Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
fa4a7b9af7 | |||
f111d23637 |
@ -1,4 +1,4 @@
|
||||
CMAKE_MINIMUM_REQUIRED(VERSION 2.6.0)
|
||||
CMAKE_MINIMUM_REQUIRED(VERSION 2.4.0)
|
||||
PROJECT(NV)
|
||||
ENABLE_TESTING()
|
||||
|
||||
@ -16,13 +16,6 @@ MESSAGE(STATUS "Setting optimal options")
|
||||
MESSAGE(STATUS " Processor: ${NV_SYSTEM_PROCESSOR}")
|
||||
MESSAGE(STATUS " Compiler Flags: ${CMAKE_CXX_FLAGS}")
|
||||
|
||||
IF(NVTT_SHARED)
|
||||
SET(NVCORE_SHARED TRUE)
|
||||
SET(NVMATH_SHARED TRUE)
|
||||
SET(NVIMAGE_SHARED TRUE)
|
||||
ENDIF(NVTT_SHARED)
|
||||
|
||||
|
||||
ADD_SUBDIRECTORY(src)
|
||||
|
||||
IF(WIN32)
|
||||
|
29
ChangeLog
29
ChangeLog
@ -1,32 +1,3 @@
|
||||
NVIDIA Texture Tools version 2.0.5
|
||||
* Fix error in single color compressor. Fixes issue 66.
|
||||
* Detect mismatch between CUDA runtime and driver, and disable CUDA in that case.
|
||||
* Fix cmake files when compiling NVTT as a shared library.
|
||||
* When linking nvtt dynamically on unix, link all libraries dynamically.
|
||||
* Select fastest CUDA device.
|
||||
|
||||
NVIDIA Texture Tools version 2.0.4
|
||||
* Fix error in RGB format output; reported by jonsoh. See issue 49.
|
||||
* Added support RGB format dithering by jonsoh. Fixes issue 50 and 51.
|
||||
* Prevent infinite loop in indexMirror when width equal 1. Fixes issue 65.
|
||||
* Implement general scale filter, including upsampling.
|
||||
|
||||
NVIDIA Texture Tools version 2.0.3
|
||||
* More accurate DXT3 compressor. Fixes issue 38.
|
||||
* Remove legacy compressors. Fix issue 34.
|
||||
* Check for single color in all compressors. Fixes issue 43.
|
||||
* Fix error in fast downsample filter, reported by Noel Llopis.
|
||||
|
||||
NVIDIA Texture Tools version 2.0.2
|
||||
* Fix copy ctor error reported by Richard Sim.
|
||||
* Fix indexMirror error reported by Chris Lambert.
|
||||
* Fix vc8 post build command, reported by Richard Sim.
|
||||
* Fix RGBA modes with less than 32 bpp by Viktor Linder.
|
||||
* Fix alpha decompression by Amorilia. See issue 40.
|
||||
* Avoid default-initialized constructors for POD types, reported by Jim Tilander.
|
||||
* Add single color compresor for DXT1a.
|
||||
* Set swizzle code to ATI2 files. See issue 41.
|
||||
|
||||
NVIDIA Texture Tools version 2.0.1
|
||||
* Fix memory leaks.
|
||||
* Pre-allocate device memory for CUDA compressor.
|
||||
|
@ -46,9 +46,9 @@ FIND_LIBRARY (CUDA_RUNTIME_LIBRARY
|
||||
DOC "The CUDA runtime library")
|
||||
|
||||
IF (CUDA_INCLUDE_PATH AND CUDA_RUNTIME_LIBRARY)
|
||||
SET (CUDA_FOUND TRUE)
|
||||
SET (CUDA_FOUND 1 CACHE STRING "Set to 1 if CUDA is found, 0 otherwise")
|
||||
ELSE (CUDA_INCLUDE_PATH AND CUDA_RUNTIME_LIBRARY)
|
||||
SET (CUDA_FOUND FALSE)
|
||||
SET (CUDA_FOUND 0 CACHE STRING "Set to 1 if CUDA is found, 0 otherwise")
|
||||
ENDIF (CUDA_INCLUDE_PATH AND CUDA_RUNTIME_LIBRARY)
|
||||
|
||||
SET (CUDA_LIBRARIES ${CUDA_RUNTIME_LIBRARY})
|
||||
@ -57,7 +57,7 @@ MARK_AS_ADVANCED (CUDA_FOUND CUDA_COMPILER CUDA_RUNTIME_LIBRARY)
|
||||
|
||||
|
||||
#SET(CUDA_OPTIONS "-ncfe")
|
||||
SET(CUDA_OPTIONS "--host-compilation=C")
|
||||
SET(CUDA_OPTIONS "")
|
||||
|
||||
IF (CUDA_EMULATION)
|
||||
SET (CUDA_OPTIONS "${CUDA_OPTIONS} -deviceemu")
|
||||
|
2
configure
vendored
2
configure
vendored
@ -53,7 +53,7 @@ echo "-- Configuring nvidia-texture-tools "`cat VERSION`
|
||||
|
||||
mkdir -p ./build
|
||||
cd ./build
|
||||
$CMAKE .. -DNVTT_SHARED=1 -DCMAKE_BUILD_TYPE=$build -DCMAKE_INSTALL_PREFIX=$prefix -G "Unix Makefiles" || exit 1
|
||||
$CMAKE .. -DCMAKE_BUILD_TYPE=$build -DCMAKE_INSTALL_PREFIX=$prefix -G "Unix Makefiles" || exit 1
|
||||
cd ..
