Fix 4 means clustering.
This commit is contained in:
parent
a302475fa6
commit
d4a713451e
@ -3,6 +3,7 @@
|
|||||||
#include "Fitting.h"
|
#include "Fitting.h"
|
||||||
|
|
||||||
#include <nvcore/Algorithms.h> // max
|
#include <nvcore/Algorithms.h> // max
|
||||||
|
#include <nvcore/Containers.h> // swap
|
||||||
#include <float.h> // FLT_MAX
|
#include <float.h> // FLT_MAX
|
||||||
|
|
||||||
using namespace nv;
|
using namespace nv;
|
||||||
@ -78,7 +79,7 @@ Vector3 nv::ComputePrincipalComponent(int n, const Vector3 * points, const float
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
void nv::Compute4Means(int n, const Vector3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster)
|
int nv::Compute4Means(int n, const Vector3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster)
|
||||||
{
|
{
|
||||||
Vector3 centroid = ComputeCentroid(n, points, weights, metric);
|
Vector3 centroid = ComputeCentroid(n, points, weights, metric);
|
||||||
|
|
||||||
@ -90,7 +91,7 @@ void nv::Compute4Means(int n, const Vector3 * points, const float * weights, Vec
|
|||||||
mini = maxi = 0;
|
mini = maxi = 0;
|
||||||
|
|
||||||
float mindps, maxdps;
|
float mindps, maxdps;
|
||||||
mindps = maxdps = dot(points[0], principal);
|
mindps = maxdps = dot(points[0] - centroid, principal);
|
||||||
|
|
||||||
for (int i = 1; i < n; ++i)
|
for (int i = 1; i < n; ++i)
|
||||||
{
|
{
|
||||||
@ -106,13 +107,15 @@ void nv::Compute4Means(int n, const Vector3 * points, const float * weights, Vec
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//cluster[0] = points[mini];
|
||||||
|
//cluster[1] = points[maxi];
|
||||||
cluster[0] = centroid + mindps * principal;
|
cluster[0] = centroid + mindps * principal;
|
||||||
cluster[3] = centroid + maxdps * principal;
|
cluster[1] = centroid + maxdps * principal;
|
||||||
cluster[1] = (2 * cluster[0] + cluster[1]) / 3;
|
cluster[2] = (2 * cluster[0] + cluster[1]) / 3;
|
||||||
cluster[2] = (2 * cluster[1] + cluster[0]) / 3;
|
cluster[3] = (2 * cluster[1] + cluster[0]) / 3;
|
||||||
|
|
||||||
// Now we have to iteratively refine the clusters.
|
// Now we have to iteratively refine the clusters.
|
||||||
while(true)
|
while (true)
|
||||||
{
|
{
|
||||||
Vector3 newCluster[4] = { Vector3(zero), Vector3(zero), Vector3(zero), Vector3(zero) };
|
Vector3 newCluster[4] = { Vector3(zero), Vector3(zero), Vector3(zero), Vector3(zero) };
|
||||||
float total[4] = {0, 0, 0, 0};
|
float total[4] = {0, 0, 0, 0};
|
||||||
@ -141,15 +144,119 @@ void nv::Compute4Means(int n, const Vector3 * points, const float * weights, Vec
|
|||||||
newCluster[j] /= total[j];
|
newCluster[j] /= total[j];
|
||||||
}
|
}
|
||||||
|
|
||||||
if (equal(cluster[0], newCluster[0]) && equal(cluster[3], newCluster[3]))
|
if ((equal(cluster[0], newCluster[0]) || total[0] == 0) &&
|
||||||
|
(equal(cluster[1], newCluster[1]) || total[1] == 0) &&
|
||||||
|
(equal(cluster[2], newCluster[2]) || total[2] == 0) &&
|
||||||
|
(equal(cluster[3], newCluster[3]) || total[3] == 0))
|
||||||
{
|
{
|
||||||
break;
|
return (total[0] != 0) + (total[1] != 0) + (total[2] != 0) + (total[3] != 0);
|
||||||
}
|
}
|
||||||
|
|
||||||
// @@ We should choose the optimal assignment.
|
|
||||||
cluster[0] = newCluster[0];
|
cluster[0] = newCluster[0];
|
||||||
|
cluster[1] = newCluster[1];
|
||||||
|
cluster[2] = newCluster[2];
|
||||||
cluster[3] = newCluster[3];
|
cluster[3] = newCluster[3];
|
||||||
cluster[1] = (2 * cluster[0] + cluster[1]) / 3;
|
|
||||||
cluster[2] = (2 * cluster[1] + cluster[0]) / 3;
|
// Sort clusters by weight.
