
||||
#if 1
|
||||
// Exact solid angle:
|
||||
float x0 = u - inverseEdgeLength;
|
||||
float y0 = v - inverseEdgeLength;
|
||||
float x1 = u + inverseEdgeLength;
|
||||
float y1 = v + inverseEdgeLength;
|
||||
float solidAngle = areaElement(x0, y0) - areaElement(x0, y1) - areaElement(x1, y0) + areaElement(x1, y1);
|
||||
nvDebugCheck(solidAngle > 0.0f);
|
||||
|
||||
return solidAngle;
|
||||
#else
|
||||
// This formula is equivalent, but not as precise.
|
||||
float pixel_area = nv::square(2.0f * inverseEdgeLength);
|
||||
float dist_square = 1.0f + nv::square(u) + nv::square(v);
|
||||
float cos_theta = 1.0f / sqrt(dist_square);
|
||||
float cos_theta_d2 = cos_theta / dist_square; // Funny this is just 1/dist^3 or cos(tetha)^3
|
||||
|
||||
return pixel_area * cos_theta_d2;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static Vector3 texelDirection(uint face, uint x, uint y, int edgeLength, bool seamless)
|
||||
{
|
||||
float u, v;
|
||||
if (seamless) {
|
||||
// Transform x,y to [-1, 1] range, match up edges exactly.
|
||||
u = float(x) * 2 / (edgeLength - 1) - 1.0f;
|
||||
v = float(y) * 2 / (edgeLength - 1) - 1.0f;
|
||||
}
|
||||
else {
|
||||
// Transform x,y to [-1, 1] range, offset by 0.5 to point to texel center.
|
||||
u = (float(x) + 0.5f) * (2 / edgeLength) - 1.0f;
|
||||
v = (float(y) + 0.5f) * (2 / edgeLength) - 1.0f;
|
||||
}
|
||||
nvDebugCheck(u >= -1.0f && u <= 1.0f);
|
||||
nvDebugCheck(v >= -1.0f && v <= 1.0f);
|
||||
|
||||
Vector3 n;
|
||||
|
||||
if (face == 0) {
|
||||
n.x = 1;
|
||||
n.y = -v;
|
||||
n.z = -u;
|
||||
}
|
||||
if (face == 1) {
|
||||
n.x = -1;
|
||||
n.y = -v;
|
||||
n.z = u;
|
||||
}
|
||||
|
||||
if (face == 2) {
|
||||
n.x = u;
|
||||
n.y = 1;
|
||||
n.z = v;
|
||||
}
|
||||
if (face == 3) {
|
||||
n.x = u;
|
||||
n.y = -1;
|
||||
n.z = -v;
|
||||
}
|
||||
|
||||
if (face == 4) {
|
||||
n.x = u;
|
||||
n.y = -v;
|
||||
n.z = 1;
|
||||
}
|
||||
if (face == 5) {
|
||||
n.x = -u;
|
||||
n.y = -v;
|
||||
n.z = -1;
|
||||
}
|
||||
|
||||
return normalizeFast(n);
|
||||
}
|
||||
|
||||
|
||||
TexelTable::TexelTable(uint edgeLength, bool seamless) : size(edgeLength) {
|
||||
|
||||
uint hsize = size/2;
|
||||
|
||||
// Allocate a small solid angle table that takes into account cube map symmetry.