|
||||
|
||||
echo ""
|
||||
|
0
gnuwin32/bin/libpng12.dll
Executable file → Normal file
0
gnuwin32/bin/libpng12.dll
Executable file → Normal file
@ -278,7 +278,6 @@
|
||||
AdditionalDependencies="libpng.lib jpeg.lib tiff.lib"
|
||||
OutputFile="$(SolutionDir)\$(ConfigurationName).$(PlatformName)\bin\$(ProjectName).exe"
|
||||
AdditionalLibraryDirectories="..\..\..\gnuwin32\lib"
|
||||
LinkTimeCodeGeneration="1"
|
||||
TargetMachine="17"
|
||||
/>
|
||||
<Tool
|
||||
|
@ -281,10 +281,6 @@
|
||||
RelativePath="..\..\..\src\nvcore\Debug.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvcore\Library.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvcore\Memory.cpp"
|
||||
>
|
||||
@ -319,10 +315,6 @@
|
||||
RelativePath="..\..\..\src\nvcore\DefsVcWin32.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvcore\Library.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvcore\Memory.h"
|
||||
>
|
||||
|
@ -277,7 +277,6 @@
|
||||
AdditionalDependencies="libpng.lib jpeg.lib tiff.lib"
|
||||
OutputFile="$(SolutionDir)\$(ConfigurationName).$(PlatformName)\bin\$(ProjectName).exe"
|
||||
AdditionalLibraryDirectories="..\..\..\gnuwin32\lib"
|
||||
LinkTimeCodeGeneration="1"
|
||||
TargetMachine="17"
|
||||
/>
|
||||
<Tool
|
||||
|
@ -355,10 +355,6 @@
|
||||
RelativePath="..\..\..\src\nvimage\nvimage.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvimage\PixelFormat.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvimage\PsdFile.h"
|
||||
>
|
||||
|
@ -278,7 +278,11 @@
|
||||
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
|
||||
>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvmath\Plane.cpp"
|
||||
RelativePath="..\..\..\src\nvmath\Eigen.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvmath\Fitting.cpp"
|
||||
>
|
||||
</File>
|
||||
</Filter>
|
||||
@ -296,11 +300,15 @@
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvmath\Matrix.h"
|
||||
RelativePath="..\..\..\src\nvmath\Eigen.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvmath\Plane.h"
|
||||
RelativePath="..\..\..\src\nvmath\Fitting.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvmath\Matrix.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
|
@ -53,8 +53,8 @@ END
|
||||
//
|
||||
|
||||
VS_VERSION_INFO VERSIONINFO
|
||||
FILEVERSION 2,0,5,0
|
||||
PRODUCTVERSION 2,0,5,0
|
||||
FILEVERSION 2,0,1,0
|
||||
PRODUCTVERSION 2,0,1,0
|
||||
FILEFLAGSMASK 0x17L
|
||||
#ifdef _DEBUG
|
||||
FILEFLAGS 0x1L
|
||||
@ -71,12 +71,12 @@ BEGIN
|
||||
BEGIN
|
||||
VALUE "CompanyName", "NVIDIA Corporation"
|
||||
VALUE "FileDescription", "NVIDIA Texture Tools Dynamic Link Library"
|
||||
VALUE "FileVersion", "2, 0, 5, 0"
|
||||
VALUE "FileVersion", "2, 0, 1, 0"
|
||||
VALUE "InternalName", "nvtt"
|
||||
VALUE "LegalCopyright", "Copyright (C) 2007"
|
||||
VALUE "OriginalFilename", "nvtt.dll"
|
||||
VALUE "ProductName", "NVIDIA Texture Tools Dynamic Link Library"
|
||||
VALUE "ProductVersion", "2, 0, 5, 0"
|
||||
VALUE "ProductVersion", "2, 0, 1, 0"
|
||||
END
|
||||
END
|
||||
BLOCK "VarFileInfo"
|
||||
|
@ -97,7 +97,7 @@
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"
|
||||
Description="Copying header files..."
|
||||
CommandLine="xcopy /y /f /i "$(SolutionDir)\..\..\src\nvtt\nvtt*.h" "$(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\nvtt\""
|
||||
CommandLine="xcopy /y /f /i $(SolutionDir)\..\..\src\nvtt\nvtt*.h $(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\"
|
||||
/>
|
||||
</Configuration>
|
||||
<Configuration
|
||||
@ -261,7 +261,7 @@
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"
|
||||
Description="Copying header files..."
|
||||
CommandLine="xcopy /y /f /i "$(SolutionDir)\..\..\src\nvtt\nvtt*.h" "$(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\nvtt\""
|
||||
CommandLine="xcopy /y /f /i $(SolutionDir)\..\..\src\nvtt\nvtt*.h $(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\"
|
||||
/>
|
||||
</Configuration>
|
||||
<Configuration
|
||||
@ -425,7 +425,7 @@
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"
|
||||
Description="Copying header files..."
|
||||
CommandLine="xcopy /y /f /i "$(SolutionDir)\..\..\src\nvtt\nvtt*.h" "$(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\nvtt\""
|
||||
CommandLine="xcopy /y /f /i $(SolutionDir)\..\..\src\nvtt\nvtt*.h $(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\"
|
||||
/>
|
||||
</Configuration>
|
||||
<Configuration
|
||||
@ -585,7 +585,7 @@
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"
|
||||
Description="Copying header files..."
