Add bc6 and bc7 compressors from nvidia.
This commit is contained in:
503
src/nvtt/bc7/arvo/Perm.cpp
Normal file
503
src/nvtt/bc7/arvo/Perm.cpp
Normal file
@ -0,0 +1,503 @@
|
||||
/***************************************************************************
|
||||
* Perm.C *
|
||||
* *
|
||||
* This file defines permutation class: that is, a class for creating and *
|
||||
* manipulating finite sequences of distinct integers. The main feature *
|
||||
* of the class is the "++" operator that can be used to step through all *
|
||||
* N! permutations of a sequence of N integers. As the set of permutations *
|
||||
* forms a multiplicative group, a multiplication operator and an *
|
||||
* exponentiation operator are also defined. *
|
||||
* *
|
||||
* HISTORY *
|
||||
* Name Date Description *
|
||||
* *
|
||||
* arvo 07/01/93 Added the Partition class. *
|
||||
* arvo 03/23/93 Initial coding. *
|
||||
* *
|
||||
*--------------------------------------------------------------------------*
|
||||
* Copyright (C) 1999, James Arvo *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify it *
|
||||
* under the terms of the GNU General Public License as published by the *
|
||||
* Free Software Foundation. See http://www.fsf.org/copyleft/gpl.html *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, but *
|
||||
* WITHOUT EXPRESS OR IMPLIED WARRANTY of merchantability or fitness for *
|
||||
* any particular purpose. See the GNU General Public License for more *
|
||||
* details. *
|
||||
* *
|
||||
***************************************************************************/
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "Perm.h"
|
||||
#include "ArvoMath.h"
|
||||
#include "Char.h"
|
||||
|
||||
namespace ArvoMath {
|
||||
|
||||
/***************************************************************************
|
||||
*
|
||||
* L O C A L F U N C T I O N S
|
||||
*
|
||||
***************************************************************************/
|
||||
|
||||
static void Reverse( int *p, int n )
|
||||
{
|
||||
int k = n >> 1;
|
||||
int m = n - 1;
|
||||
for( int i = 0; i < k; i++ ) Swap( p[i], p[m-i] );
|
||||
}
|
||||
|
||||
static void Error( char *msg )
|
||||
{
|
||||
fprintf( stderr, "ERROR: Perm, %s.\n", msg );
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
**
|
||||
** M E M B E R F U N C T I O N S
|
||||
**
|
||||
***************************************************************************/
|
||||
|
||||
Perm::Perm( int Left, int Right )
|
||||
{
|
||||
a = ( Left < Right ) ? Left : Right;
|
||||
b = ( Left > Right ) ? Left : Right;
|
||||
p = new int[ Size() ];
|
||||
Reset( *this );
|
||||
}
|
||||
|
||||
Perm::Perm( const Perm &Q )
|
||||
{
|
||||
a = Q.Min();
|
||||
b = Q.Max();
|
||||
p = new int[ Q.Size() ];
|
||||
for( int i = 0; i < Size(); i++ ) p[i] = Q[i];
|
||||
}
|
||||
|
||||
Perm::Perm( const char *str )
|
||||
{
|
||||
(*this) = str;
|
||||
}
|
||||
|
||||
Perm &Perm::operator=( const char *str )
|
||||
{
|
||||
int k, m = 0, n = 0;
|
||||
char dig[10];
|
||||
char c;
|
||||
if( p != NULL ) delete[] p;
|
||||
p = new int[ strlen(str)/2 + 1 ];
|
||||
for(;;)
|
||||
{
|
||||
c = *str++;
|
||||
if( isDigit(c) ) dig[m++] = c;
|
||||
else if( m > 0 )
|
||||
{
|
||||
dig[m] = NullChar;
|
||||
sscanf( dig, "%d", &k );
|
||||
if( n == 0 ) a = k; else if( k < a ) a = k;
|
||||
if( n == 0 ) b = k; else if( k > b ) b = k;
|
||||
p[n++] = k;
|
||||
m = 0;
|
||||
}
|
||||
if( c == NullChar ) break;
|
||||
}
|
||||
for( int i = 0; i < n; i++ )
|
||||
{
|
||||
int N = i + a;
|
||||
int okay = 0;
|
||||
for( int j = 0; j < n; j++ )
|
||||
if( p[j] == N ) { okay = 1; break; }
|
||||
if( !okay )
|
||||
{
|
||||
Error( "string is not a valid permutation" );
|
||||
return *this;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void Perm::Get( char *str ) const
|
||||
{
|
||||
for( int i = 0; i < Size(); i++ )
|
||||
str += sprintf( str, "%d ", p[i] );
|
||||
*str = NullChar;
|
||||
}
|
||||
|
||||
int Perm::Next()
|
||||
{
|
||||
int i, m, k = 0;
|
||||
int N, M = 0;
|
||||
|
||||
// Look for the first element of p that is larger than its successor.