|
||||||
|
for (int i = 0; i < 4; i++)
|
||||||
|
{
|
||||||
|
for (int j = i; j > 0 && total[j] > total[j - 1]; j--)
|
||||||
|
{
|
||||||
|
swap( total[j], total[j - 1] );
|
||||||
|
swap( cluster[j], cluster[j - 1] );
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
int nv::Compute2Means(int n, const Vector3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster)
|
||||||
|
{
|
||||||
|
Vector3 centroid = ComputeCentroid(n, points, weights, metric);
|
||||||
|
|
||||||
|
// Compute principal component.
|
||||||
|
Vector3 principal = ComputePrincipalComponent(n, points, weights, metric);
|
||||||
|
|
||||||
|
// Pick initial solution.
|
||||||
|
int mini, maxi;
|
||||||
|
mini = maxi = 0;
|
||||||
|
|
||||||
|
float mindps, maxdps;
|
||||||
|
mindps = maxdps = dot(points[0] - centroid, principal);
|
||||||
|
|
||||||
|
for (int i = 1; i < n; ++i)
|
||||||
|
{
|
||||||
|
float dps = dot(points[i] - centroid, principal);
|
||||||
|
|
||||||
|
if (dps < mindps) {
|
||||||
|
mindps = dps;
|
||||||
|
mini = i;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
maxdps = dps;
|
||||||
|
maxi = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cluster[0] = points[mini];
|
||||||
|
cluster[3] = points[maxi];
|
||||||
|
//cluster[0] = centroid + mindps * principal;
|
||||||
|
//cluster[1] = centroid + maxdps * principal;
|
||||||
|
cluster[2] = (2 * cluster[0] + cluster[1]) / 3;
|
||||||
|
cluster[3] = (2 * cluster[1] + cluster[0]) / 3;
|
||||||
|
|
||||||
|
// Now we have to iteratively refine the clusters.
|
||||||
|
while (true)
|
||||||
|
{
|
||||||
|
Vector3 newCluster[4] = { Vector3(zero), Vector3(zero), Vector3(zero), Vector3(zero) };
|
||||||
|
float total[4] = {0, 0, 0, 0};
|
||||||
|
|
||||||
|
for (int i = 0; i < n; ++i)
|
||||||
|
{
|
||||||
|
// Find nearest cluster.
|
||||||
|
int nearest = 0;
|
||||||
|
float mindist = FLT_MAX;
|
||||||
|
for (int j = 0; j < 4; j++)
|
||||||
|
{
|
||||||
|
float dist = length_squared(cluster[j] - points[i]);
|
||||||
|
if (dist < mindist)
|
||||||
|
{
|
||||||
|
mindist = dist;
|
||||||
|
nearest = j;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
newCluster[nearest] += weights[i] * points[i];
|
||||||
|
total[nearest] += weights[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int j = 0; j < 4; j++)
|
||||||
|
{
|
||||||
|
newCluster[j] /= total[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((equal(cluster[0], newCluster[0]) || total[0] == 0) &&
|
||||||
|
(equal(cluster[1], newCluster[1]) || total[1] == 0) &&
|
||||||
|
(equal(cluster[2], newCluster[2]) || total[2] == 0) &&
|
||||||
|
(equal(cluster[3], newCluster[3]) || total[3] == 0))
|
||||||
|
{
|
||||||
|
return (total[0] != 0) + (total[1] != 0) + (total[2] != 0) + (total[3] != 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
cluster[0] = newCluster[0];
|
||||||
|
cluster[1] = newCluster[1];
|
||||||
|
cluster[2] = newCluster[2];
|
||||||
|
cluster[3] = newCluster[3];
|
||||||
|
|
||||||
|
// Sort clusters by weight.
|
||||||
|
for (int i = 0; i < 4; i++)
|
||||||
|
{
|
||||||
|
for (int j = i; j > 0 && total[j] > total[j - 1]; j--)
|
||||||
|
{
|
||||||
|
swap( total[j], total[j - 1] );
|
||||||
|
swap( cluster[j], cluster[j - 1] );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*/
|
@ -13,7 +13,8 @@ namespace nv
|
|||||||
void ComputeCovariance(int n, const Vector3 * points, const float * weights, Vector3::Arg metric, float * covariance);
|
void ComputeCovariance(int n, const Vector3 * points, const float * weights, Vector3::Arg metric, float * covariance);
|
||||||
Vector3 ComputePrincipalComponent(int n, const Vector3 * points, const float * weights, Vector3::Arg metric);
|
Vector3 ComputePrincipalComponent(int n, const Vector3 * points, const float * weights, Vector3::Arg metric);
|
||||||
|
|
||||||
void Compute4Means(int n, const Vector3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster);
|
// Returns number of clusters [1-4].
|
||||||
|
int Compute4Means(int n, const Vector3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster);
|
||||||
|
|
||||||
} // nv namespace
|
} // nv namespace
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user