Merge internal branch.
- Remove old/unused code. - Remove format string constructors. - Better win64 support (vsscanf, prefetch, etc). - Fix radix sort to sort -0 correctly. - Add misc utilities (constraints, timer, cpuinfo, introsort).
This commit is contained in:
parent
a03411e451
commit
e5ae0c0e20
@ -3,6 +3,8 @@
|
||||
#ifndef NV_CORE_ALGORITHMS_H
|
||||
#define NV_CORE_ALGORITHMS_H
|
||||
|
||||
#include <nvcore/nvcore.h>
|
||||
|
||||
namespace nv
|
||||
{
|
||||
|
||||
@ -45,22 +47,42 @@ namespace nv
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// @@ Swap should be implemented here.
|
||||
|
||||
|
||||
#if 0
|
||||
// This does not use swap, but copies, in some cases swaps are much faster than copies!
|
||||
// Container should implement operator[], and size()
|
||||
template <class Container, class T>
|
||||
void insertionSort(Container<T> & container)
|
||||
// @@ Should swap be implemented here?
|
||||
|
||||
|
||||
|
||||
template <typename T, template <typename T> class C>
|
||||
void sort(C<T> & container)
|
||||
{
|
||||
const uint n = container.size();
|
||||
for (uint i=1; i < n; ++i)
|
||||
introsortLoop(container, 0, container.count());
|
||||
insertionSort(container, 0, container.count());
|
||||
}
|
||||
|
||||
template <typename T, template <typename T> class C>
|
||||
void sort(C<T> & container, uint begin, uint end)
|
||||
{
|
||||
if (begin < end)
|
||||
{
|
||||
introsortLoop(container, begin, end);
|
||||
insertionSort(container, begin, end);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, template <typename T> class C>
|
||||
void insertionSort(C<T> & container)
|
||||
{
|
||||
insertionSort(container, 0, container.count());
|
||||
}
|
||||
|
||||
template <typename T, template <typename T> class C>
|
||||
void insertionSort(C<T> & container, uint begin, uint end)
|
||||
{
|
||||
for (uint i = begin + 1; i != end; ++i)
|
||||
{
|
||||
T value = container[i];
|
||||
|
||||
uint j = i;
|
||||
while (j > 0 && container[j-1] > value)
|
||||
while (j != begin && container[j-1] > value)
|
||||
{
|
||||
container[j] = container[j-1];
|
||||
--j;
|
||||
@ -72,75 +94,60 @@ namespace nv
|
||||
}
|
||||
}
|
||||
|
||||
template <class Container, class T>
|
||||
void quickSort(Container<T> & container)
|
||||
{
|
||||
quickSort(container, 0, container.count());
|
||||
}
|
||||
|
||||
{
|
||||
/* threshhold for transitioning to insertion sort */
|
||||
while (n > 12) {
|
||||
int c01,c12,c,m,i,j;
|
||||
template <typename T, template <typename T> class C>
|
||||
void introsortLoop(C<T> & container, uint begin, uint end)
|
||||
{
|
||||
while (end-begin > 16)
|
||||
{
|
||||
uint p = partition(container, begin, end, medianof3(container, begin, begin+((end-begin)/2)+1, end-1));
|
||||
introsortLoop(container, p, end);
|
||||
end = p;
|
||||
}
|
||||
}
|
||||
|
||||
/* compute median of three */
|
||||
m = n >> 1;
|
||||
c = p[0] > p[m];
|
||||
c01 = c;
|
||||
c = &p[m] > &p[n-1];
|
||||
c12 = c;
|
||||
/* if 0 >= mid >= end, or 0 < mid < end, then use mid */
|
||||
if (c01 != c12) {
|
||||
/* otherwise, we'll need to swap something else to middle */
|
||||
int z;
|
||||
c = p[0] < p[n-1];
|
||||
/* 0>mid && mid<n: 0>n => n; 0<n => 0 */
|
||||
/* 0<mid && mid>n: 0>n => 0; 0<n => n */
|
||||
z = (c == c12) ? 0 : n-1;
|
||||
swap(p[z], p[m]);
|
||||
template <typename T, template <typename T> class C>
|
||||
uint partition(C<T> & a, uint begin, uint end, const T & x)
|
||||
{
|
||||
int i = begin, j = end;
|
||||
while (true)
|
||||
{
|
||||
while (a[i] < x) ++i;
|
||||
--j;
|
||||
while (x < a[j]) --j;
|
||||
if (i >= j)
|
||||
return i;
|
||||
swap(a[i], a[j]);
|
||||
i++;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, template <typename T> class C>
|
||||
const T & medianof3(C<T> & a, uint lo, uint mid, uint hi)
|
||||
{
|
||||
if (a[mid] < a[lo])
|
||||
{
|
||||
if (a[hi] < a[mid])
|
||||
{
|
||||
return a[mid];
|
||||
}
|
||||
/* now p[m] is the median-of-three */
|
||||
/* swap it to the beginning so it won't move around */
|
||||
swap(p[0], p[m]);
|
||||
|
||||
/* partition loop */
|
||||
i=1;
|
||||
j=n-1;
|
||||
for(;;) {
|
||||
/* handling of equality is crucial here */
|
||||
/* for sentinels & efficiency with duplicates */
|
||||
for (;;++i) {
|
||||
c = p[i] > p[0];
|
||||
if (!c) break;
|
||||
}
|
||||
a = &p[0];
|
||||
for (;;--j) {
|
||||
b=&p[j];
|
||||
c = p[j] > p[0]
|
||||
if (!c) break;
|
||||
}
|
||||
/* make sure we haven't crossed */
|
||||
if (i >= j) break;
|
||||
swap(p[i], p[j]);
|
||||
|
||||
++i;
|
||||
--j;
|
||||
}
|
||||
/* recurse on smaller side, iterate on larger */
|
||||
if (j < (n-i)) {
|
||||
quickSort(p, j);
|
||||
p = p+i;
|
||||
n = n-i;
|
||||
}
|
||||
else {
|
||||
quickSort(p+i, n-i);
|
||||
n = j;
|
||||
else
|
||||
{
|
||||
return (a[hi] < a[lo]) ? a[hi] : a[lo];
|
||||
}
|
||||
}
|
||||
|
||||
insertionSort();
|
||||
}
|
||||
#endif // 0
|
||||
else
|
||||
{
|
||||
if (a[hi] < a[mid])
|
||||
{
|
||||
return (a[hi] < a[lo]) ? a[lo] : a[hi];
|
||||
}
|
||||
else
|
||||
{
|
||||
return a[mid];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // nv namespace
|
||||
|
||||
|
@ -24,11 +24,14 @@ SET(CORE_SRCS
|
||||
TextReader.cpp
|
||||
TextWriter.h
|
||||
TextWriter.cpp
|
||||
Tokenizer.h
|
||||
Tokenizer.cpp
|
||||
Radix.h
|
||||
Radix.cpp
|
||||
CpuInfo.h
|
||||
CpuInfo.cpp
|
||||
Algorithms.h
|
||||
Timer.h
|
||||
Library.h
|
||||
Library.cpp
|
||||
FileSystem.h
|
||||
@ -36,6 +39,34 @@ SET(CORE_SRCS
|
||||
|
||||
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
# For Windows64 in MSVC we need to add the assembly version of vsscanf
|
||||
IF(MSVC AND NV_SYSTEM_PROCESSOR STREQUAL "AMD64")
|
||||
SET(VSSCANF_ASM_NAME "vsscanf_proxy_win64")
|
||||
IF(MSVC_IDE)
|
||||
# $(IntDir) is a macro expanded to the intermediate directory of the selected solution configuration
|
||||
SET(VSSCANF_ASM_INTDIR "$(IntDir)")
|
||||
ELSE(MSVC_IDE)
|
||||
# For some reason the NMake generator doesn't work properly with the generated .obj source:
|
||||
# it requires the absolute path. So this is a hack which worked as of cmake 2.6.0 patch 0
|