|
||||
// If no such element exists, we are done.
|
||||
|
||||
M = p[0]; // M is always the "previous" value.
|
||||
for( i = 1; i < Size(); i++ ) // Now start with second element.
|
||||
{
|
||||
if( p[i] > M ) { k = i; break; }
|
||||
M = p[i];
|
||||
}
|
||||
if( k == 0 ) return 0; // Already in descending order.
|
||||
m = k - 1;
|
||||
|
||||
// Find the largest entry before k that is less than p[k].
|
||||
// One exists because p[k] is bigger than M, i.e. p[k-1].
|
||||
|
||||
N = p[k];
|
||||
for( i = 0; i < k - 1; i++ )
|
||||
{
|
||||
if( p[i] < N && p[i] > M ) { M = p[i]; m = i; }
|
||||
}
|
||||
Swap( p[m], p[k] ); // Entries 0..k-1 are still decreasing.
|
||||
Reverse( p, k ); // Make first k elements increasing.
|
||||
return 1;
|
||||
}
|
||||
|
||||
int Perm::Prev()
|
||||
{
|
||||
int i, m, k = 0;
|
||||
int N, M = 0;
|
||||
|
||||
// Look for the first element of p that is less than its successor.
|
||||
// If no such element exists, we are done.
|
||||
|
||||
M = p[0]; // M will always be the "previous" value.
|
||||
for( i = 1; i < Size(); i++ ) // Start with the second element.
|
||||
{
|
||||
if( p[i] < M ) { k = i; break; }
|
||||
M = p[i];
|
||||
}
|
||||
if( k == 0 ) return 0; // Already in ascending order.
|
||||
m = k - 1;
|
||||
|
||||
// Find the smallest entry before k that is greater than p[k].
|
||||
// One exists because p[k] is less than M, i.e. p[k-1].
|
||||
|
||||
N = p[k];
|
||||
for( i = 0; i < k - 1; i++ )
|
||||
{
|
||||
if( p[i] > N && p[i] < M ) { M = p[i]; m = i; }
|
||||
}
|
||||
Swap( p[m], p[k] ); // Entries 0..k-1 are still increasing.
|
||||
Reverse( p, k ); // Make first k elements decreasing.
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
**
|
||||
** O P E R A T O R S
|
||||
**
|
||||
***************************************************************************/
|
||||
|
||||
int Perm::operator++()
|
||||
{
|
||||
return Next();
|
||||
}
|
||||
|
||||
int Perm::operator--()
|
||||
{
|
||||
return Prev();
|
||||
}
|
||||
|
||||
Perm &Perm::operator+=( int n )
|
||||
{
|
||||
int i;
|
||||
if( n > 0 ) for( i = 0; i < n; i++ ) if( !Next() ) break;
|
||||
if( n < 0 ) for( i = n; i < 0; i++ ) if( !Prev() ) break;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Perm &Perm::operator-=( int n )
|
||||
{
|
||||
int i;
|
||||
if( n > 0 ) for( i = 0; i < n; i++ ) if( !Prev() ) break;
|
||||
if( n < 0 ) for( i = n; i < 0; i++ ) if( !Next() ) break;
|
||||
return *this;
|
||||
}
|
||||
|
||||
int Perm::operator[]( int n ) const
|
||||
{
|
||||
if( n < 0 || Size() <= n )
|
||||
{
|
||||
Error( "permutation index[] out of range" );
|
||||
return 0;
|
||||
}
|
||||
return p[ n ];
|
||||
}
|
||||
|
||||
int Perm::operator()( int n ) const
|
||||
{
|
||||
if( n < Min() || Max() < n )
|
||||
{
|
||||
Error( "permutation index() out of range" );
|
||||
return 0;
|
||||
}
|
||||
return p[ n - Min() ];
|
||||
}
|
||||
|
||||
Perm &Perm::operator=( const Perm &Q )
|
||||
{
|
||||
if( Size() != Q.Size() )
|
||||
{
|
||||
delete[] p;
|
||||
p = new int[ Q.Size() ];
|
||||
}
|
||||
a = Q.Min();
|
||||
b = Q.Max();
|
||||
for( int i = 0; i < Size(); i++ ) p[i] = Q[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
Perm Perm::operator*( const Perm &Q ) const
|
||||
{
|
||||
if( Min() != Q.Min() ) return Perm(0);
|
||||
if( Max() != Q.Max() ) return Perm(0);
|
||||
Perm A( Min(), Max() );
|
||||
for( int i = 0; i < Size(); i++ ) A.Elem(i) = p[ Q[i] - Min() ];
|
||||
return A;
|
||||
}
|
||||
|
||||
Perm Perm::operator^( int n ) const
|
||||
{
|
||||
Perm A( Min(), Max() );
|
||||
int pn = n;
|
||||
if( n < 0 ) // First compute the inverse.