|
||||
CommandLine="xcopy /y /f /i "$(SolutionDir)\..\..\src\nvtt\nvtt*.h" "$(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\nvtt\""
|
||||
CommandLine="xcopy /y /f /i $(SolutionDir)\..\..\src\nvtt\nvtt*.h $(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\"
|
||||
/>
|
||||
</Configuration>
|
||||
<Configuration
|
||||
@ -691,7 +691,7 @@
|
||||
>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
CommandLine=""$(CUDA_BIN_PATH)\nvcc.exe" -m32 -ccbin "$(VCInstallDir)bin" -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I"$(CUDA_INC_PATH)" -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu
"
|
||||
CommandLine=""$(CUDA_BIN_PATH)\nvcc.exe" -keep -ccbin "$(VCInstallDir)bin" -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I"$(CUDA_INC_PATH)" -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu
"
|
||||
AdditionalDependencies="CudaMath.h"
|
||||
Outputs="$(IntDir)\$(InputName).obj"
|
||||
/>
|
||||
@ -701,7 +701,7 @@
|
||||
>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
CommandLine=""$(CUDA_BIN_PATH)\nvcc.exe" -m64 -ccbin "$(VCInstallDir)bin" -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I"$(CUDA_INC_PATH)" -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu
"
|
||||
CommandLine=""$(CUDA_BIN_PATH)\nvcc.exe" -keep -ccbin "$(VCInstallDir)bin" -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I"$(CUDA_INC_PATH)" -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu
"
|
||||
AdditionalDependencies="CudaMath.h"
|
||||
Outputs="$(IntDir)\$(InputName).obj"
|
||||
/>
|
||||
@ -711,7 +711,7 @@
|
||||
>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
CommandLine=""$(CUDA_BIN_PATH)\nvcc.exe" -m32 -ccbin "$(VCInstallDir)bin" -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I"$(CUDA_INC_PATH)" -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu
"
|
||||
CommandLine=""$(CUDA_BIN_PATH)\nvcc.exe" -keep -ccbin "$(VCInstallDir)bin" -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I"$(CUDA_INC_PATH)" -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu
"
|
||||
AdditionalDependencies="CudaMath.h"
|
||||
Outputs="$(IntDir)\$(InputName).obj"
|
||||
/>
|
||||
@ -721,7 +721,7 @@
|
||||
>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"
|
||||
CommandLine=""$(CUDA_BIN_PATH)\nvcc.exe" -m64 -ccbin "$(VCInstallDir)bin" -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I"$(CUDA_INC_PATH)" -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu
"
|
||||
CommandLine=""$(CUDA_BIN_PATH)\nvcc.exe" -keep -ccbin "$(VCInstallDir)bin" -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I"$(CUDA_INC_PATH)" -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu
"
|
||||
AdditionalDependencies="CudaMath.h"
|
||||
Outputs="$(IntDir)\$(InputName).obj"
|
||||
/>
|
||||
@ -849,6 +849,10 @@
|
||||
RelativePath="..\..\..\src\nvtt\cuda\CudaUtils.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvtt\FastCompressDXT.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvtt\InputOptions.cpp"
|
||||
>
|
||||
@ -861,10 +865,6 @@
|
||||
RelativePath="..\..\..\src\nvtt\nvtt_wrapper.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvtt\OptimalCompressDXT.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvtt\OutputOptions.cpp"
|
||||
>
|
||||
@ -911,6 +911,10 @@
|
||||
RelativePath="..\..\..\src\nvtt\cuda\CudaUtils.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvtt\FastCompressDXT.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvtt\InputOptions.h"
|
||||
>
|
||||
@ -923,10 +927,6 @@
|
||||
RelativePath="..\..\..\src\nvtt\nvtt_wrapper.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvtt\OptimalCompressDXT.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\..\src\nvtt\OutputOptions.h"
|
||||
>
|
||||
|
@ -50,7 +50,6 @@ ENDIF(CG_FOUND)
|
||||
# CUDA
|
||||
INCLUDE(${NV_CMAKE_DIR}/FindCUDA.cmake)
|
||||
IF(CUDA_FOUND)
|
||||
SET(HAVE_CUDA ${CUDA_FOUND} CACHE BOOL "Set to TRUE if CUDA is found, FALSE otherwise")
|
||||
MESSAGE(STATUS "Looking for CUDA - found")
|
||||
ELSE(CUDA_FOUND)
|
||||
MESSAGE(STATUS "Looking for CUDA - not found")
|
||||
@ -59,7 +58,7 @@ ENDIF(CUDA_FOUND)
|
||||
# Maya
|
||||
INCLUDE(${NV_CMAKE_DIR}/FindMaya.cmake)
|
||||
IF(MAYA_FOUND)
|
||||
SET(HAVE_MAYA ${MAYA_FOUND} CACHE BOOL "Set to TRUE if Maya is found, FALSE otherwise")
|
||||
SET(HAVE_MAYA MAYA_FOUND)
|
||||
MESSAGE(STATUS "Looking for Maya - found")
|
||||
ELSE(MAYA_FOUND)
|
||||
MESSAGE(STATUS "Looking for Maya - not found")
|
||||
@ -68,7 +67,7 @@ ENDIF(MAYA_FOUND)
|
||||
# JPEG
|
||||
INCLUDE(FindJPEG)
|
||||
IF(JPEG_FOUND)
|
||||
SET(HAVE_JPEG ${JPEG_FOUND} CACHE BOOL "Set to TRUE if JPEG is found, FALSE otherwise")
|
||||
SET(HAVE_JPEG JPEG_FOUND)
|
||||
MESSAGE(STATUS "Looking for JPEG - found")
|
||||
ELSE(JPEG_FOUND)
|
||||
MESSAGE(STATUS "Looking for JPEG - not found")
|
||||
@ -77,7 +76,7 @@ ENDIF(JPEG_FOUND)
|
||||
# PNG
|
||||
INCLUDE(FindPNG)
|
||||
IF(PNG_FOUND)
|
||||
SET(HAVE_PNG ${PNG_FOUND} CACHE BOOL "Set to TRUE if PNG is found, FALSE otherwise")
|
||||
SET(HAVE_PNG PNG_FOUND)
|
||||
MESSAGE(STATUS "Looking for PNG - found")
|
||||
ELSE(PNG_FOUND)
|
||||
MESSAGE(STATUS "Looking for PNG - not found")
|
||||