||||
GET_FILENAME_COMPONENT(VSSCANF_ASM_INTDIR
|
||||
"${nvcore_BINARY_DIR}/CMakeFiles/nvcore.dir" ABSOLUTE)
|
||||
ENDIF(MSVC_IDE)
|
||||
|
||||
SET(VSSCANF_ASM_SRC "${CMAKE_CURRENT_SOURCE_DIR}/${VSSCANF_ASM_NAME}.masm")
|
||||
SET(VSSCANF_ASM_OBJ "${VSSCANF_ASM_INTDIR}/${VSSCANF_ASM_NAME}.obj")
|
||||
|
||||
# Adds the assembly output to the sources and adds the custom command to generate it
|
||||
SET(CORE_SRCS
|
||||
${CORE_SRCS}
|
||||
${VSSCANF_ASM_OBJ}
|
||||
)
|
||||
ADD_CUSTOM_COMMAND(OUTPUT ${VSSCANF_ASM_OBJ}
|
||||
MAIN_DEPENDENCY ${VSSCANF_ASM_SRC}
|
||||
COMMAND ml64
|
||||
ARGS /nologo /Fo ${VSSCANF_ASM_OBJ} /c /Cx ${VSSCANF_ASM_SRC}
|
||||
)
|
||||
ENDIF(MSVC AND NV_SYSTEM_PROCESSOR STREQUAL "AMD64")
|
||||
|
||||
# targets
|
||||
ADD_DEFINITIONS(-DNVCORE_EXPORTS)
|
||||
|
||||
|
59
src/nvcore/Constraints.h
Normal file
59
src/nvcore/Constraints.h
Normal file
@ -0,0 +1,59 @@
|
||||
// This code is in the public domain -- castanyo@yahoo.es
|
||||
|
||||
#ifndef NV_CORE_ALGORITHMS_H
|
||||
#define NV_CORE_ALGORITHMS_H
|
||||
|
||||
#include <nvcore/nvcore.h>
|
||||
|
||||
namespace nv
|
||||
{
|
||||
// Cool constraints from "Imperfect C++"
|
||||
|
||||
// must_be_pod
|
||||
template <typename T>
|
||||
struct must_be_pod
|
||||
{
|
||||
static void constraints()
|
||||
{
|
||||
union { T T_is_not_POD_type; };
|
||||
}
|
||||
};
|
||||
|
||||
// must_be_pod_or_void
|
||||
template <typename T>
|
||||
struct must_be_pod_or_void
|
||||
{
|
||||
static void constraints()
|
||||
{
|
||||
union { T T_is_not_POD_type; };
|
||||
}
|
||||
};
|
||||
template <> struct must_be_pod_or_void<void> {};
|
||||
|
||||
// size_of
|
||||
template <typename T>
|
||||
struct size_of
|
||||
{
|
||||
enum { value = sizeof(T) };
|
||||
};
|
||||
template <>
|
||||
struct size_of<void>
|
||||
{
|
||||
enum { value = 0 };
|
||||
};
|
||||
|
||||
// must_be_same_size
|
||||
template <typename T1, typename T2>
|
||||
struct must_be_same_size
|
||||
{
|
||||
static void constraints()
|
||||
{
|
||||
const int T1_not_same_size_as_T2 = size_of<T1>::value == size_of<T2>::value;
|
||||
int i[T1_not_same_size_as_T2];
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // nv namespace
|
||||
|
||||
#endif // NV_CORE_ALGORITHMS_H
|
@ -33,30 +33,75 @@ static bool isWow64()
|
||||
#endif // NV_OS_WIN32
|
||||
|
||||
|
||||
#if NV_OS_LINUX
|
||||
#include <string.h>
|
||||
#include <sched.h>
|
||||
#endif // NV_OS_LINUX
|
||||
|
||||
#if NV_OS_DARWIN
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
#endif // NV_OS_DARWIN
|
||||
|
||||
// Initialize the data and the local defines, which are designed
|
||||
// to match the positions in cpuid
|
||||
uint CpuInfo::m_cpu = ~0x0;
|
||||
uint CpuInfo::m_procCount = 0;
|
||||
#define NV_CPUINFO_MMX_MASK (1<<23)
|
||||
#define NV_CPUINFO_SSE_MASK (1<<25)
|
||||
#define NV_CPUINFO_SSE2_MASK (1<<26)
|
||||
#define NV_CPUINFO_SSE3_MASK (1)
|
||||
|
||||
|
||||
uint CpuInfo::processorCount()
|
||||
{
|
||||
if (m_procCount == 0) {
|
||||
#if NV_OS_WIN32
|
||||
SYSTEM_INFO sysInfo;
|
||||
SYSTEM_INFO sysInfo;
|
||||
|
||||
typedef BOOL (WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
|
||||
typedef BOOL (WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
|
||||
|
||||
if (isWow64())
|
||||
{
|
||||
GetNativeSystemInfo(&sysInfo);
|
||||
}
|
||||
else
|
||||
{
|
||||
GetSystemInfo(&sysInfo);
|
||||
}
|
||||
if (isWow64())
|
||||
{
|
||||
GetNativeSystemInfo(&sysInfo);
|
||||
}
|
||||
else
|
||||
{
|
||||
GetSystemInfo(&sysInfo);
|
||||
}
|
||||
|
||||
uint count = (uint)sysInfo.dwNumberOfProcessors;
|
||||
nvDebugCheck(count >= 1);
|
||||
uint count = (uint)sysInfo.dwNumberOfProcessors;
|
||||
m_procCount = count;
|
||||
|
||||
#elif NV_OS_LINUX
|
||||
|
||||
// Code from x264 (July 6 snapshot) cpu.c:271
|
||||
uint bit;
|
||||
uint np;
|
||||
cpu_set_t p_aff;
|
||||
memset( &p_aff, 0, sizeof(p_aff) );
|
||||
sched_getaffinity( 0, sizeof(p_aff), &p_aff );
|
||||
for( np = 0, bit = 0; bit < sizeof(p_aff); bit++ )
|
||||
np += (((uint8 *)&p_aff)[bit / 8] >> (bit % 8)) & 1;
|
||||
m_procCount = np;
|
||||
|
||||
#elif NV_OS_DARWIN
|
||||
|
||||
// Code from x264 (July 6 snapshot) cpu.c:286
|
||||
uint numberOfCPUs;
|
||||
size_t length = sizeof( numberOfCPUs );
|
||||
if( sysctlbyname("hw.ncpu", &numberOfCPUs, &length, NULL, 0) )
|
||||
{
|
||||
numberOfCPUs = 1;
|
||||
}
|
||||
m_procCount = numberOfCPUs;
|
||||
|
||||
return count;
|
||||
#else
|
||||
return 1;
|
||||
m_procCount = 1;
|
||||
#endif
|
||||
}
|
||||
nvDebugCheck(m_procCount > 0);
|
||||
return m_procCount;
|
||||
}
|
||||
|
||||
uint CpuInfo::coreCount()
|
||||
@ -66,23 +111,52 @@ uint CpuInfo::coreCount()
|
||||
|
||||
bool CpuInfo::hasMMX()
|
||||
{
|
||||
return false;
|
||||
return (cpu() & NV_CPUINFO_MMX_MASK) != 0;
|
||||
}
|
||||
|
||||
bool CpuInfo::hasSSE()
|
||||
{
|
||||
return false;
|
||||
return (cpu() & NV_CPUINFO_SSE_MASK) != 0;
|
||||
}
|
||||
|
||||
bool CpuInfo::hasSSE2()
|
||||
{
|
||||
return false;
|
||||
return (cpu() & NV_CPUINFO_SSE2_MASK) != 0;
|
||||
}
|
||||
|
||||
bool CpuInfo::hasSSE3()
|
||||
{
|
||||
return false;
|
||||
return (cpu() & NV_CPUINFO_SSE3_MASK) != 0;
|
||||
}
|
||||
|
||||
inline int CpuInfo::cpu() {
|
||||
if (m_cpu == ~0x0) {
|
||||
m_cpu = 0;
|
||||
|
||||
#if NV_CC_MSVC
|
||||
int CPUInfo[4] = {-1};
|
||||
__cpuid(CPUInfo, /*InfoType*/ 1);
|
||||
|
||||
if (CPUInfo[2] & NV_CPUINFO_SSE3_MASK) {
|
||||
m_cpu |= NV_CPUINFO_SSE3_MASK;
|
||||
}
|
||||
if (CPUInfo[3] & NV_CPUINFO_MMX_MASK) {
|
||||
m_cpu |= NV_CPUINFO_MMX_MASK;
|
||||
}
|
||||
if (CPUInfo[3] & NV_CPUINFO_SSE_MASK) {
|
||||
m_cpu |= NV_CPUINFO_SSE_MASK;
|
||||
}
|
||||
if (CPUInfo[3] & NV_CPUINFO_SSE2_MASK) {
|
||||
m_cpu |= NV_CPUINFO_SSE2_MASK;
|
||||
}
|
||||
#elif NV_CC_GNUC
|
||||
// TODO: add the proper inline assembly
|
||||
#if NV_CPU_X86
|
||||
|
||||
#elif NV_CPU_X86_64
|
||||
|
||||
#endif // NV_CPU_X86_64
|
||||
#endif // NV_CC_GNUC
|
||||
}
|
||||
return m_cpu;
|
||||
}
|
||||
|
@ -18,6 +18,15 @@ namespace nv
|
||||
// CPU Information.