|
||||
solidAngleArray.resize(hsize * hsize);
|
||||
|
||||
for (uint y = 0; y < hsize; y++) {
|
||||
for (uint x = 0; x < hsize; x++) {
|
||||
solidAngleArray[y * hsize + x] = solidAngleTerm(hsize+x, hsize+y, edgeLength);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
directionArray.resize(size*size*6);
|
||||
|
||||
for (uint f = 0; f < 6; f++) {
|
||||
for (uint y = 0; y < size; y++) {
|
||||
for (uint x = 0; x < size; x++) {
|
||||
directionArray[(f * size + y) * size + x] = texelDirection(f, x, y, edgeLength, seamless);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
const Vector3 & TexelTable::direction(uint f, uint x, uint y) const {
|
||||
nvDebugCheck(f < 6 && x < size && y < size);
|
||||
return directionArray[(f * size + y) * size + x];
|
||||
}
|
||||
|
||||
float TexelTable::solidAngle(uint f, uint x, uint y) const {
|
||||
uint hsize = size/2;
|
||||
if (x >= hsize) x -= hsize;
|
||||
else if (x < hsize) x = hsize - x - 1;
|
||||
if (y >= hsize) y -= hsize;
|
||||
else if (y < hsize) y = hsize - y - 1;
|
||||
|
||||
return solidAngleArray[y * hsize + x];
|
||||
}
|
||||
|
||||
|
||||
static const Vector3 faceNormals[6] = {
|
||||
Vector3(1, 0, 0),
|
||||
Vector3(-1, 0, 0),
|
||||
Vector3(0, 1, 0),
|
||||
Vector3(0, -1, 0),
|
||||
Vector3(0, 0, 1),
|
||||
Vector3(0, 0, -1),
|
||||
};
|
||||
|
||||
static const Vector3 faceU[6] = {
|
||||
Vector3(0, 0, -1),
|
||||
Vector3(0, 0, 1),
|
||||
Vector3(1, 0, 0),
|
||||
Vector3(1, 0, 0),
|
||||
Vector3(1, 0, 0),
|
||||
Vector3(-1, 0, 0),
|
||||
};
|
||||
|
||||
static const Vector3 faceV[6] = {
|
||||
Vector3(0, -1, 0),
|
||||
Vector3(0, -1, 0),
|
||||
Vector3(0, 0, 1),
|
||||
Vector3(0, 0, -1),
|
||||
Vector3(0, -1, 0),
|
||||
Vector3(0, -1, 0),
|
||||
};
|
||||
|
||||
|
||||
static Vector2 toPolar(Vector3::Arg v) {
|
||||
Vector2 p;
|
||||
p.x = atan2(v.x, v.y); // theta
|
||||
p.y = acosf(v.z); // phi
|
||||
return p;
|
||||
}
|
||||
|
||||
static Vector2 toPlane(float theta, float phi) {
|
||||
float x = sin(phi) * cos(theta);
|
||||
float y = sin(phi) * sin(theta);
|
||||
float z = cos(phi);
|
||||
|
||||
Vector2 p;
|
||||
p.x = x / fabs(z);
|
||||
p.y = y / fabs(z);
|
||||
//p.x = tan(phi) * cos(theta);
|
||||
//p.y = tan(phi) * sin(theta);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
static Vector2 toPlane(Vector3::Arg v) {
|
||||
Vector2 p;
|
||||
p.x = v.x / fabs(v.z);
|
||||
p.y = v.y / fabs(v.z);
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
CubeSurface::CubeSurface() : m(new CubeSurface::Private())
|
||||
{
|
||||
@ -183,169 +376,50 @@ Surface CubeSurface::unfold(CubeLayout layout) const
|
||||
}
|
||||
|
||||
|
||||
float CubeSurface::average(int channel) const
|
||||
#include "nvmath/SphericalHarmonic.h"
|
||||
|
||||
CubeSurface CubeSurface::irradianceFilter(int size, bool seamless) const
|
||||
{
|
||||
m->allocateTexelTable();
|
||||
|
||||
// Transform this cube to spherical harmonic basis
|
||||
Sh2 sh;
|
||||
|
||||
// For each texel of the input cube.
|
||||
const uint edgeLength = m->edgeLength;
|
||||
for (uint f = 0; f < 6; f++) {
|
||||
for (int y = 0; y < edgeLength; y++) {
|
||||
for (int x = 0; x < edgeLength; x++) {
|
||||
|
||||
// These tables along with the surface so that we only compute them once.