@ -86,7 +85,7 @@ ENDIF(PNG_FOUND)
|
||||
# TIFF
|
||||
INCLUDE(FindTIFF)
|
||||
IF(TIFF_FOUND)
|
||||
SET(HAVE_TIFF ${TIFF_FOUND} CACHE BOOL "Set to TRUE if TIFF is found, FALSE otherwise")
|
||||
SET(HAVE_TIFF TIFF_FOUND)
|
||||
MESSAGE(STATUS "Looking for TIFF - found")
|
||||
ELSE(TIFF_FOUND)
|
||||
MESSAGE(STATUS "Looking for TIFF - not found")
|
||||
@ -95,7 +94,7 @@ ENDIF(TIFF_FOUND)
|
||||
# OpenEXR
|
||||
INCLUDE(${NV_CMAKE_DIR}/FindOpenEXR.cmake)
|
||||
IF(OPENEXR_FOUND)
|
||||
SET(HAVE_OPENEXR ${OPENEXR_FOUND} CACHE BOOL "Set to TRUE if OpenEXR is found, FALSE otherwise")
|
||||
SET(HAVE_OPENEXR OPENEXR_FOUND)
|
||||
MESSAGE(STATUS "Looking for OpenEXR - found")
|
||||
ELSE(OPENEXR_FOUND)
|
||||
MESSAGE(STATUS "Looking for OpenEXR - not found")
|
||||
|
@ -18,20 +18,16 @@ SET(CORE_SRCS
|
||||
TextReader.cpp
|
||||
TextWriter.h
|
||||
TextWriter.cpp
|
||||
Tokenizer.h
|
||||
Tokenizer.cpp
|
||||
Radix.h
|
||||
Radix.cpp
|
||||
Library.h
|
||||
Library.cpp)
|
||||
Radix.cpp)
|
||||
|
||||
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
# targets
|
||||
ADD_DEFINITIONS(-DNVCORE_EXPORTS)
|
||||
|
||||
IF(UNIX)
|
||||
SET(LIBS ${LIBS} ${CMAKE_DL_LIBS})
|
||||
ENDIF(UNIX)
|
||||
|
||||
IF(NVCORE_SHARED)
|
||||
ADD_LIBRARY(nvcore SHARED ${CORE_SRCS})
|
||||
ELSE(NVCORE_SHARED)
|
||||
|
@ -446,7 +446,7 @@ namespace nv
|
||||
|
||||
// Call default constructors
|
||||
for( i = old_size; i < new_size; i++ ) {
|
||||
new(m_buffer+i) T; // placement new
|
||||
new(m_buffer+i) T(); // placement new
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -28,7 +28,7 @@
|
||||
#endif
|
||||
|
||||
#if NV_OS_LINUX && defined(HAVE_EXECINFO_H)
|
||||
# include <execinfo.h> // backtrace
|
||||
# include <execinfo.h>
|
||||
# if NV_CC_GNUC // defined(HAVE_CXXABI_H)
|
||||
# include <cxxabi.h>
|
||||
# endif
|
||||
@ -39,13 +39,6 @@
|
||||
# include <sys/types.h>
|
||||
# include <sys/sysctl.h> // sysctl
|
||||
# include <ucontext.h>
|
||||
# undef HAVE_EXECINFO_H
|
||||
# if defined(HAVE_EXECINFO_H) // only after OSX 10.5
|
||||
# include <execinfo.h> // backtrace
|
||||
# if NV_CC_GNUC // defined(HAVE_CXXABI_H)
|
||||
# include <cxxabi.h>
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#include <stdexcept> // std::runtime_error
|
||||
@ -81,9 +74,7 @@ namespace
|
||||
|
||||
// TODO write minidump
|
||||
|
||||
static LONG WINAPI nvTopLevelFilter( struct _EXCEPTION_POINTERS * pExceptionInfo)
|
||||
{
|
||||
NV_UNUSED(pExceptionInfo);
|
||||
static LONG WINAPI nvTopLevelFilter( struct _EXCEPTION_POINTERS *pExceptionInfo ) {
|
||||
/* BOOL (WINAPI * Dump) (HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION, PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION );
|
||||
|
||||
AutoString dbghelp_path(512);
|
||||
@ -135,10 +126,6 @@ namespace
|
||||
|
||||
#if defined(HAVE_EXECINFO_H) // NV_OS_LINUX
|
||||
|
||||
static bool nvHasStackTrace() {
|
||||
return backtrace != NULL;
|
||||
}
|
||||
|
||||
static void nvPrintStackTrace(void * trace[], int size, int start=0) {
|
||||
char ** string_array = backtrace_symbols(trace, size);
|
||||
|
||||
@ -177,26 +164,13 @@ namespace
|
||||
|
||||
static void * callerAddress(void * secret)
|
||||
{
|
||||
# if NV_OS_DARWIN
|
||||
# if defined(_STRUCT_MCONTEXT)
|
||||
# if NV_CPU_PPC
|
||||
ucontext_t * ucp = (ucontext_t *)secret;
|
||||
return (void *) ucp->uc_mcontext->__ss.__srr0;
|
||||
# elif NV_CPU_X86
|
||||
ucontext_t * ucp = (ucontext_t *)secret;
|
||||
return (void *) ucp->uc_mcontext->__ss.__eip;
|
||||
# endif
|
||||
# else
|
||||
# if NV_CPU_PPC
|
||||
# if NV_OS_DARWIN && NV_CPU_PPC
|
||||
ucontext_t * ucp = (ucontext_t *)secret;
|
||||
return (void *) ucp->uc_mcontext->ss.srr0;
|
||||
# elif NV_CPU_X86
|
||||
# elif NV_OS_DARWIN && NV_CPU_X86
|
||||
ucontext_t * ucp = (ucontext_t *)secret;
|
||||
return (void *) ucp->uc_mcontext->ss.eip;
|
||||
# endif
|
||||
# endif
|
||||
# else
|
||||
# if NV_CPU_X86_64
|
||||
# elif NV_CPU_X86_64
|
||||
// #define REG_RIP REG_INDEX(rip) // seems to be 16
|
||||
ucontext_t * ucp = (ucontext_t *)secret;
|
||||
return (void *)ucp->uc_mcontext.gregs[REG_RIP];
|
||||
@ -206,7 +180,8 @@ namespace
|
||||
# elif NV_CPU_PPC
|
||||
ucontext_t * ucp = (ucontext_t *)secret;
|
||||
return (void *) ucp->uc_mcontext.regs->nip;
|
||||
# endif
|
||||
# else
|
||||
return NULL;
|
||||
# endif
|
||||
|
||||
// How to obtain the instruction pointers in different platforms, from mlton's source code.
|
||||
@ -251,8 +226,7 @@ namespace
|
||||
}
|
||||
|
||||
# if defined(HAVE_EXECINFO_H)
|
||||
if (nvHasStackTrace()) // in case of weak linking
|
||||
{
|
||||
|
||||
void * trace[64];
|
||||
int size = backtrace(trace, 64);
|
||||
|
||||
@ -262,7 +236,7 @@ namespace
|
||||
}
|
||||
|
||||
nvPrintStackTrace(trace, size, 1);
|
||||
}
|
||||
|
||||
# endif // defined(HAVE_EXECINFO_H)
|
||||
|
||||
exit(0);
|
||||
@ -397,12 +371,9 @@ namespace
|
||||
# endif
|
||||
|
||||
# if defined(HAVE_EXECINFO_H)
|
||||
if (nvHasStackTrace())
|
||||
{
|
||||
void * trace[64];
|
||||
int size = backtrace(trace, 64);
|
||||
nvPrintStackTrace(trace, size, 3);
|
||||
}
|
||||
# endif
|
||||
|
||||
// Exit cleanly.