|
||||
class CpuInfo
|
||||
{
|
||||
protected:
|
||||
static int cpu();
|
||||
|
||||
private:
|
||||
// Cache of the CPU data
|
||||
static uint m_cpu;
|
||||
static uint m_procCount;
|
||||
|
||||
public:
|
||||
static uint processorCount();
|
||||
static uint coreCount();
|
||||
|
||||
@ -25,7 +34,6 @@ namespace nv
|
||||
static bool hasSSE();
|
||||
static bool hasSSE2();
|
||||
static bool hasSSE3();
|
||||
|
||||
};
|
||||
|
||||
#if NV_CC_MSVC
|
||||
|
@ -12,16 +12,15 @@
|
||||
|
||||
#elif NV_CC_MSVC
|
||||
|
||||
#if NV_CPU_X86
|
||||
// Uses SSE Intrinsics for both x86 and x86_64
|
||||
#include <xmmintrin.h>
|
||||
|
||||
__forceinline void nvPrefetch(const void * mem)
|
||||
{
|
||||
__asm mov ecx, mem
|
||||
__asm prefetcht0 [ecx];
|
||||
// __asm prefetchnta [ecx];
|
||||
_mm_prefetch(static_cast<const char*>(mem), _MM_HINT_T0); /* prefetcht0 */
|
||||
// _mm_prefetch(static_cast<const char*>(mem), _MM_HINT_NTA); /* prefetchnta */
|
||||
}
|
||||
#endif // NV_CPU_X86
|
||||
|
||||
#else // NV_CC_MSVC
|
||||
#else
|
||||
|
||||
// do nothing in other case.
|
||||
#define nvPrefetch(ptr)
|
||||
|
@ -34,11 +34,11 @@ class AutoPtr
|
||||
NV_FORBID_HEAPALLOC();
|
||||
public:
|
||||
|
||||
/// Default ctor.
|
||||
AutoPtr() : m_ptr(NULL) { }
|
||||
|
||||
/// Ctor.
|
||||
explicit AutoPtr( T * p ) : m_ptr(p) { }
|
||||
AutoPtr(T * p = NULL) : m_ptr(p) { }
|
||||
|
||||
template <class Q>
|
||||
AutoPtr(Q * p) : m_ptr(static_cast<T *>(p)) { }
|
||||
|
||||
/** Dtor. Deletes owned pointer. */
|
||||
~AutoPtr() {
|
||||
|
@ -7,6 +7,10 @@
|
||||
*/
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// References:
|
||||
// http://www.codercorner.com/RadixSortRevisited.htm
|
||||
// http://www.stereopsis.com/radix.html
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/**
|
||||
* Revisited Radix Sort.
|
||||
@ -26,19 +30,25 @@
|
||||
* - 09.18.01: faster CHECK_PASS_VALIDITY thanks to Mark D. Shattuck (who provided other tips, not included here)
|
||||
* - 10.11.01: added local ram support
|
||||
* - 01.20.02: bugfix! In very particular cases the last pass was skipped in the float code-path, leading to incorrect sorting......
|
||||
* - 01.02.02: - "mIndices" renamed => "mRanks". That's a rank sorter after all.
|
||||
* - ranks are not "reset" anymore, but implicit on first calls
|
||||
* - 07.05.02: offsets rewritten with one less indirection.
|
||||
* - 11.03.02: "bool" replaced with RadixHint enum
|
||||
* - 07.15.04: stack-based radix added
|
||||
* - we want to use the radix sort but without making it static, and without allocating anything.
|
||||
* - we internally allocate two arrays of ranks. Each of them has N uint32s to sort N values.
|
||||
* - 1Mb/2/sizeof(uint32) = 131072 values max, at the same time.
|
||||
* - 09.22.04: - adapted to MacOS by Chris Lamb
|
||||
* - 01.12.06: - added optimizations suggested by Kyle Hubert
|
||||
* - 04.06.08: - Fix bug negative zero sorting bug by Ignacio Castaño
|
||||
*
|
||||
* \class RadixSort
|
||||
* \author Pierre Terdiman
|
||||
* \version 1.3
|
||||
* \version 1.5
|
||||
* \date August, 15, 1998
|
||||
*/
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/*
|
||||
To do:
|
||||
- add an offset parameter between two input values (avoid some data recopy sometimes)
|
||||
- unroll ? asm ?
|
||||
*/
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Header
|
||||
@ -49,138 +59,170 @@ To do:
|
||||
|
||||
//using namespace IceCore;
|
||||
|
||||
#define DELETEARRAY(a) { delete [] a; a = NULL; }
|
||||
#define CHECKALLOC(a)
|
||||
#define INVALIDATE_RANKS mCurrentSize|=0x80000000
|
||||
#define VALIDATE_RANKS mCurrentSize&=0x7fffffff
|
||||
#define CURRENT_SIZE (mCurrentSize&0x7fffffff)
|
||||
#define INVALID_RANKS (mCurrentSize&0x80000000)
|
||||
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/**
|
||||
* Constructor.
|
||||
*/
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
RadixSort::RadixSort() : mCurrentSize(0), mPreviousSize(0), mIndices(NULL), mIndices2(NULL), mTotalCalls(0), mNbHits(0)
|
||||
{
|
||||
#ifndef RADIX_LOCAL_RAM
|
||||
// Allocate input-independent ram
|
||||
mHistogram = new uint32[256*4];
|
||||
mOffset = new uint32[256];
|
||||
#if NV_BIG_ENDIAN
|
||||
#define H0_OFFSET 768
|
||||
#define H1_OFFSET 512
|
||||
#define H2_OFFSET 256
|
||||
#define H3_OFFSET 0
|
||||
#define BYTES_INC (3-j)
|
||||
#else
|
||||
#define H0_OFFSET 0
|
||||
#define H1_OFFSET 256
|
||||
#define H2_OFFSET 512
|
||||
#define H3_OFFSET 768
|
||||
#define BYTES_INC j
|
||||
#endif
|
||||
|
||||
#define CREATE_HISTOGRAMS(type, buffer) \
|
||||
/* Clear counters/histograms */ \
|
||||
memset(mHistogram, 0, 256*4*sizeof(uint32)); \
|
||||
\
|
||||
/* Prepare to count */ \
|
||||
const uint8* p = (const uint8*)input; \
|
||||
const uint8* pe = &p[nb*4]; \
|
||||
uint32* h0= &mHistogram[H0_OFFSET]; /* Histogram for first pass (LSB) */ \
|
||||
uint32* h1= &mHistogram[H1_OFFSET]; /* Histogram for second pass */ \
|
||||
uint32* h2= &mHistogram[H2_OFFSET]; /* Histogram for third pass */ \
|
||||
uint32* h3= &mHistogram[H3_OFFSET]; /* Histogram for last pass (MSB) */ \
|
||||
\
|
||||
bool AlreadySorted = true; /* Optimism... */ \
|
||||
\
|
||||
if(INVALID_RANKS) \
|
||||
{ \
|
||||
/* Prepare for temporal coherence */ \
|
||||
type* Running = (type*)buffer; \
|
||||
type PrevVal = *Running; \
|
||||
\
|
||||
while(p!=pe) \
|
||||
{ \
|
||||
/* Read input buffer in previous sorted order */ \
|
||||
type Val = *Running++; \
|
||||
/* Check whether already sorted or not */ \
|
||||
if(Val<PrevVal) { AlreadySorted = false; break; } /* Early out */ \
|
||||
/* Update for next iteration */ \
|
||||
PrevVal = Val; \
|
||||
\
|
||||
/* Create histograms */ \
|
||||
h0[*p++]++; h1[*p++]++; h2[*p++]++; h3[*p++]++; \
|
||||
} \
|
||||
\
|
||||
/* If all input values are already sorted, we just have to return and leave the */ \
|
||||
/* previous list unchanged. That way the routine may take advantage of temporal */ \
|
||||
/* coherence, for example when used to sort transparent faces. */ \
|
||||
if(AlreadySorted) \
|
||||
{ \
|
||||
mNbHits++; \
|
||||
for(uint32 i=0;i<nb;i++) mRanks[i] = i; \
|
||||
return *this; \
|
||||
} \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
/* Prepare for temporal coherence */ \
|
||||
const uint32* Indices = mRanks; \
|
||||
type PrevVal = (type)buffer[*Indices]; \
|
||||
\
|
||||
while(p!=pe) \
|
||||
{ \
|
||||
/* Read input buffer in previous sorted order */ \
|
||||
type Val = (type)buffer[*Indices++]; \
|
||||
/* Check whether already sorted or not */ \
|
||||
if(Val<PrevVal) { AlreadySorted = false; break; } /* Early out */ \
|
||||
/* Update for next iteration */ \
|
||||
PrevVal = Val; \
|
||||
\
|
||||
/* Create histograms */ \
|
||||
h0[*p++]++; h1[*p++]++; h2[*p++]++; h3[*p++]++; \
|
||||
} \
|
||||
\
|
||||
/* If all input values are already sorted, we just have to return and leave the */ \
|
||||
/* previous list unchanged. That way the routine may take advantage of temporal */ \
|
||||
/* coherence, for example when used to sort transparent faces. */ \
|
||||
if(AlreadySorted) { mNbHits++; return *this; } \
|
||||
} \
|
||||
\
|
||||
/* Else there has been an early out and we must finish computing the histograms */ \
|
||||
while(p!=pe) \
|
||||
{ \
|
||||
/* Create histograms without the previous overhead */ \
|
||||
h0[*p++]++; h1[*p++]++; h2[*p++]++; h3[*p++]++; \
|
||||
}
|
||||
|
||||
#define CHECK_PASS_VALIDITY(pass) \
|
||||
/* Shortcut to current counters */ \
|
||||
const uint32* CurCount = &mHistogram[pass<<8]; \
|
||||
\
|
||||
/* Reset flag. The sorting pass is supposed to be performed. (default) */ \
|
||||
bool PerformPass = true; \
|
||||
\
|
||||
/* Check pass validity */ \
|
||||
\
|
||||
/* If all values have the same byte, sorting is useless. */ \
|
||||
/* It may happen when sorting bytes or words instead of dwords. */ \
|
||||
/* This routine actually sorts words faster than dwords, and bytes */ \
|
||||
/* faster than words. Standard running time (O(4*n))is reduced to O(2*n) */ \
|
||||
/* for words and O(n) for bytes. Running time for floats depends on actual values... */ \
|
||||
\
|
||||
/* Get first byte */ \
|
||||
uint8 UniqueVal = *(((uint8*)input)+pass); \
|
||||
\
|
||||
/* Check that byte's counter */ \
|
||||
if(CurCount[UniqueVal]==nb) PerformPass=false;
|
||||
|
||||
using namespace nv;
|
||||
|
||||
/// Constructor.