|
||||
if (m->solidAngleTable == NULL) {
|
||||
m->solidAngleTable = new SolidAngleTable(edgeLength);
|
||||
}
|
||||
Vector3 dir = m->texelTable->direction(f, x, y);
|
||||
float solidAngle = m->texelTable->solidAngle(f, x, y);
|
||||
|
||||
float total = 0.0f;
|
||||
float sum = 0.0f;
|
||||
Sh2 shDir;
|
||||
shDir.eval(dir);
|
||||
|
||||
for (int f = 0; f < 6; f++) {
|
||||
float * c = m->face[f].m->image->channel(channel);
|
||||
|
||||
for (uint y = 0; y < edgeLength; y++) {
|
||||
for (uint x = 0; x < edgeLength; x++) {
|
||||
float solidAngle = m->solidAngleTable->lookup(x, y);
|
||||
|
||||
total += solidAngle;
|
||||
sum += c[y * edgeLength + x] * solidAngle;
|
||||
sh.addScaled(sh, solidAngle);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return sum / total;
|
||||
}
|
||||
|
||||
// Evaluate spherical harmonic for each output texel.
|
||||
CubeSurface output;
|
||||
output.m->allocate(size);
|
||||
|
||||
|
||||
|
||||
|
||||
CubeSurface CubeSurface::irradianceFilter(int size) const
|
||||
{
|
||||
// @@ TODO
|
||||
return CubeSurface();
|
||||
}
|
||||
|
||||
|
||||
// Warp uv coordinate from [-1, 1] to
|
||||
float warp(float u, int size) {
|
||||
|
||||
// Solid angle of an axis aligned quad from (0,0,1) to (x,y,1)
|
||||
// See: http://www.fizzmoll11.com/thesis/ for a derivation of this formula.
|
||||
static float areaElement(float x, float y) {
|
||||
return atan2(x*y, sqrtf(x*x + y*y + 1));
|
||||
}
|
||||
|
||||
// Solid angle of a hemicube texel.
|
||||
static float solidAngleTerm(uint x, uint y, float inverseEdgeLength) {
|
||||
// Transform x,y to [-1, 1] range, offset by 0.5 to point to texel center.
|
||||
float u = (float(x) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
|
||||
float v = (float(y) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
|
||||
nvDebugCheck(u >= -1.0f && u <= 1.0f);
|
||||
nvDebugCheck(v >= -1.0f && v <= 1.0f);
|
||||
|
||||
#if 1
|
||||
// Exact solid angle:
|
||||
float x0 = u - inverseEdgeLength;
|
||||
float y0 = v - inverseEdgeLength;
|
||||
float x1 = u + inverseEdgeLength;
|
||||
float y1 = v + inverseEdgeLength;
|
||||
float solidAngle = areaElement(x0, y0) - areaElement(x0, y1) - areaElement(x1, y0) + areaElement(x1, y1);
|
||||
nvDebugCheck(solidAngle > 0.0f);
|
||||
|
||||
return solidAngle;
|
||||
#else
|
||||
// This formula is equivalent, but not as precise.
|
||||
float pixel_area = nv::square(2.0f * inverseEdgeLength);
|
||||
float dist_square = 1.0f + nv::square(u) + nv::square(v);
|
||||
float cos_theta = 1.0f / sqrt(dist_square);
|
||||
float cos_theta_d2 = cos_theta / dist_square; // Funny this is just 1/dist^3 or cos(tetha)^3
|
||||
|
||||
return pixel_area * cos_theta_d2;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
// Small solid angle table that takes into account cube map symmetry.
|
||||
SolidAngleTable::SolidAngleTable(uint edgeLength) : size(edgeLength/2) {
|
||||
// Allocate table.
|
||||
data.resize(size * size);
|
||||
|
||||
// Init table.
|
||||
const float inverseEdgeLength = 1.0f / edgeLength;
|
||||
|
||||
for (uint y = 0; y < size; y++) {
|
||||
for (uint x = 0; x < size; x++) {
|
||||
data[y * size + x] = solidAngleTerm(size+x, size+y, inverseEdgeLength);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float SolidAngleTable::lookup(uint x, uint y) const {
|
||||
if (x >= size) x -= size;
|
||||
else if (x < size) x = size - x - 1;
|
||||
if (y >= size) y -= size;
|
||||
else if (y < size) y = size - y - 1;
|
||||
|
||||
return data[y * size + x];
|
||||
}
|
||||
|
||||
|
||||
static Vector3 texelDirection(uint face, uint x, uint y, float inverseEdgeLength)
|
||||
{
|
||||
// Transform x,y to [-1, 1] range, offset by 0.5 to point to texel center.