|
||||
@ -449,12 +420,9 @@ void NV_CDECL nvDebug(const char *msg, ...)
|
||||
void debug::dumpInfo()
|
||||
{
|
||||
#if !NV_OS_WIN32 && defined(HAVE_SIGNAL_H) && defined(HAVE_EXECINFO_H)
|
||||
if (nvHasStackTrace())
|
||||
{
|
||||
void * trace[64];
|
||||
int size = backtrace(trace, 64);
|
||||
nvPrintStackTrace(trace, size, 1);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -2,7 +2,8 @@
|
||||
#error "Do not include this file directly."
|
||||
#endif
|
||||
|
||||
#include <stdint.h> // uint8_t, int8_t, ...
|
||||
#include <stdlib.h> // uint8_t, int8_t, ...
|
||||
|
||||
|
||||
// Function linkage
|
||||
#define DLL_IMPORT
|
||||
|
@ -19,9 +19,7 @@
|
||||
|
||||
// Set standard function names.
|
||||
#define snprintf _snprintf
|
||||
#if _MSC_VER < 1500
|
||||
#define vsnprintf _vsnprintf
|
||||
#endif
|
||||
#define vsscanf _vsscanf
|
||||
#define chdir _chdir
|
||||
#define getcwd _getcwd
|
||||
|
@ -1,41 +0,0 @@
|
||||
|
||||
#include "Library.h"
|
||||
#include "Debug.h"
|
||||
|
||||
#if NV_OS_WIN32
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#define VC_EXTRALEAN
|
||||
#include <windows.h>
|
||||
#else
|
||||
#include <dlfcn.h>
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
void * nvLoadLibrary(const char * name)
|
||||
{
|
||||
#if NV_OS_WIN32
|
||||
return (void *)LoadLibraryExA( name, NULL, 0 );
|
||||
#else
|
||||
return dlopen(name, RTLD_LAZY);
|
||||
#endif
|
||||
}
|
||||
|
||||
void nvUnloadLibrary(void * handle)
|
||||
{
|
||||
nvDebugCheck(handle != NULL);
|
||||
#if NV_OS_WIN32
|
||||
FreeLibrary((HMODULE)handle);
|
||||
#else
|
||||
dlclose(handle);
|
||||
#endif
|
||||
}
|
||||
|
||||
void * nvBindSymbol(void * handle, const char * symbol)
|
||||
{
|
||||
#if NV_OS_WIN32
|
||||
return (void *)GetProcAddress((HMODULE)handle, symbol);
|
||||
#else
|
||||
return (void *)dlsym(handle, symbol);
|
||||
#endif
|
||||
}
|
@ -1,50 +0,0 @@
|
||||
// This code is in the public domain -- castano@gmail.com
|
||||
|
||||
#ifndef NV_CORE_LIBRARY_H
|
||||
#define NV_CORE_LIBRARY_H
|
||||
|
||||
#include <nvcore/nvcore.h>
|
||||
|
||||
#if NV_OS_WIN32
|
||||
#define LIBRARY_NAME(name) #name ".dll"
|
||||
#elif NV_OS_DARWIN
|
||||
#define NV_LIBRARY_NAME(name) "lib" #name ".dylib"
|
||||
#else
|
||||
#define NV_LIBRARY_NAME(name) "lib" #name ".so"
|
||||
#endif
|
||||
|
||||
NVCORE_API void * nvLoadLibrary(const char * name);
|
||||
NVCORE_API void nvUnloadLibrary(void * lib);
|
||||
NVCORE_API void * nvBindSymbol(void * lib, const char * symbol);
|
||||
|
||||
class NVCORE_CLASS Library
|
||||
{
|
||||
public:
|
||||
Library(const char * name)
|
||||
{
|
||||
handle = nvLoadLibrary(name);
|
||||
}
|
||||
~Library()
|
||||
{
|
||||
if (isValid())
|
||||
{
|
||||
nvUnloadLibrary(handle);
|
||||
}
|
||||
}
|
||||
|
||||
bool isValid() const
|
||||
{
|
||||
return handle != NULL;
|
||||
}
|
||||
|
||||
void * bindSymbol(const char * symbol)
|
||||
{
|
||||
return nvBindSymbol(handle, symbol);
|
||||
}
|
||||
|
||||
private:
|
||||
void * handle;
|
||||
};
|
||||
|
||||
|
||||
#endif // NV_CORE_LIBRARY_H
|
@ -18,8 +18,6 @@ void * nv::mem::malloc(size_t size)
|
||||
|
||||
void * nv::mem::malloc(size_t size, const char * file, int line)
|
||||
{
|
||||
NV_UNUSED(file);
|
||||
NV_UNUSED(line);
|
||||
return ::malloc(size);
|
||||
}
|
||||
|
||||
|
@ -24,7 +24,7 @@ __forceinline void nvPrefetch(const void * mem)
|
||||
#else // NV_CC_MSVC
|
||||
|
||||
// do nothing in other case.