|
||||
RadixSort::RadixSort() : mRanks(NULL), mRanks2(NULL), mCurrentSize(0), mTotalCalls(0), mNbHits(0), mDeleteRanks(true)
|
||||
{
|
||||
// Initialize indices
|
||||
resetIndices();
|
||||
INVALIDATE_RANKS;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/**
|
||||
* Destructor.
|
||||
*/
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// Destructor.
|
||||
RadixSort::~RadixSort()
|
||||
{
|
||||
// Release everything
|
||||
#ifndef RADIX_LOCAL_RAM
|
||||
DELETEARRAY(mOffset);
|
||||
DELETEARRAY(mHistogram);
|
||||
#endif
|
||||
DELETEARRAY(mIndices2);
|
||||
DELETEARRAY(mIndices);
|
||||
if(mDeleteRanks)
|
||||
{
|
||||
delete [] mRanks2;
|
||||
delete [] mRanks;
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/**
|
||||
* Resizes the inner lists.
|
||||
* \param nb [in] new size (number of dwords)
|
||||
* \return true if success
|
||||
*/
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// Resizes the inner lists.
|
||||
/// \param nb [in] new size (number of dwords)
|
||||
/// \return true if success
|
||||
bool RadixSort::resize(uint32 nb)
|
||||
{
|
||||
// Free previously used ram
|
||||
DELETEARRAY(mIndices2);
|
||||
DELETEARRAY(mIndices);
|
||||
|
||||
// Get some fresh one
|
||||
mIndices = new uint32[nb]; CHECKALLOC(mIndices);
|
||||
mIndices2 = new uint32[nb]; CHECKALLOC(mIndices2);
|
||||
mCurrentSize = nb;
|
||||
|
||||
// Initialize indices so that the input buffer is read in sequential order
|
||||
resetIndices();
|
||||
if(mDeleteRanks)
|
||||
{
|
||||
// Free previously used ram
|
||||
delete [] mRanks2;
|
||||
delete [] mRanks;
|
||||
|
||||
// Get some fresh one
|
||||
mRanks = new uint32[nb];
|
||||
mRanks2 = new uint32[nb];
|
||||
}
|
||||
return true;
|
||||
|
||||
}
|
||||
|
||||
#define CHECK_RESIZE(n) \
|
||||
if(n!=mPreviousSize) \
|
||||
{ \
|
||||
if(n>mCurrentSize) resize(n); \
|
||||
else resetIndices(); \
|
||||
mPreviousSize = n; \
|
||||
inline void RadixSort::checkResize(uint32 nb)
|
||||
{
|
||||
uint32 CurSize = CURRENT_SIZE;
|
||||
if(nb!=CurSize)
|
||||
{
|
||||
if(nb>CurSize) resize(nb);
|
||||
mCurrentSize = nb;
|
||||
INVALIDATE_RANKS;
|
||||
}
|
||||
|
||||
#define CREATE_HISTOGRAMS(type, buffer) \
|
||||
/* Clear counters */ \
|
||||
memset(mHistogram, 0, 256*4*sizeof(uint32)); \
|
||||
\
|
||||
/* Prepare for temporal coherence */ \
|
||||
type PrevVal = (type)buffer[mIndices[0]]; \
|
||||
bool AlreadySorted = true; /* Optimism... */ \
|
||||
uint32* Indices = mIndices; \
|
||||
\
|
||||
/* Prepare to count */ \
|
||||
uint8* p = (uint8*)input; \
|
||||
uint8* pe = &p[nb*4]; \
|
||||
uint32* h0= &mHistogram[0]; /* Histogram for first pass (LSB) */ \
|
||||
uint32* h1= &mHistogram[256]; /* Histogram for second pass */ \
|
||||
uint32* h2= &mHistogram[512]; /* Histogram for third pass */ \
|
||||
uint32* h3= &mHistogram[768]; /* Histogram for last pass (MSB) */ \
|
||||
\
|
||||
while(p!=pe) \
|
||||
{ \
|
||||
/* Read input buffer in previous sorted order */ \
|
||||
type Val = (type)buffer[*Indices++]; \
|
||||
/* Check whether already sorted or not */ \
|
||||
if(Val<PrevVal) { AlreadySorted = false; break; } /* Early out */ \
|
||||
/* Update for next iteration */ \
|
||||
PrevVal = Val; \
|
||||
\
|
||||
/* Create histograms */ \
|
||||
h0[*p++]++; h1[*p++]++; h2[*p++]++; h3[*p++]++; \
|
||||
} \
|
||||
\
|
||||
/* If all input values are already sorted, we just have to return and leave the */ \
|
||||
/* previous list unchanged. That way the routine may take advantage of temporal */ \
|
||||
/* coherence, for example when used to sort transparent faces. */ \
|
||||
if(AlreadySorted) { mNbHits++; return *this; } \
|
||||
\
|
||||
/* Else there has been an early out and we must finish computing the histograms */ \
|
||||
while(p!=pe) \
|
||||
{ \
|
||||
/* Create histograms without the previous overhead */ \
|
||||
h0[*p++]++; h1[*p++]++; h2[*p++]++; h3[*p++]++; \
|
||||
}
|
||||
|
||||
#define CHECK_PASS_VALIDITY(pass) \
|
||||
/* Shortcut to current counters */ \
|
||||
uint32* CurCount = &mHistogram[pass<<8]; \
|
||||
\
|
||||
/* Reset flag. The sorting pass is supposed to be performed. (default) */ \
|
||||
bool PerformPass = true; \
|
||||
\
|
||||
/* Check pass validity */ \
|
||||
\
|
||||
/* If all values have the same byte, sorting is useless. */ \
|
||||
/* It may happen when sorting bytes or words instead of dwords. */ \
|
||||
/* This routine actually sorts words faster than dwords, and bytes */ \
|
||||
/* faster than words. Standard running time (O(4*n))is reduced to O(2*n) */ \
|
||||
/* for words and O(n) for bytes. Running time for floats depends on actual values... */ \
|
||||
\
|
||||
/* Get first byte */ \
|
||||
uint8 UniqueVal = *(((uint8*)input)+pass); \
|
||||
\
|
||||
/* Check that byte's counter */ \
|
||||
if(CurCount[UniqueVal]==nb) PerformPass=false;
|
||||
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/**
|
||||
@ -192,46 +234,31 @@ bool RadixSort::resize(uint32 nb)
|
||||
* \return Self-Reference
|
||||
*/
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
RadixSort& RadixSort::sort(const uint32* input, uint32 nb, bool signedvalues)
|
||||
RadixSort& RadixSort::sort(const uint32* input, uint32 nb, bool signedValues/*=true*/)
|
||||
{
|
||||
uint32 i, j;
|
||||
|
||||
// Checkings
|
||||
if(!input || !nb) return *this;
|
||||
if(!input || !nb || nb&0x80000000) return *this;
|
||||
|
||||
// Stats
|
||||
mTotalCalls++;
|
||||
|
||||
// Resize lists if needed
|
||||
CHECK_RESIZE(nb);
|
||||
checkResize(nb);
|
||||
|
||||
#ifdef RADIX_LOCAL_RAM
|
||||
// Allocate histograms & offsets on the stack
|
||||
uint32 mHistogram[256*4];
|
||||
uint32 mOffset[256];
|
||||
#endif
|
||||
uint32* mLink[256];
|
||||
|
||||
// Create histograms (counters). Counters for all passes are created in one run.