|
||||
float u = (float(x) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
|
||||
float v = (float(y) + 0.5f) * (2 * inverseEdgeLength) - 1.0f;
|
||||
nvDebugCheck(u >= -1.0f && u <= 1.0f);
|
||||
nvDebugCheck(v >= -1.0f && v <= 1.0f);
|
||||
|
||||
Vector3 n;
|
||||
|
||||
if (face == 0) {
|
||||
n.x = 1;
|
||||
n.y = -v;
|
||||
n.z = -u;
|
||||
}
|
||||
if (face == 1) {
|
||||
n.x = -1;
|
||||
n.y = -v;
|
||||
n.z = u;
|
||||
}
|
||||
|
||||
if (face == 2) {
|
||||
n.x = u;
|
||||
n.y = 1;
|
||||
n.z = v;
|
||||
}
|
||||
if (face == 3) {
|
||||
n.x = u;
|
||||
n.y = -1;
|
||||
n.z = -v;
|
||||
}
|
||||
|
||||
if (face == 4) {
|
||||
n.x = u;
|
||||
n.y = -v;
|
||||
n.z = 1;
|
||||
}
|
||||
if (face == 5) {
|
||||
n.x = -u;
|
||||
n.y = -v;
|
||||
n.z = -1;
|
||||
}
|
||||
|
||||
return normalizeFast(n);
|
||||
}
|
||||
|
||||
|
||||
VectorTable::VectorTable(uint edgeLength) : size(edgeLength) {
|
||||
float invEdgeLength = 1.0f / edgeLength;
|
||||
|
||||
data.resize(size*size*6);
|
||||
|
||||
for (uint f = 0; f < 6; f++) {
|
||||
for (uint y = 0; y < size; y++) {
|
||||
for (uint x = 0; x < size; x++) {
|
||||
data[(f * size + y) * size + x] = texelDirection(f, x, y, invEdgeLength);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const Vector3 & VectorTable::lookup(uint f, uint x, uint y) const {
|
||||
nvDebugCheck(f < 6 && x < size && y < size);
|
||||
return data[(f * size + y) * size + x];
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -359,68 +433,9 @@ const Vector3 & VectorTable::lookup(uint f, uint x, uint y) const {
|
||||
// -
|
||||
|
||||
// Other speedups:
|
||||
// - parallelize.
|
||||
// - parallelize. Done.
|
||||
// - use ISPC?
|
||||
|
||||
static const Vector3 faceNormals[6] = {
|
||||
Vector3(1, 0, 0),
|
||||
Vector3(-1, 0, 0),
|
||||
Vector3(0, 1, 0),
|
||||
Vector3(0, -1, 0),
|
||||
Vector3(0, 0, 1),
|
||||
Vector3(0, 0, -1),
|
||||
};
|
||||
|
||||
static const Vector3 faceU[6] = {
|
||||
Vector3(0, 0, -1),
|
||||
Vector3(0, 0, 1),
|
||||
Vector3(1, 0, 0),
|
||||
Vector3(1, 0, 0),
|
||||
Vector3(1, 0, 0),
|
||||
Vector3(-1, 0, 0),
|
||||
};
|
||||
|
||||
static const Vector3 faceV[6] = {
|
||||
Vector3(0, -1, 0),
|
||||
Vector3(0, -1, 0),
|
||||
Vector3(0, 0, 1),
|
||||
Vector3(0, 0, -1),
|
||||
Vector3(0, -1, 0),
|
||||
Vector3(0, -1, 0),
|
||||
};
|
||||
|
||||
|
||||
static Vector2 toPolar(Vector3::Arg v) {
|
||||
Vector2 p;
|
||||
p.x = atan2(v.x, v.y); // theta
|
||||
p.y = acosf(v.z); // phi
|
||||
return p;
|
||||
}
|
||||
|
||||
static Vector2 toPlane(float theta, float phi) {
|
||||
float x = sin(phi) * cos(theta);
|
||||
float y = sin(phi) * sin(theta);
|
||||
float z = cos(phi);
|
||||
|
||||
Vector2 p;
|
||||
p.x = x / fabs(z);
|
||||
p.y = y / fabs(z);
|
||||
//p.x = tan(phi) * cos(theta);
|
||||
//p.y = tan(phi) * sin(theta);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
static Vector2 toPlane(Vector3::Arg v) {
|
||||
Vector2 p;
|
||||
p.x = v.x / fabs(v.z);
|
||||
p.y = v.y / fabs(v.z);
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// Convolve filter against this cube.