|
||||
#define nvPrefetch(ptr)
|
||||
#define piPrefetch(ptr)
|
||||
|
||||
#endif // NV_CC_MSVC
|
||||
|
||||
|
@ -43,12 +43,9 @@ public:
|
||||
|
||||
/** Delete owned pointer and assign new one. */
|
||||
void operator=( T * p ) {
|
||||
if (p != m_ptr)
|
||||
{
|
||||
delete m_ptr;
|
||||
m_ptr = p;
|
||||
}
|
||||
}
|
||||
|
||||
/** Member access. */
|
||||
T * operator -> () const {
|
||||
@ -252,14 +249,14 @@ public:
|
||||
/** -> operator. */
|
||||
BaseClass * operator -> () const
|
||||
{
|
||||
nvCheck( m_ptr != NULL );
|
||||
piCheck( m_ptr != NULL );
|
||||
return m_ptr;
|
||||
}
|
||||
|
||||
/** * operator. */
|
||||
BaseClass & operator*() const
|
||||
{
|
||||
nvCheck( m_ptr != NULL );
|
||||
piCheck( m_ptr != NULL );
|
||||
return *m_ptr;
|
||||
}
|
||||
|
||||
|
@ -14,7 +14,7 @@ namespace nv
|
||||
|
||||
uint strHash(const char * str, uint h) NV_PURE;
|
||||
|
||||
/// String hash based on Bernstein's hash.
|
||||
/// String hash vased on Bernstein's hash.
|
||||
inline uint strHash(const char * data, uint h = 5381)
|
||||
{
|
||||
uint i;
|
||||
@ -212,13 +212,10 @@ namespace nv
|
||||
|
||||
/// Implement value semantics.
|
||||
String & operator=( const String & str )
|
||||
{
|
||||
if (str.data != data)
|
||||
{
|
||||
release();
|
||||
data = str.data;
|
||||
addRef();
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -307,6 +307,15 @@ void ColorBlock::boundsRangeAlpha(Color32 * start, Color32 * end) const
|
||||
}
|
||||
|
||||
|
||||
void ColorBlock::bestFitRange(Color32 * start, Color32 * end) const
|
||||
{
|
||||
nvDebugCheck(start != NULL);
|
||||
nvDebugCheck(end != NULL);
|
||||
|
||||
Vector3 axis = bestFitLine().direction();
|
||||
computeRange(axis, start, end);
|
||||
}
|
||||
|
||||
/// Sort colors by abosolute value in their 16 bit representation.
|
||||
void ColorBlock::sortColorsByAbsoluteValue()
|
||||
{
|
||||
@ -384,6 +393,19 @@ void ColorBlock::sortColors(const Vector3 & axis)
|
||||
}
|
||||
|
||||
|
||||
/// Get least squares line that best approxiamtes the points of the color block.
|
||||
Line3 ColorBlock::bestFitLine() const
|
||||
{
|
||||
Array<Vector3> pointArray(16);
|
||||
|
||||
for(int i = 0; i < 16; i++) {
|
||||
pointArray.append(Vector3(m_color[i].r, m_color[i].g, m_color[i].b));
|
||||
}
|
||||
|
||||
return Fit::bestLine(pointArray);
|
||||
}
|
||||
|
||||
|
||||
/// Get the volume of the color block.
|
||||
float ColorBlock::volume() const
|
||||
{
|
||||
|
@ -4,6 +4,7 @@
|
||||
#define NV_IMAGE_COLORBLOCK_H
|
||||
|
||||
#include <nvmath/Color.h>
|
||||
#include <nvmath/Fitting.h> // Line3
|
||||
|
||||
namespace nv
|
||||
{
|
||||
@ -32,13 +33,16 @@ namespace nv
|
||||
void luminanceRange(Color32 * start, Color32 * end) const;
|
||||
void boundsRange(Color32 * start, Color32 * end) const;
|
||||
void boundsRangeAlpha(Color32 * start, Color32 * end) const;
|
||||
void bestFitRange(Color32 * start, Color32 * end) const;
|
||||
|
||||
void sortColorsByAbsoluteValue();
|
||||
|
||||
void computeRange(const Vector3 & axis, Color32 * start, Color32 * end) const;
|
||||
void sortColors(const Vector3 & axis);
|
||||
|
||||
Line3 bestFitLine() const;
|
||||
float volume() const;
|
||||
Line3 diameterLine() const;
|
||||
|
||||
// Accessors
|
||||
const Color32 * colors() const;
|
||||
|
@ -54,10 +54,6 @@ namespace
|
||||
static const uint FOURCC_ATI1 = MAKEFOURCC('A', 'T', 'I', '1');
|
||||
static const uint FOURCC_ATI2 = MAKEFOURCC('A', 'T', 'I', '2');
|
||||
|
||||
static const uint FOURCC_A2XY = MAKEFOURCC('A', '2', 'X', 'Y');
|
||||
|
||||
static const uint FOURCC_DX10 = MAKEFOURCC('D', 'X', '1', '0');
|
||||
|
||||
// 32 bit RGB formats.