|
||||
// Pros: read input buffer once instead of four times
|
||||
// Cons: mHistogram is 4Kb instead of 1Kb
|
||||
// We must take care of signed/unsigned values for temporal coherence.... I just
|
||||
// have 2 code paths even if just a single opcode changes. Self-modifying code, someone?
|
||||
if(!signedvalues) { CREATE_HISTOGRAMS(uint32, input); }
|
||||
if(!signedValues) { CREATE_HISTOGRAMS(uint32, input); }
|
||||
else { CREATE_HISTOGRAMS(int32, input); }
|
||||
|
||||
// Compute #negative values involved if needed
|
||||
uint32 NbNegativeValues = 0;
|
||||
if(signedvalues)
|
||||
{
|
||||
// An efficient way to compute the number of negatives values we'll have to deal with is simply to sum the 128
|
||||
// last values of the last histogram. Last histogram because that's the one for the Most Significant Byte,
|
||||
// responsible for the sign. 128 last values because the 128 first ones are related to positive numbers.
|
||||
uint32* h3= &mHistogram[768];
|
||||
for( i=128;i<256;i++) NbNegativeValues += h3[i]; // 768 for last histogram, 128 for negative part
|
||||
}
|
||||
|
||||
// Radix sort, j is the pass number (0=LSB, 3=MSB)
|
||||
for( j=0;j<4;j++)
|
||||
for(uint32 j=0;j<4;j++)
|
||||
{
|
||||
CHECK_PASS_VALIDITY(j);
|
||||
|
||||
@ -240,40 +267,47 @@ RadixSort& RadixSort::sort(const uint32* input, uint32 nb, bool signedvalues)
|
||||
if(PerformPass)
|
||||
{
|
||||
// Should we care about negative values?
|
||||
if(j!=3 || !signedvalues)
|
||||
if(j!=3 || !signedValues)
|
||||
{
|
||||
// Here we deal with positive values only
|
||||
|
||||
// Create offsets
|
||||
mOffset[0] = 0;
|
||||
for(i=1;i<256;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1];
|
||||
mLink[0] = mRanks2;
|
||||
for(uint32 i=1;i<256;i++) mLink[i] = mLink[i-1] + CurCount[i-1];
|
||||
}
|
||||
else
|
||||
{
|
||||
// This is a special case to correctly handle negative integers. They're sorted in the right order but at the wrong place.
|
||||
mLink[128] = mRanks2;
|
||||
for(uint32 i=129;i<256;i++) mLink[i] = mLink[i-1] + CurCount[i-1];
|
||||
|
||||
// Create biased offsets, in order for negative numbers to be sorted as well
|
||||
mOffset[0] = NbNegativeValues; // First positive number takes place after the negative ones
|
||||
for(i=1;i<128;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1]; // 1 to 128 for positive numbers
|
||||
|
||||
// Fixing the wrong place for negative values
|
||||
mOffset[128] = 0;
|
||||
for(i=129;i<256;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1];
|
||||
mLink[0] = mLink[255] + CurCount[255];
|
||||
for(uint32 i=1;i<128;i++) mLink[i] = mLink[i-1] + CurCount[i-1];
|
||||
}
|
||||
|
||||
// Perform Radix Sort
|
||||
uint8* InputBytes = (uint8*)input;
|
||||
uint32* Indices = mIndices;
|
||||
uint32* IndicesEnd = &mIndices[nb];
|
||||
InputBytes += j;
|
||||
while(Indices!=IndicesEnd)
|
||||
const uint8* InputBytes = (const uint8*)input;
|
||||
InputBytes += BYTES_INC;
|
||||
if(INVALID_RANKS)
|
||||
{
|
||||
uint32 id = *Indices++;
|
||||
mIndices2[mOffset[InputBytes[id<<2]]++] = id;
|
||||
for(uint32 i=0;i<nb;i++) *mLink[InputBytes[i<<2]]++ = i;
|
||||
VALIDATE_RANKS;
|
||||
}
|
||||
else
|
||||
{
|
||||
const uint32* Indices = mRanks;
|
||||
const uint32* IndicesEnd = &mRanks[nb];
|
||||
while(Indices!=IndicesEnd)
|
||||
{
|
||||
uint32 id = *Indices++;
|
||||
*mLink[InputBytes[id<<2]]++ = id;
|
||||
}
|
||||
}
|
||||
|
||||
// Swap pointers for next pass. Valid indices - the most recent ones - are in mIndices after the swap.
|
||||
uint32* Tmp = mIndices; mIndices = mIndices2; mIndices2 = Tmp;
|
||||
// Swap pointers for next pass. Valid indices - the most recent ones - are in mRanks after the swap.
|
||||
uint32* Tmp = mRanks;
|
||||
mRanks = mRanks2;
|
||||
mRanks2 = Tmp;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
@ -291,24 +325,20 @@ RadixSort& RadixSort::sort(const uint32* input, uint32 nb, bool signedvalues)
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
RadixSort& RadixSort::sort(const float* input2, uint32 nb)
|
||||
{
|
||||
uint32 i, j;
|
||||
|
||||
// Checkings
|
||||
if(!input2 || !nb) return *this;
|
||||
if(!input2 || !nb || nb&0x80000000) return *this;
|
||||
|
||||
// Stats
|
||||
mTotalCalls++;
|
||||
|
||||
uint32* input = (uint32*)input2;
|
||||
const uint32* input = (const uint32*)input2;
|
||||
|
||||
// Resize lists if needed
|
||||
CHECK_RESIZE(nb);
|
||||
checkResize(nb);
|
||||
|
||||
#ifdef RADIX_LOCAL_RAM
|
||||
// Allocate histograms & offsets on the stack
|
||||
uint32 mHistogram[256*4];
|
||||
uint32 mOffset[256];
|
||||
#endif
|
||||
uint32* mLink[256];
|
||||
|
||||
// Create histograms (counters). Counters for all passes are created in one run.
|
||||
// Pros: read input buffer once instead of four times
|
||||
@ -320,16 +350,8 @@ RadixSort& RadixSort::sort(const float* input2, uint32 nb)
|
||||
// wouldn't work with mixed positive/negative values....
|
||||
{ CREATE_HISTOGRAMS(float, input2); }
|
||||
|
||||
// Compute #negative values involved if needed
|
||||
uint32 NbNegativeValues = 0;
|
||||
// An efficient way to compute the number of negatives values we'll have to deal with is simply to sum the 128
|
||||
// last values of the last histogram. Last histogram because that's the one for the Most Significant Byte,
|
||||
// responsible for the sign. 128 last values because the 128 first ones are related to positive numbers.
|
||||
uint32* h3= &mHistogram[768];
|
||||
for( i=128;i<256;i++) NbNegativeValues += h3[i]; // 768 for last histogram, 128 for negative part
|
||||
|
||||
// Radix sort, j is the pass number (0=LSB, 3=MSB)
|
||||
for( j=0;j<4;j++)
|
||||
for(uint32 j=0;j<4;j++)
|
||||
{
|
||||
// Should we care about negative values?
|
||||
if(j!=3)
|
||||
@ -340,22 +362,32 @@ RadixSort& RadixSort::sort(const float* input2, uint32 nb)
|
||||
if(PerformPass)
|
||||
{
|
||||
// Create offsets
|
||||
mOffset[0] = 0;
|
||||
for( i=1;i<256;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1];
|
||||
mLink[0] = mRanks2;
|
||||
for(uint32 i=1;i<256;i++) mLink[i] = mLink[i-1] + CurCount[i-1];
|
||||
|
||||
// Perform Radix Sort
|
||||
uint8* InputBytes = (uint8*)input;
|
||||
uint32* Indices = mIndices;
|
||||
uint32* IndicesEnd = &mIndices[nb];
|
||||
InputBytes += j;
|
||||
while(Indices!=IndicesEnd)
|
||||
const uint8* InputBytes = (const uint8*)input;
|
||||
InputBytes += BYTES_INC;
|
||||
if(INVALID_RANKS)
|
||||
{
|
||||
uint32 id = *Indices++;
|
||||
mIndices2[mOffset[InputBytes[id<<2]]++] = id;
|
||||
for(uint32 i=0;i<nb;i++) *mLink[InputBytes[i<<2]]++ = i;
|
||||
VALIDATE_RANKS;
|
||||
}
|
||||
else
|
||||
{
|
||||
const uint32* Indices = mRanks;
|
||||
const uint32* IndicesEnd = &mRanks[nb];
|
||||
while(Indices!=IndicesEnd)
|
||||
{
|
||||
uint32 id = *Indices++;
|
||||
*mLink[InputBytes[id<<2]]++ = id;
|
||||
}
|
||||
}
|
||||
|
||||
// Swap pointers for next pass. Valid indices - the most recent ones - are in mIndices after the swap.