|
||||
Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir, float coneAngle, float cosinePower)
|
||||
{
|
||||
@ -503,7 +518,7 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
|
||||
// Focal point in polar coordinates:
|
||||
Vector2 Fp = toPolar(F);
|
||||
nvCheck(Fp.y >= 0.0f); // top
|
||||
//nvCheck(Fp.y <= PI/2); // horizon @@ We should cull this earlier.
|
||||
nvCheck(Fp.y <= PI/2); // horizon
|
||||
|
||||
// If this is an ellipse:
|
||||
if (Fp.y + coneAngle < PI/2) {
|
||||
@ -589,11 +604,11 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
|
||||
bool inside = false;
|
||||
for (int x = x0; x <= x1; x++) {
|
||||
|
||||
Vector3 dir = vectorTable->lookup(f, x, y);
|
||||
Vector3 dir = texelTable->direction(f, x, y);
|
||||
float cosineAngle = dot(dir, filterDir);
|
||||
|
||||
if (cosineAngle > cosineConeAngle) {
|
||||
float solidAngle = solidAngleTable->lookup(x, y);
|
||||
float solidAngle = texelTable->solidAngle(f, x, y);
|
||||
float scale = powf(saturate(cosineAngle), cosinePower);
|
||||
float contribution = solidAngle * scale;
|
||||
|
||||
@ -641,7 +656,7 @@ void ApplyCosinePowerFilterTask(void * context, int id)
|
||||
nvtt::Surface & filteredFace = ctx->filteredCube->face[f];
|
||||
FloatImage * filteredImage = filteredFace.m->image;
|
||||
|
||||
const Vector3 filterDir = texelDirection(f, x, y, 1.0f / size);
|
||||
const Vector3 filterDir = texelDirection(f, x, y, size, ctx->filteredCube->seamless);
|
||||
|
||||
// Convolve filter against cube.
|
||||
Vector3 color = ctx->inputCube->applyCosinePowerFilter(filterDir, ctx->coneAngle, ctx->cosinePower);
|
||||
@ -652,33 +667,22 @@ void ApplyCosinePowerFilterTask(void * context, int id)
|
||||
}
|
||||
|
||||
|
||||
CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
|
||||
CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower, bool seamless) const
|
||||
{
|
||||
const uint edgeLength = m->edgeLength;
|
||||
|
||||
// Allocate output cube.
|
||||
CubeSurface filteredCube;
|
||||
filteredCube.m->allocate(size);
|
||||
filteredCube.m->seamless = seamless;
|
||||
|
||||
// These tables along with the surface so that we only compute them once.
|
||||
if (m->solidAngleTable == NULL) {
|
||||
m->solidAngleTable = new SolidAngleTable(edgeLength);
|
||||
}
|
||||
if (m->vectorTable == NULL) {
|
||||
m->vectorTable = new VectorTable(edgeLength);
|
||||
}
|
||||
// Texel table is stored along with the surface so that it's compute only once.
|
||||
m->allocateTexelTable();
|
||||
|
||||
const float threshold = 0.001f;
|
||||
const float coneAngle = acosf(powf(threshold, 1.0f/cosinePower));
|
||||
|
||||
|
||||
#if 1
|
||||
// Gather approach. This should be easier to parallelize, because there's no contention in the filtered output.
|
||||
|
||||
// For each texel of the output cube.
|
||||
// - Determine what texels of the input cube contribute to it.
|
||||
// - Add weighted contributions. Normalize.
|
||||
|
||||
// For each texel of the output cube.