|
||||
static const uint D3DFMT_R8G8B8 = 20;
|
||||
static const uint D3DFMT_A8R8G8B8 = 21;
|
||||
@ -257,144 +253,6 @@ namespace
|
||||
D3D10_RESOURCE_DIMENSION_TEXTURE3D = 4,
|
||||
};
|
||||
|
||||
|
||||
const char * getDxgiFormatString(DXGI_FORMAT dxgiFormat)
|
||||
{
|
||||
#define CASE(format) case DXGI_FORMAT_##format: return #format
|
||||
switch(dxgiFormat)
|
||||
{
|
||||
CASE(UNKNOWN);
|
||||
|
||||
CASE(R32G32B32A32_TYPELESS);
|
||||
CASE(R32G32B32A32_FLOAT);
|
||||
CASE(R32G32B32A32_UINT);
|
||||
CASE(R32G32B32A32_SINT);
|
||||
|
||||
CASE(R32G32B32_TYPELESS);
|
||||
CASE(R32G32B32_FLOAT);
|
||||
CASE(R32G32B32_UINT);
|
||||
CASE(R32G32B32_SINT);
|
||||
|
||||
CASE(R16G16B16A16_TYPELESS);
|
||||
CASE(R16G16B16A16_FLOAT);
|
||||
CASE(R16G16B16A16_UNORM);
|
||||
CASE(R16G16B16A16_UINT);
|
||||
CASE(R16G16B16A16_SNORM);
|
||||
CASE(R16G16B16A16_SINT);
|
||||
|
||||
CASE(R32G32_TYPELESS);
|
||||
CASE(R32G32_FLOAT);
|
||||
CASE(R32G32_UINT);
|
||||
CASE(R32G32_SINT);
|
||||
|
||||
CASE(R32G8X24_TYPELESS);
|
||||
CASE(D32_FLOAT_S8X24_UINT);
|
||||
CASE(R32_FLOAT_X8X24_TYPELESS);
|
||||
CASE(X32_TYPELESS_G8X24_UINT);
|
||||
|
||||
CASE(R10G10B10A2_TYPELESS);
|
||||
CASE(R10G10B10A2_UNORM);
|
||||
CASE(R10G10B10A2_UINT);
|
||||
|
||||
CASE(R11G11B10_FLOAT);
|
||||
|
||||
CASE(R8G8B8A8_TYPELESS);
|
||||
CASE(R8G8B8A8_UNORM);
|
||||
CASE(R8G8B8A8_UNORM_SRGB);
|
||||
CASE(R8G8B8A8_UINT);
|
||||
CASE(R8G8B8A8_SNORM);
|
||||
CASE(R8G8B8A8_SINT);
|
||||
|
||||
CASE(R16G16_TYPELESS);
|
||||
CASE(R16G16_FLOAT);
|
||||
CASE(R16G16_UNORM);
|
||||
CASE(R16G16_UINT);
|
||||
CASE(R16G16_SNORM);
|
||||
CASE(R16G16_SINT);
|
||||
|
||||
CASE(R32_TYPELESS);
|
||||
CASE(D32_FLOAT);
|
||||
CASE(R32_FLOAT);
|
||||
CASE(R32_UINT);
|
||||
CASE(R32_SINT);
|
||||
|
||||
CASE(R24G8_TYPELESS);
|
||||
CASE(D24_UNORM_S8_UINT);
|
||||
CASE(R24_UNORM_X8_TYPELESS);
|
||||
CASE(X24_TYPELESS_G8_UINT);
|
||||
|
||||
CASE(R8G8_TYPELESS);
|
||||
CASE(R8G8_UNORM);
|
||||
CASE(R8G8_UINT);
|
||||
CASE(R8G8_SNORM);
|
||||
CASE(R8G8_SINT);
|
||||
|
||||
CASE(R16_TYPELESS);
|
||||
CASE(R16_FLOAT);
|
||||
CASE(D16_UNORM);
|
||||
CASE(R16_UNORM);
|
||||
CASE(R16_UINT);
|
||||
CASE(R16_SNORM);
|
||||
CASE(R16_SINT);
|
||||
|
||||
CASE(R8_TYPELESS);
|
||||
CASE(R8_UNORM);
|
||||
CASE(R8_UINT);
|
||||
CASE(R8_SNORM);
|
||||
CASE(R8_SINT);
|
||||
CASE(A8_UNORM);
|
||||
|
||||
CASE(R1_UNORM);
|
||||
|
||||
CASE(R9G9B9E5_SHAREDEXP);
|
||||
|
||||
CASE(R8G8_B8G8_UNORM);
|
||||
CASE(G8R8_G8B8_UNORM);
|
||||
|
||||
CASE(BC1_TYPELESS);
|
||||
CASE(BC1_UNORM);
|
||||
CASE(BC1_UNORM_SRGB);
|
||||
|
||||
CASE(BC2_TYPELESS);
|
||||
CASE(BC2_UNORM);
|
||||
CASE(BC2_UNORM_SRGB);
|
||||
|
||||
CASE(BC3_TYPELESS);
|
||||
CASE(BC3_UNORM);
|
||||
CASE(BC3_UNORM_SRGB);
|
||||
|
||||
CASE(BC4_TYPELESS);
|
||||
CASE(BC4_UNORM);
|
||||
CASE(BC4_SNORM);
|
||||
|
||||
CASE(BC5_TYPELESS);
|
||||
CASE(BC5_UNORM);
|
||||
CASE(BC5_SNORM);
|
||||
|
||||
CASE(B5G6R5_UNORM);
|
||||
CASE(B5G5R5A1_UNORM);
|
||||
CASE(B8G8R8A8_UNORM);
|
||||
CASE(B8G8R8X8_UNORM);
|
||||
|
||||
default:
|
||||
return "UNKNOWN";
|
||||
}
|
||||
#undef CASE
|
||||
}
|
||||
|
||||
const char * getD3d10ResourceDimensionString(D3D10_RESOURCE_DIMENSION resourceDimension)
|
||||
{
|
||||
switch(resourceDimension)
|
||||
{
|
||||
default:
|
||||
case D3D10_RESOURCE_DIMENSION_UNKNOWN: return "UNKNOWN";
|
||||
case D3D10_RESOURCE_DIMENSION_BUFFER: return "BUFFER";
|
||||
case D3D10_RESOURCE_DIMENSION_TEXTURE1D: return "TEXTURE1D";
|
||||
case D3D10_RESOURCE_DIMENSION_TEXTURE2D: return "TEXTURE2D";
|
||||
case D3D10_RESOURCE_DIMENSION_TEXTURE3D: return "TEXTURE3D";
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace nv
|
||||
@ -532,7 +390,7 @@ DDSHeader::DDSHeader()
|
||||
|
||||
// Store version information on the reserved header attributes.
|
||||
this->reserved[9] = MAKEFOURCC('N', 'V', 'T', 'T');
|
||||
this->reserved[10] = (2 << 16) | (0 << 8) | (5); // major.minor.revision
|
||||
this->reserved[10] = (0 << 16) | (9 << 8) | (5); // major.minor.revision
|
||||
|
||||
this->pf.size = 32;
|
||||
this->pf.flags = 0;
|
||||
@ -636,16 +494,7 @@ void DDSHeader::setFourCC(uint8 c0, uint8 c1, uint8 c2, uint8 c3)
|
||||
// set fourcc pixel format.
|
||||
this->pf.flags = DDPF_FOURCC;
|
||||
this->pf.fourcc = MAKEFOURCC(c0, c1, c2, c3);
|
||||
|
||||
if (this->pf.fourcc == FOURCC_ATI2)
|
||||
{
|
||||
this->pf.bitcount = FOURCC_A2XY;
|
||||
}
|
||||
else
|
||||
{
|
||||
this->pf.bitcount = 0;
|
||||
}
|
||||
|
||||
this->pf.rmask = 0;
|
||||
this->pf.gmask = 0;
|
||||
this->pf.bmask = 0;
|
||||
@ -681,9 +530,9 @@ void DDSHeader::setPixelFormat(uint bitcount, uint rmask, uint gmask, uint bmask
|
||||
nvCheck(bitcount > 0 && bitcount <= 32);
|
||||
|
||||
// Align to 8.