|
||||
uint32* Tmp = mIndices; mIndices = mIndices2; mIndices2 = Tmp;
|
||||
// Swap pointers for next pass. Valid indices - the most recent ones - are in mRanks after the swap.
|
||||
uint32* Tmp = mRanks;
|
||||
mRanks = mRanks2;
|
||||
mRanks2 = Tmp;
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -365,35 +397,58 @@ RadixSort& RadixSort::sort(const float* input2, uint32 nb)
|
||||
|
||||
if(PerformPass)
|
||||
{
|
||||
// Create biased offsets, in order for negative numbers to be sorted as well
|
||||
mOffset[0] = NbNegativeValues; // First positive number takes place after the negative ones
|
||||
for(i=1;i<128;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1]; // 1 to 128 for positive numbers
|
||||
|
||||
// We must reverse the sorting order for negative numbers!
|
||||
mOffset[255] = 0;
|
||||
for(i=0;i<127;i++) mOffset[254-i] = mOffset[255-i] + CurCount[255-i]; // Fixing the wrong order for negative values
|
||||
for(i=128;i<256;i++) mOffset[i] += CurCount[i]; // Fixing the wrong place for negative values
|
||||
mLink[255] = mRanks2 + CurCount[255];
|
||||
for(uint32 i = 254; i > 126; i--) mLink[i] = mLink[i+1] + CurCount[i];
|
||||
mLink[0] = mLink[127] + CurCount[127];
|
||||
for(uint32 i = 1; i < 127; i++) mLink[i] = mLink[i-1] + CurCount[i-1];
|
||||
|
||||
// Perform Radix Sort
|
||||
for(i=0;i<nb;i++)
|
||||
if(INVALID_RANKS)
|
||||
{
|
||||
uint32 Radix = input[mIndices[i]]>>24; // Radix byte, same as above. AND is useless here (uint32).
|
||||
// ### cmp to be killed. Not good. Later.
|
||||
if(Radix<128) mIndices2[mOffset[Radix]++] = mIndices[i]; // Number is positive, same as above
|
||||
else mIndices2[--mOffset[Radix]] = mIndices[i]; // Number is negative, flip the sorting order
|
||||
for(uint32 i=0;i<nb;i++)
|
||||
{
|
||||
uint32 Radix = input[i]>>24; // Radix byte, same as above. AND is useless here (uint32).
|
||||
// ### cmp to be killed. Not good. Later.
|
||||
if(Radix<128) *mLink[Radix]++ = i; // Number is positive, same as above
|
||||
else *(--mLink[Radix]) = i; // Number is negative, flip the sorting order
|
||||
}
|
||||
VALIDATE_RANKS;
|
||||
}
|
||||
// Swap pointers for next pass. Valid indices - the most recent ones - are in mIndices after the swap.
|
||||
uint32* Tmp = mIndices; mIndices = mIndices2; mIndices2 = Tmp;
|
||||
else
|
||||
{
|
||||
for(uint32 i=0;i<nb;i++)
|
||||
{
|
||||
uint32 Radix = input[mRanks[i]]>>24; // Radix byte, same as above. AND is useless here (uint32).
|
||||
// ### cmp to be killed. Not good. Later.
|
||||
if(Radix<128) *mLink[Radix]++ = mRanks[i]; // Number is positive, same as above
|
||||
else *(--mLink[Radix]) = mRanks[i]; // Number is negative, flip the sorting order
|
||||
}
|
||||
}
|
||||
// Swap pointers for next pass. Valid indices - the most recent ones - are in mRanks after the swap.
|
||||
uint32* Tmp = mRanks;
|
||||
mRanks = mRanks2;
|
||||
mRanks2 = Tmp;
|
||||
}
|
||||
else
|
||||
{
|
||||
// The pass is useless, yet we still have to reverse the order of current list if all values are negative.
|
||||
if(UniqueVal>=128)
|
||||
{
|
||||
for(i=0;i<nb;i++) mIndices2[i] = mIndices[nb-i-1];
|
||||
if(INVALID_RANKS)
|
||||
{
|
||||
// ###Possible?
|
||||
for(uint32 i=0;i<nb;i++) mRanks2[i] = nb-i-1;
|
||||
VALIDATE_RANKS;
|
||||
}
|
||||
else
|
||||
{
|
||||
for(uint32 i=0;i<nb;i++) mRanks2[i] = mRanks[nb-i-1];
|
||||
}
|
||||
|
||||
// Swap pointers for next pass. Valid indices - the most recent ones - are in mIndices after the swap.
|
||||
uint32* Tmp = mIndices; mIndices = mIndices2; mIndices2 = Tmp;
|
||||
// Swap pointers for next pass. Valid indices - the most recent ones - are in mRanks after the swap.
|
||||
uint32* Tmp = mRanks;
|
||||
mRanks = mRanks2;
|
||||
mRanks2 = Tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -401,29 +456,29 @@ RadixSort& RadixSort::sort(const float* input2, uint32 nb)
|
||||
return *this;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/**
|
||||
* Resets the inner indices. After the call, mIndices is reset.
|
||||
*/
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
void RadixSort::resetIndices()
|
||||
|
||||
bool RadixSort::setRankBuffers(uint32* ranks0, uint32* ranks1)
|
||||
{
|
||||
for(uint32 i=0;i<mCurrentSize;i++) mIndices[i] = i;
|
||||
if(!ranks0 || !ranks1) return false;
|
||||
|
||||
mRanks = ranks0;
|
||||
mRanks2 = ranks1;
|
||||
mDeleteRanks = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/**
|
||||
* Gets the ram used.
|
||||
* \return memory used in bytes
|
||||
*/
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
uint32 RadixSort::usedRam() const
|
||||
RadixSort & RadixSort::sort(const Array<int> & input)
|
||||
{
|
||||
uint32 UsedRam = sizeof(RadixSort);
|
||||
#ifndef RADIX_LOCAL_RAM
|
||||
UsedRam += 256*4*sizeof(uint32); // Histograms
|
||||
UsedRam += 256*sizeof(uint32); // Offsets
|
||||
#endif
|
||||
UsedRam += 2*mCurrentSize*sizeof(uint32); // 2 lists of indices
|
||||
return UsedRam;
|
||||
return sort((const uint32 *)input.buffer(), input.count(), true);
|
||||
}
|
||||
|
||||
RadixSort & RadixSort::sort(const Array<uint> & input)
|
||||
{
|
||||
return sort(input.buffer(), input.count(), false);
|
||||
}
|
||||
|
||||
RadixSort & RadixSort::sort(const Array<float> & input)
|
||||
{
|
||||
return sort(input.buffer(), input.count());
|
||||
}
|
||||
|
@ -13,57 +13,61 @@
|
||||
#define NV_CORE_RADIXSORT_H
|
||||
|
||||
#include <nvcore/nvcore.h>
|
||||
#include <nvcore/Containers.h>
|
||||
|
||||
namespace nv
|
||||
{
|
||||
|
||||
class NVCORE_CLASS RadixSort
|
||||
{
|
||||
NV_FORBID_COPY(RadixSort);
|
||||
public:
|
||||
// Constructor/Destructor
|
||||
RadixSort();
|
||||
~RadixSort();
|
||||
|
||||
// Sorting methods
|
||||
RadixSort & sort(const uint32* input, uint32 nb, bool signedValues=true);
|
||||
RadixSort & sort(const float* input, uint32 nb);
|
||||
|
||||
// Helpers
|
||||
RadixSort & sort(const Array<int> & input);
|
||||
RadixSort & sort(const Array<uint> & input);
|
||||
RadixSort & sort(const Array<float> & input);
|
||||
|
||||
|
||||
#define RADIX_LOCAL_RAM
|
||||
//! Access to results. mRanks is a list of indices in sorted order, i.e. in the order you may further process your data
|
||||
inline /*const*/ uint32 * ranks() /*const*/ { return mRanks; }
|
||||
|
||||
//! mIndices2 gets trashed on calling the sort routine, but otherwise you can recycle it the way you want.