|
||||
/*for (uint f = 0; f < 6; f++) {
|
||||
nvtt::Surface filteredFace = filteredCube.m->face[f];
|
||||
@ -687,10 +691,10 @@ CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
|
||||
for (uint y = 0; y < uint(size); y++) {
|
||||
for (uint x = 0; x < uint(size); x++) {
|
||||
|
||||
const Vector3 filterDir = texelDirection(f, x, y, 1.0f / size);
|
||||
const Vector3 filterDir = texelDirection(f, x, y, size, seamless);
|
||||
|
||||
// Convolve filter against cube.
|
||||
Vector3 color = m->applyCosinePowerFilter(filterDir, coneAngle, cosinePower);
|
||||
Vector3 color = m->applyCosinePowerFilter(filterDir, coneAngle, cosinePower, seamless);
|
||||
|
||||
filteredImage->pixel(0, x, y, 0) = color.x;
|
||||
filteredImage->pixel(1, x, y, 0) = color.y;
|
||||
@ -708,68 +712,6 @@ CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
|
||||
nv::ParallelFor parallelFor(ApplyCosinePowerFilterTask, &context);
|
||||
parallelFor.run(6 * size * size);
|
||||
|
||||
#else
|
||||
// Scatter approach.
|
||||
|
||||
// For each texel of the input cube.
|
||||
// - Lookup our solid angle.
|
||||
// - Determine to what texels of the output cube we contribute.
|
||||
// - Add our contribution to the texels whose power is above threshold.
|
||||
|
||||
for (uint f = 0; f < 6; f++) {
|
||||
const Surface & face = m->face[f];
|
||||
|
||||
for (uint y = 0; y < edgeLength; y++) {
|
||||
for (uint x = 0; x < edgeLength; x++) {
|
||||
float solidAngle = solidAngleTable.lookup(x, y);
|
||||
float r = face.m->image->pixel(0, x, y, 0) * solidAngle;;
|
||||
float g = face.m->image->pixel(1, x, y, 0) * solidAngle;;
|
||||
float b = face.m->image->pixel(2, x, y, 0) * solidAngle;;
|
||||
|
||||
Vector3 texelDir = texelDirection(f, x, y, 1.0f / edgeLength);
|
||||
|
||||
for (uint ff = 0; ff < 6; ff++) {
|
||||
FloatImage * filteredFace = filteredCube.m->face[ff].m->image;
|
||||
|
||||
for (uint yy = 0; yy < uint(size); yy++) {
|
||||
for (uint xx = 0; xx < uint(size); xx++) {
|
||||
|
||||
Vector3 filterDir = texelDirection(ff, xx, yy, 1.0f / size);
|
||||
|
||||
float scale = powf(saturate(dot(texelDir, filterDir)), cosinePower);
|
||||
|
||||
if (scale > threshold) {
|
||||
filteredFace->pixel(0, xx, yy, 0) += r * scale;
|
||||
filteredFace->pixel(1, xx, yy, 0) += g * scale;
|
||||
filteredFace->pixel(2, xx, yy, 0) += b * scale;
|
||||
filteredFace->pixel(3, xx, yy, 0) += solidAngle * scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize contributions.