|
||||
{
|
||||
for( int i = 0; i < Size(); i++ )
|
||||
A.Elem( p[i] - Min() ) = i + Min();
|
||||
pn = -n;
|
||||
}
|
||||
for( int i = 0; i < Size(); i++ )
|
||||
{
|
||||
int k = ( n < 0 ) ? A[i] : p[i];
|
||||
for( int j = 1; j < pn; j++ ) k = p[ k - Min() ];
|
||||
A.Elem(i) = k;
|
||||
}
|
||||
return A;
|
||||
}
|
||||
|
||||
Perm &Perm::operator()( int i, int j )
|
||||
{
|
||||
Swap( p[ i - Min() ], p[ j - Min() ] );
|
||||
return *this;
|
||||
}
|
||||
|
||||
int Perm::operator==( const Perm &Q ) const
|
||||
{
|
||||
int i;
|
||||
if( Min() != Q.Min() ) return 0;
|
||||
if( Max() != Q.Max() ) return 0;
|
||||
for( i = 0; i < Size(); i++ ) if( p[i] != Q[i] ) return 0;
|
||||
return 1;
|
||||
}
|
||||
|
||||
int Perm::operator<=( const Perm &Q ) const
|
||||
{
|
||||
int i;
|
||||
if( Min() != Q.Min() ) return 0;
|
||||
if( Max() != Q.Max() ) return 0;
|
||||
for( i = 0; i < Size(); i++ ) if( p[i] != Q[i] ) return p[i] < Q[i];
|
||||
return 1;
|
||||
}
|
||||
|
||||
void Reset( Perm &P )
|
||||
{
|
||||
for( int i = 0; i < P.Size(); i++ ) P.Elem(i) = P.Min() + i;
|
||||
}
|
||||
|
||||
int End( const Perm &P )
|
||||
{
|
||||
int c = P[0];
|
||||
for( int i = 1; i < P.Size(); i++ )
|
||||
{
|
||||
if( c < P[i] ) return 0;
|
||||
c = P[i];
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void Print( const Perm &P )
|
||||
{
|
||||
if( P.Size() > 0 )
|
||||
{
|
||||
printf( "%d", P[0] );
|
||||
for( int i = 1; i < P.Size(); i++ ) printf( " %d", P[i] );
|
||||
printf( "\n" );
|
||||
}
|
||||
}
|
||||
|
||||
int Even( const Perm &P )
|
||||
{
|
||||
return !Odd( P );
|
||||
}
|
||||
|
||||
int Odd( const Perm &P )
|
||||
{
|
||||
int count = 0;
|
||||
Perm Q( P );
|
||||
for( int i = P.Min(); i < P.Max(); i++ )
|
||||
{
|
||||
if( Q(i) == i ) continue;
|
||||
for( int j = P.Min(); j <= P.Max(); j++ )
|
||||
{
|
||||
if( j == i ) continue;
|
||||
if( Q(j) == i )
|
||||
{
|
||||
Q(i,j);
|
||||
count = ( j - i ) + ( count % 2 );
|
||||
}
|
||||
}
|
||||
}
|
||||
return count % 2;
|
||||
}
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
**
|
||||
** P A R T I T I O N S
|
||||
**
|
||||
***************************************************************************/
|
||||
|
||||
Partition::Partition( )
|
||||
{
|
||||
Bin = NULL;
|
||||
bins = 0;
|
||||
balls = 0;
|
||||
}
|
||||
|
||||
Partition::Partition( const Partition &Q )
|
||||
{
|
||||
Bin = new int[ Q.Bins() ];
|
||||
bins = Q.Bins();
|
||||
balls = Q.Balls();
|
||||
for( int i = 0; i < bins; i++ ) Bin[i] = Q[i];
|
||||
}
|
||||
|
||||
Partition::Partition( int bins_, int balls_ )
|
||||
{
|
||||
bins = bins_;
|
||||
balls = balls_;
|
||||
Bin = new int[ bins ];
|
||||
Reset( *this );
|
||||
}
|
||||
|
||||
void Partition::operator+=( int bin ) // Add a ball to this bin.
