Make some progress in separable convolution kernel in CUDA.

This commit is contained in:
castano 2007-05-24 09:57:16 +00:00
parent 55997ba442
commit f1f944f06c

View File

@ -28,9 +28,16 @@
#include "CudaMath.h"
#define THREAD_COUNT 256
#define TW 16
#define TH 16
#define THREAD_COUNT (TW * TH)
#define MAX_KERNEL_WIDTH 32
#define KW 4
#if __DEVICE_EMULATION__
#define __debugsync() __syncthreads()
@ -39,20 +46,133 @@
#endif
__constant__ float inputGamma, outputInverseGamma;
__constant__ float kernel[MAX_KERNEL_WIDTH];
// Use texture to access input?
// That's the most simple approach.
texture<> image;
////////////////////////////////////////////////////////////////////////////////
// Combined convolution filter
////////////////////////////////////////////////////////////////////////////////
__global__ void convolve(float4 * output)
{
// @@ Use morton order to assing threads.
int x = threadIdx.x;
int y = threadIdx.y;
float4 color = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
// texture coordinate.
int2 t;
t.x = 2 * (blockIdx.x * TW + x) - HW;
t.y = blockIdx.y * TH + y;
// @@ We might want to loop and process strips, to reuse the results of the horizontal convolutions.
// Horizontal convolution. @@ Unroll loops.
for (int e = HW; e > 0; e--)
{
t.x++;
float w = kernel[e-1];
color += w * tex2D(image, tc);
}
for (int e = 0; e < HW; e++)
{
t.x++;
float w = kernel[e];
color += w * tex2D(image, tc);
}
// Write color to shared memory.
__shared__ float tile[4 * THREAD_COUNT];
int tileIdx = y * TW + x;
tile[tileIdx + 0 * THREAD_COUNT] = color.x;
tile[tileIdx + 1 * THREAD_COUNT] = color.y;
tile[tileIdx + 2 * THREAD_COUNT] = color.z;
tile[tileIdx + 3 * THREAD_COUNT] = color.w;
__syncthreads();
// tile coordinate.
t.x = x;
t.y = y - HW;
// Vertical convolution. @@ Unroll loops.
for (int i = HW; i > 0; i--)
{
float w = kernel[i-1];
t.y++;
int idx = t.y * TW + t.x;
color.x += w * tile[idx + 0 * THREAD_COUNT];
color.y += w * tile[idx + 1 * THREAD_COUNT];
color.z += w * tile[idx + 2 * THREAD_COUNT];
color.w += w * tile[idx + 3 * THREAD_COUNT];
}
for (int i = 0; i < HW; i++)
{
float w = kernel[i];
t.y++;
int idx = t.y * TW + t.x;
color.x += w * tile[idx + 0 * THREAD_COUNT];
color.y += w * tile[idx + 1 * THREAD_COUNT];
color.z += w * tile[idx + 2 * THREAD_COUNT];
color.w += w * tile[idx + 3 * THREAD_COUNT];
}
it (x < w && y < h)
{
// @@ Prevent unaligned writes.
output[y * w + h] = color;
}
}
////////////////////////////////////////////////////////////////////////////////
// Monophase X convolution filter
////////////////////////////////////////////////////////////////////////////////
__device__ void convolveY()
{
}
////////////////////////////////////////////////////////////////////////////////
// Monophase Y convolution filter
// Mipmap convolution filter
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Gamma correction
////////////////////////////////////////////////////////////////////////////////
/*
__device__ float toLinear(float f, float gamma = 2.2f)
{
return __pow(f, gamma);
}
__device__ float toGamma(float f, float gamma = 2.2f)
{
return pow(f, 1.0f / gamma);
}
*/
////////////////////////////////////////////////////////////////////////////////
// Setup kernel