|
||||
for (uint f = 0; f < 6; f++) {
|
||||
FloatImage * filteredFace = filteredCube.m->face[f].m->image;
|
||||
|
||||
for (int i = 0; i < size*size; i++) {
|
||||
float & r = filteredFace->pixel(0, i);
|
||||
float & g = filteredFace->pixel(1, i);
|
||||
float & b = filteredFace->pixel(2, i);
|
||||
float & sum = filteredFace->pixel(3, i);
|
||||
float isum = 1.0f / sum;
|
||||
r *= isum;
|
||||
g *= isum;
|
||||
b *= isum;
|
||||
sum = 1;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
return filteredCube;
|
||||
}
|
||||
|
||||
|
@ -38,21 +38,15 @@
|
||||
|
||||
namespace nvtt
|
||||
{
|
||||
struct SolidAngleTable {
|
||||
SolidAngleTable(uint edgeLength);
|
||||
float lookup(uint x, uint y) const;
|
||||
struct TexelTable {
|
||||
TexelTable(uint edgeLength, bool seamless);
|
||||
|
||||
float solidAngle(uint f, uint x, uint y) const;
|
||||
const nv::Vector3 & direction(uint f, uint x, uint y) const;
|
||||
|
||||
uint size;
|
||||
nv::Array<float> data;
|
||||
|
||||
};
|
||||
|
||||
struct VectorTable {
|
||||
VectorTable(uint edgeLength);
|
||||
const nv::Vector3 & lookup(uint f, uint x, uint y) const;
|
||||
|
||||
uint size;
|
||||
nv::Array<nv::Vector3> data;
|
||||
nv::Array<float> solidAngleArray;
|
||||
nv::Array<nv::Vector3> directionArray;
|
||||
};
|
||||
|
||||
|
||||
@ -65,24 +59,23 @@ namespace nvtt
|
||||
nvDebugCheck( refCount() == 0 );
|
||||
|
||||
edgeLength = 0;
|
||||
solidAngleTable = NULL;
|
||||
vectorTable = NULL;
|
||||
seamless = false;
|
||||
texelTable = NULL;
|
||||
}
|
||||
Private(const Private & p) : RefCounted() // Copy ctor. inits refcount to 0.
|
||||
{
|
||||
nvDebugCheck( refCount() == 0 );
|
||||
|
||||
edgeLength = p.edgeLength;
|
||||
seamless = p.seamless;
|
||||
for (uint i = 0; i < 6; i++) {
|
||||
face[i] = p.face[i];
|
||||
}
|
||||
solidAngleTable = NULL; // @@ Transfer tables. Needs refcounting?
|
||||
vectorTable = NULL;
|
||||
texelTable = NULL; // @@ Transfer tables. Needs refcounting?
|
||||
}
|
||||
~Private()
|
||||
{
|
||||
delete solidAngleTable;
|
||||
delete vectorTable;
|
||||
delete texelTable;
|
||||
}
|
||||
|
||||
void allocate(uint edgeLength)
|
||||
@ -95,13 +88,20 @@ namespace nvtt
|
||||
}
|
||||
}
|
||||
|
||||
void allocateTexelTable()
|
||||
{
|
||||
if (texelTable == NULL) {
|
||||
texelTable = new TexelTable(edgeLength, seamless);
|
||||
}
|
||||
}
|
||||
|
||||
// Filtering helpers:
|
||||
nv::Vector3 applyCosinePowerFilter(const nv::Vector3 & dir, float coneAngle, float cosinePower);
|
||||
|
||||
uint edgeLength;
|
||||
bool seamless;
|
||||
Surface face[6];
|
||||
SolidAngleTable * solidAngleTable;
|
||||
VectorTable * vectorTable;
|
||||
TexelTable * texelTable;
|
||||
};
|
||||
|
||||
} // nvtt namespace
|
||||
|
@ -548,6 +548,7 @@ namespace nvtt
|
||||
NVTT_API bool isNull() const;
|
||||
NVTT_API int edgeLength() const;
|
||||
NVTT_API int countMipmaps() const;
|
||||
NVTT_API bool isSeamless() const;
|
||||
|
||||
// Texture data.
|
||||
NVTT_API bool load(const char * fileName, int mipmap);
|
||||
@ -569,8 +570,8 @@ namespace nvtt
|
||||
NVTT_API float average(int channel) const;
|
||||
|
||||
// Filtering.
|
||||
NVTT_API CubeSurface irradianceFilter(int size) const;
|
||||
NVTT_API CubeSurface cosinePowerFilter(int size, float cosinePower) const;
|
||||
NVTT_API CubeSurface irradianceFilter(int size, bool seamless) const;
|
||||
NVTT_API CubeSurface cosinePowerFilter(int size, float cosinePower, bool seamless) const;
|
||||
|
||||
|
||||
/*
|
||||
|
@ -86,7 +86,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
printf("filtering step: %d/%d\n", m+1, mipmapCount);
|
||||
|
||||
filteredEnvmap[m] = envmap.cosinePowerFilter(size, cosine_power);
|
||||
filteredEnvmap[m] = envmap.cosinePowerFilter(size, cosine_power, false);
|
||||
filteredEnvmap[m].toGamma(2.2f);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user