|
||||
{
|
||||
if( bin < 0 || bin >= bins ) fprintf( stderr, "ERROR -- bin number out of range.\n" );
|
||||
balls++;
|
||||
Bin[ bin ]++;
|
||||
}
|
||||
|
||||
int Partition::operator==( const Partition &P ) const // Compare two partitions.
|
||||
{
|
||||
if( Balls() != P.Balls() ) return 0;
|
||||
if( Bins () != P.Bins () ) return 0;
|
||||
for( int i = 0; i < bins; i++ )
|
||||
{
|
||||
if( Bin[i] != P[i] ) return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void Partition::operator=( int n ) // Set to the n'th configuration.
|
||||
{
|
||||
Reset( *this );
|
||||
for( int i = 0; i < n; i++ ) ++(*this);
|
||||
}
|
||||
|
||||
int Partition::operator!=( const Partition &P ) const
|
||||
{
|
||||
return !( *this == P );
|
||||
}
|
||||
|
||||
void Partition::operator=( const Partition &Q )
|
||||
{
|
||||
if( bins != Q.Bins() )
|
||||
{
|
||||
delete[] Bin;
|
||||
Bin = new int[ Q.Bins() ];
|
||||
}
|
||||
bins = Q.Bins();
|
||||
balls = Q.Balls();
|
||||
for( int i = 0; i < bins; i++ ) Bin[i] = Q[i];
|
||||
}
|
||||
|
||||
void Partition::Get( char *str ) const
|
||||
{
|
||||
for( int i = 0; i < bins; i++ )
|
||||
str += sprintf( str, "%d ", Bin[i] );
|
||||
*str = NullChar;
|
||||
}
|
||||
|
||||
int Partition::operator[]( int i ) const
|
||||
{
|
||||
if( i < 0 || i >= bins ) return 0;
|
||||
else return Bin[i];
|
||||
}
|
||||
|
||||
long Partition::NumCombinations() const // How many distinct configurations.
|
||||
{
|
||||
// Think of the k "bins" as being k - 1 "partitions" mixed in with
|
||||
// the n "balls". If the balls and partitions were each distinguishable
|
||||
// objects, there would be (n + k - 1)! distinct configurations.
|
||||
// But since both the balls and the partitions are indistinguishable,
|
||||
// we simply divide by n! (k - 1)!. This is the binomial coefficient
|
||||
// ( n + k - 1, n ).
|
||||
//
|
||||
if( balls == 0 ) return 0;
|
||||
if( bins == 1 ) return 1;
|
||||
return (long)floor( BinomialCoeff( balls + bins - 1, balls ) + 0.5 );
|
||||
}
|
||||
|
||||
/***************************************************************************
|
||||
* O P E R A T O R + + (Next Partition) *
|
||||
* *
|
||||
* Rearranges the n "balls" in k "bins" into the next configuration. *
|
||||
* The first config is assumed to be all balls in the first bin -- i.e. *
|
||||
* Bin[0]. All possible groupings are generated, each exactly once. The *
|
||||
* function returns 1 if successful, 0 if the last config has already been *
|
||||
* reached. (Algorithm by Harold Zatz) *
|
||||
* *
|
||||
***************************************************************************/
|
||||
int Partition::operator++()
|
||||
{
|
||||
int i;
|
||||
if( Bin[0] > 0 )
|
||||
{
|
||||
Bin[1] += 1;
|
||||
Bin[0] -= 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
for( i = 1; Bin[i] == 0; i++ );
|
||||
if( i == bins - 1 ) return 0;
|
||||
Bin[i+1] += 1;
|
||||
Bin[0] = Bin[i] - 1;
|
||||
Bin[i] = 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void Reset( Partition &P )
|
||||
{
|
||||
P.Bin[0] = P.Balls();
|
||||
for( int i = 1; i < P.Bins(); i++ ) P.Bin[i] = 0;
|
||||
}
|
||||
|
||||
int End( const Partition &P )
|
||||
{
|
||||
return P[ P.Bins() - 1 ] == P.Balls();
|
||||
}
|
||||
|
||||
void Print( const Partition &P )
|
||||
{
|
||||
if( P.Bins() > 0 )
|
||||
{
|
||||
printf( "%d", P[0] );
|
||||
for( int i = 1; i < P.Bins(); i++ ) printf( " %d", P[i] );
|
||||
printf( "\n" );
|
||||
}
|
||||
}
|
||||
};
|
Reference in New Issue
Block a user