|
||||
inline uint32 * recyclable() const { return mRanks2; }
|
||||
|
||||
class NVCORE_API RadixSort {
|
||||
NV_FORBID_COPY(RadixSort);
|
||||
public:
|
||||
// Constructor/Destructor
|
||||
RadixSort();
|
||||
~RadixSort();
|
||||
// Stats
|
||||
//! Returns the total number of calls to the radix sorter.
|
||||
inline uint32 totalCalls() const { return mTotalCalls; }
|
||||
|
||||
// Sorting methods
|
||||
RadixSort & sort(const uint32* input, uint32 nb, bool signedvalues=true);
|
||||
RadixSort & sort(const float* input, uint32 nb);
|
||||
|
||||
//! Access to results. mIndices is a list of indices in sorted order, i.e. in the order you may further process your data
|
||||
inline uint32 * indices() const { return mIndices; }
|
||||
|
||||
//! mIndices2 gets trashed on calling the sort routine, but otherwise you can recycle it the way you want.
|
||||
inline uint32 * recyclable() const { return mIndices2; }
|
||||
|
||||
// Stats
|
||||
uint32 usedRam() const;
|
||||
|
||||
//! Returns the total number of calls to the radix sorter.
|
||||
inline uint32 totalCalls() const { return mTotalCalls; }
|
||||
|
||||
//! Returns the number of premature exits due to temporal coherence.
|
||||
inline uint32 hits() const { return mNbHits; }
|
||||
//! Returns the number of early exits due to temporal coherence.
|
||||
inline uint32 hits() const { return mNbHits; }
|
||||
|
||||
bool setRankBuffers(uint32* ranks0, uint32* ranks1);
|
||||
|
||||
private:
|
||||
#ifndef RADIX_LOCAL_RAM
|
||||
uint32* mHistogram; //!< Counters for each byte
|
||||
uint32* mOffset; //!< Offsets (nearly a cumulative distribution function)
|
||||
#endif
|
||||
uint32 mCurrentSize; //!< Current size of the indices list
|
||||
uint32 mPreviousSize; //!< Size involved in previous call
|
||||
uint32* mIndices; //!< Two lists, swapped each pass
|
||||
uint32* mIndices2;
|
||||
uint32 mCurrentSize; //!< Current size of the indices list
|
||||
uint32 * mRanks; //!< Two lists, swapped each pass
|
||||
uint32 * mRanks2;
|
||||
|
||||
// Stats
|
||||
uint32 mTotalCalls;
|
||||
uint32 mNbHits;
|
||||
// Stats
|
||||
uint32 mTotalCalls; //!< Total number of calls to the sort routine
|
||||
uint32 mNbHits; //!< Number of early exits due to coherence
|
||||
|
||||
// Internal methods
|
||||
bool resize(uint32 nb);
|
||||
void resetIndices();
|
||||
// Stack-radix
|
||||
bool mDeleteRanks; //!<
|
||||
|
||||
};
|
||||
// Internal methods
|
||||
void checkResize(uint32 nb);
|
||||
bool resize(uint32 nb);
|
||||
};
|
||||
|
||||
} // nv namespace
|
||||
|
||||
#endif // NV_CORE_RADIXSORT_H
|
||||
|
@ -208,49 +208,12 @@ StringBuilder::StringBuilder( const StringBuilder & s ) : m_size(0), m_str(NULL)
|
||||
copy(s);
|
||||
}
|
||||
|
||||
// Copy string.
|
||||
/*StringBuilder::StringBuilder( const char * s )
|
||||
/** Copy string. */
|
||||
StringBuilder::StringBuilder( const char * s )
|
||||
{
|
||||
copy(s);
|
||||
}*/
|
||||
|
||||
/** Allocate and copy string. */
|
||||
StringBuilder::StringBuilder( int size_hint, const StringBuilder & s) : m_size(size_hint), m_str(NULL)
|
||||
{
|
||||
nvDebugCheck(m_size > 0);
|
||||
m_str = strAlloc(m_size);
|
||||
copy(s);
|
||||
}
|
||||
|
||||
/** Allocate and format string. */
|
||||
StringBuilder::StringBuilder( const char * fmt, ... ) : m_size(0), m_str(NULL)
|
||||
{
|
||||
nvDebugCheck(fmt != NULL);
|
||||
va_list arg;
|
||||
va_start( arg, fmt );
|
||||
|
||||
format( fmt, arg );
|
||||
|
||||
va_end( arg );
|
||||
}
|
||||
|
||||
/** Allocate and format string. */
|
||||
StringBuilder::StringBuilder( int size_hint, const char * fmt, ... ) : m_size(size_hint), m_str(NULL)
|
||||
{
|
||||
nvDebugCheck(m_size > 0);
|
||||
nvDebugCheck(fmt != NULL);
|
||||
|
||||
m_str = strAlloc(m_size);
|
||||
|
||||
va_list arg;
|
||||
va_start( arg, fmt );
|
||||
|
||||
format( fmt, arg );
|
||||
|
||||
va_end( arg );
|
||||
}
|
||||
|
||||
|
||||
/** Delete the string. */
|
||||
StringBuilder::~StringBuilder()
|
||||
{
|
||||
@ -278,8 +241,7 @@ StringBuilder & StringBuilder::format( const char * fmt, ... )
|
||||
/** Format a string safely. */
|
||||
StringBuilder & StringBuilder::format( const char * fmt, va_list arg )
|
||||
{
|
||||
nvCheck(fmt != NULL);
|
||||
nvCheck(m_size >= 0);
|
||||
nvDebugCheck(fmt != NULL);
|
||||
|
||||
if( m_size == 0 ) {
|
||||
m_size = 64;
|
||||
@ -327,8 +289,7 @@ StringBuilder & StringBuilder::format( const char * fmt, va_list arg )
|
||||
/** Append a string. */
|
||||
StringBuilder & StringBuilder::append( const char * s )
|
||||
{
|
||||
nvCheck(s != NULL);
|
||||
nvCheck(m_size >= 0);
|
||||
nvDebugCheck(s != NULL);
|
||||
|
||||
const uint slen = uint(strlen( s ));
|
||||
|
||||
@ -475,31 +436,6 @@ void StringBuilder::reset()
|
||||
}
|
||||
|
||||
|
||||
Path::Path(const char * fmt, ...)
|
||||
{
|
||||
nvDebugCheck( fmt != NULL );
|
||||
|
||||
va_list arg;
|
||||
va_start( arg, fmt );
|
||||
|
||||
format( fmt, arg );
|
||||
|
||||
va_end( arg );
|
||||
}
|
||||
|
||||
Path::Path(int size_hint, const char * fmt, ...) : StringBuilder(size_hint)
|
||||
{
|
||||
nvDebugCheck( fmt != NULL );
|
||||
|
||||
va_list arg;
|
||||
va_start( arg, fmt );
|
||||
|
||||
format( fmt, arg );
|
||||
|
||||
va_end( arg );
|
||||
}
|
||||
|
||||
|
||||
/// Get the file name from a path.
|
||||
const char * Path::fileName() const
|
||||
{
|
||||
|
@ -45,11 +45,8 @@ namespace nv
|
||||
|
||||
StringBuilder();
|
||||
explicit StringBuilder( int size_hint );
|
||||
//StringBuilder( const char * str );
|
||||
StringBuilder( const char * str );
|
||||
StringBuilder( const StringBuilder & );
|
||||
StringBuilder( int size_hint, const StringBuilder & );
|
||||
StringBuilder( const char * format, ... ) __attribute__((format (printf, 2, 3)));
|
||||
StringBuilder( int size_hint, const char * format, ... ) __attribute__((format (printf, 3, 4)));
|
||||
|
||||
~StringBuilder();
|
||||
|
||||
@ -120,24 +117,17 @@ namespace nv
|
||||
char * m_str;
|
||||
|
||||
};
|
||||
|
||||
|
||||
/// Path string.
|
||||
|
||||
/// Path string. @@ This should be called PathBuilder.
|
||||
class NVCORE_CLASS Path : public StringBuilder
|
||||
{
|
||||
public:
|
||||
Path() : StringBuilder() {}
|
||||
explicit Path(int size_hint) : StringBuilder(size_hint) {}
|
||||
//Path(const char * str) : StringBuilder((const char *)str) {}
|
||||
Path( const char * str ) : StringBuilder(str) {}
|
||||
Path(const StringBuilder & str) : StringBuilder(str) {}
|
||||
Path(int size_hint, const StringBuilder & str) : StringBuilder(size_hint, str) {}
|
||||
Path(const char * format, ...) __attribute__((format (printf, 2, 3)));
|
||||
Path(int size_hint, const char * format, ...) __attribute__((format (printf, 3, 4)));
|
||||
|
||||
Path & operator=( const char * s ) {
|
||||
return (Path &)copy(s);
|
||||
}
|
||||
|
||||
const char * fileName() const;
|
||||
const char * extension() const;
|
||||
|
||||
@ -145,11 +135,11 @@ namespace nv
|
||||
|
||||
void stripFileName();
|
||||
void stripExtension();
|
||||
|
||||
|
||||
// statics
|
||||
NVCORE_API static char separator();
|
||||
NVCORE_API static const char * fileName(const char *);
|
||||
NVCORE_API static const char * extension(const char *);
|
||||
static char separator();
|
||||
static const char * fileName(const char *);
|
||||
static const char * extension(const char *);
|
||||
};
|
||||
|
||||
|
||||
|
22
src/nvcore/Timer.h
Normal file
22
src/nvcore/Timer.h
Normal file
@ -0,0 +1,22 @@
|
||||
// This code is in the public domain -- castano@gmail.com
|
||||
|
||||
#ifndef NV_CORE_TIMER_H
|
||||
#define NV_CORE_TIMER_H
|
||||
|
||||
#include <nvcore/nvcore.h>
|
||||
|
||||
#include <time.h> //clock
|
||||
|
||||
class NVCORE_CLASS Timer
|
||||
{
|
||||
public:
|
||||
Timer() {}
|
||||
|
||||
void start() { m_start = clock(); }
|
||||
int elapsed() const { return (1000 * (clock() - m_start)) / CLOCKS_PER_SEC; }
|
||||
|
||||
private:
|
||||
clock_t m_start;
|
||||
};
|
||||
|
||||
#endif // NV_CORE_TIMER_H
|
@ -8,7 +8,7 @@
|
||||
#include <stdlib.h> // atof, atoi
|
||||
|
||||
#if NV_CC_MSVC
|
||||
#if 0 // This doesn't work on MSVC for x64
|
||||
#if defined NV_CPU_X86
|
||||
/* vsscanf for Win32
|
||||
* Written 5/2003 by <mgix@mgix.com>
|
||||
* This code is in the Public Domain
|
||||
@ -56,9 +56,39 @@ static int vsscanf(const char * buffer, const char * format, va_list argPtr)
|
||||
}
|
||||
return result;
|
||||
}
|
||||
#elif defined NV_CPU_X86_64
|
||||
|
||||
/* Prototype of the helper assembly function */
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
int vsscanf_proxy_win64(const char * buffer, const char * format, va_list argPtr, __int64 count);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
/* MASM64 version of the above vsscanf */
|
||||
static int vsscanf(const char * buffer, const char * format, va_list argPtr)
|
||||
{
|
||||
// Get an upper bound for the # of args
|
||||
__int64 count = 0;
|
||||
const char *p = format;
|
||||
while(1) {
|
||||
char c = *(p++);
|
||||
if(c==0) break;
|
||||
if(c=='%' && (p[0]!='*' && p[0]!='%')) ++count;
|
||||
}
|
||||
return vsscanf_proxy_win64(buffer, format, argPtr, count);
|
||||
}
|
||||
|
||||
/*#error vsscanf doesn't work on MSVC for x64*/
|
||||
#else
|
||||
#error Unknown processor for MSVC
|
||||
#endif
|
||||
#endif // NV_CC_MSVC
|
||||
|
||||
using namespace nv;
|
||||
|
||||
Token::Token() :
|
||||
|
124
src/nvcore/vsscanf_proxy_win64.masm
Normal file
124
src/nvcore/vsscanf_proxy_win64.masm
Normal file
@ -0,0 +1,124 @@
|
||||
; MASM x64 version of
|
||||
; vsscanf for Win32
|
||||
; originally written 5/2003 by <mgix@mgix.com>
|
||||
;
|
||||
; This was done because MSVC does not accept inline assembly code
|
||||
; for the x64 platform, so this file implements almost the whole
|
||||
; module in assembly using the amd64 ABI
|
||||
;
|
||||
; 06/17/2008 by edgarv [at] nvidia com
|
||||
|
||||
; Definition of memcpy
|
||||
memcpy PROTO dest:Ptr, src:Ptr, numbytes:QWORD
|
||||
|
||||
; Definition of sscanf
|
||||
sscanf PROTO buffer:Ptr Byte, format:Ptr Byte, args:VARARG
|
||||
|
||||
|
||||
|
||||
; Start a code segment named "_TEXT" by default
|
||||
.CODE
|
||||
|
||||
; Entry point of our function: at this point we can use
|
||||
; named parameters
|
||||
ALIGN 16
|
||||
PUBLIC vsscanf_proxy_win64
|
||||
|
||||
; Because the x64 code uses the fast call convention, only
|
||||
; the arguments beyond the 4th one are available from the stack.
|
||||
; The first four parameters are in RCX, RDX, R8 and R9
|
||||
|
||||
; Parameters:
|
||||
; const char* buffer
|
||||
; const char* format
|
||||
; va_list argPtr
|
||||
; size_t count
|
||||
vsscanf_proxy_win64 PROC, \
|
||||
buffer:PTR Byte, format:PTR Byte, argPtr:PTR, count:QWORD
|
||||
|
||||
; Allocates space for our local variable, savedRDP
|
||||
sub rsp, 08h
|
||||
|
||||
; Copies the parameters from the registers to the memory: before warping to
|
||||
; sscanf we will call memcpy, and those registers can just dissapear!
|
||||
mov buffer, rcx
|
||||
mov format, rdx
|
||||
mov argPtr, r8
|
||||
mov count, r9
|
||||
|
||||
|
||||
; Allocate extra space in the stack for (2+count)*sizeof(void*),
|
||||
; this is (2+count)*(8)
|
||||
mov r10, r9
|
||||
add r10, 2 ; count += 2
|
||||
sal r10, 3 ; count *= 8
|
||||
add r10, 0fh ; To force alignment to 16bytes
|
||||
and r10, 0fffffffffffffff0h
|
||||
sub rsp, r10 ; Actual stack allocation
|
||||
|
||||
|
||||
; Continues by copying all the arguments in the "alloca" space
|
||||
mov [rsp], rcx ; newStack[0] = (void*)buffer;
|
||||
mov [rsp + 08h], rdx ; newStack[1] = (void*)format;
|
||||
|
||||
; Calls memcpy(newStack+2, argPtr, count*sizeof(void*));
|
||||
mov rcx, rsp
|
||||
add rcx, 010h ; newStack+2
|
||||
mov rdx, r8 ; argPtr
|
||||
mov r8, r9
|
||||
sal r8, 3 ; count*sizeof(void*)
|
||||
|
||||
; Prepares extra stack space as required by the ABI for 4 arguments, and calls memcpy
|
||||
sub rsp, 020h
|
||||
call memcpy
|
||||
|
||||
; Restore the stack
|
||||
add rsp, 020h
|
||||
|
||||
; Saves rsp in memory
|
||||
mov qword ptr [rbp - 8], rsp
|
||||
|
||||
; Does exactly the same trick as before: warp into system sscanf with the new stack,
|
||||
; but this time we also setup the arguments in the registers according to the amd64 ABI
|
||||
|
||||
; If there was at least one argument (after buffer and format), we need to copy that
|
||||
; to r8, and if there was a second one we must copy that to r9
|
||||
; (the first arguments to sscanf are always the buffer and the format)
|
||||
mov r10, count
|
||||
|
||||
; Copy the first argument to r8 (if it exists)
|
||||
cmp r10, 0
|
||||
je args_memcpy
|
||||
mov r8, [rsp + 10h]
|
||||
|
||||
; Copy the second argument to r9 (if it exists)
|
||||
cmp r10, 1
|
||||
je args_memcpy
|
||||
mov r9, [rsp + 18h]
|
||||
|
||||
args_memcpy:
|
||||
|
||||
; Copies the buffer and format to rcx and rdx
|
||||
mov rdx, [rsp + 08h]
|
||||
mov rcx, [rsp]
|
||||
|
||||
; Finally, calls sscanf using the current stack
|
||||
call sscanf
|
||||
|
||||
; At this point the return value is alreay in rax
|
||||
|
||||
; Restores rsp
|
||||
mov rsp, qword ptr [rbp - 8]
|
||||
|
||||
; Undoes the alloca
|
||||
add rsp, r10
|
||||
|
||||
; Restores the space for local variables
|
||||
add rsp, 08h
|
||||
|
||||
; Remember, the return value is already in rax since the sscanf call
|
||||
ret
|
||||
|
||||
vsscanf_proxy_win64 ENDP
|
||||
|
||||
END
|
Loading…
Reference in New Issue
Block a user