|
||||
if (bitcount <= 8) bitcount = 8;
|
||||
else if (bitcount <= 16) bitcount = 16;
|
||||
else if (bitcount <= 24) bitcount = 24;
|
||||
if (bitcount < 8) bitcount = 8;
|
||||
else if (bitcount < 16) bitcount = 16;
|
||||
else if (bitcount < 24) bitcount = 24;
|
||||
else bitcount = 32;
|
||||
|
||||
this->pf.fourcc = 0; //findD3D9Format(bitcount, rmask, gmask, bmask, amask);
|
||||
@ -696,8 +545,7 @@ void DDSHeader::setPixelFormat(uint bitcount, uint rmask, uint gmask, uint bmask
|
||||
|
||||
void DDSHeader::setDX10Format(uint format)
|
||||
{
|
||||
//this->pf.flags = 0;
|
||||
this->pf.fourcc = FOURCC_DX10;
|
||||
this->pf.flags = 0;
|
||||
this->header10.dxgiFormat = format;
|
||||
}
|
||||
|
||||
@ -745,8 +593,7 @@ void DDSHeader::swapBytes()
|
||||
|
||||
bool DDSHeader::hasDX10Header() const
|
||||
{
|
||||
return this->pf.fourcc == FOURCC_DX10; // @@ This is according to AMD
|
||||
//return this->pf.flags == 0; // @@ This is according to MS
|
||||
return this->pf.flags == 0;
|
||||
}
|
||||
|
||||
|
||||
@ -776,7 +623,7 @@ bool DirectDrawSurface::isValid() const
|
||||
return false;
|
||||
}
|
||||
|
||||
const uint required = (DDSD_WIDTH|DDSD_HEIGHT/*|DDSD_CAPS|DDSD_PIXELFORMAT*/);
|
||||
const uint required = (DDSD_WIDTH|DDSD_HEIGHT|DDSD_CAPS|DDSD_PIXELFORMAT);
|
||||
if( (header.flags & required) != required ) {
|
||||
return false;
|
||||
}
|
||||
@ -796,11 +643,6 @@ bool DirectDrawSurface::isSupported() const
|
||||
{
|
||||
nvDebugCheck(isValid());
|
||||
|
||||
if (header.hasDX10Header())
|
||||
{
|
||||
}
|
||||
else
|
||||
{
|
||||
if (header.pf.flags & DDPF_FOURCC)
|
||||
{
|
||||
if (header.pf.fourcc != FOURCC_DXT1 &&
|
||||
@ -836,7 +678,6 @@ bool DirectDrawSurface::isSupported() const
|
||||
// @@ 3D textures not supported yet.
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -871,41 +712,17 @@ uint DirectDrawSurface::depth() const
|
||||
else return 1;
|
||||
}
|
||||
|
||||
bool DirectDrawSurface::isTexture1D() const
|
||||
{
|
||||
nvDebugCheck(isValid());
|
||||
if (header.hasDX10Header())
|
||||
{
|
||||
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE1D;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool DirectDrawSurface::isTexture2D() const
|
||||
{
|
||||
nvDebugCheck(isValid());
|
||||
if (header.hasDX10Header())
|
||||
{
|
||||
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE2D;
|
||||
}
|
||||
else
|
||||
{
|
||||
return !isTexture3D() && !isTextureCube();
|
||||
}
|
||||
}
|
||||
|
||||
bool DirectDrawSurface::isTexture3D() const
|
||||
{
|
||||
nvDebugCheck(isValid());
|
||||
if (header.hasDX10Header())
|
||||
{
|
||||
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE3D;
|
||||
}
|
||||
else
|
||||
{
|
||||
return (header.caps.caps2 & DDSCAPS2_VOLUME) != 0;
|
||||
}
|
||||
}
|
||||
|
||||
bool DirectDrawSurface::isTextureCube() const
|
||||
{
|
||||
@ -913,12 +730,6 @@ bool DirectDrawSurface::isTextureCube() const
|
||||
return (header.caps.caps2 & DDSCAPS2_CUBEMAP) != 0;
|
||||
}
|
||||
|
||||
void DirectDrawSurface::setNormalFlag(bool b)
|
||||
{
|
||||
nvDebugCheck(isValid());
|
||||
header.setNormalFlag(b);
|
||||
}
|
||||
|
||||
void DirectDrawSurface::mipmap(Image * img, uint face, uint mipmap)
|
||||
{
|
||||
nvDebugCheck(isValid());
|
||||
@ -969,13 +780,7 @@ void DirectDrawSurface::readLinearImage(Image * img)
|
||||
|
||||
uint byteCount = (header.pf.bitcount + 7) / 8;
|
||||
|
||||
// set image format: RGB or ARGB
|
||||
// alpha channel exists if and only if the alpha mask is non-zero
|
||||
if (header.pf.amask == 0)
|
||||
{
|
||||
img->setFormat(Image::Format_RGB);
|
||||
}
|
||||
else
|
||||
if (header.pf.amask != 0)
|
||||
{
|
||||
img->setFormat(Image::Format_ARGB);
|
||||
}
|
||||
@ -1004,19 +809,6 @@ void DirectDrawSurface::readBlockImage(Image * img)
|
||||
nvDebugCheck(stream != NULL);
|
||||
nvDebugCheck(img != NULL);
|
||||
|
||||
// set image format: RGB or ARGB
|
||||
if (header.pf.fourcc == FOURCC_RXGB ||
|
||||
header.pf.fourcc == FOURCC_ATI1 ||
|
||||
header.pf.fourcc == FOURCC_ATI2 ||
|
||||
header.pf.flags & DDPF_NORMAL)
|
||||
{
|
||||
img->setFormat(Image::Format_RGB);
|
||||
}
|
||||
else
|
||||
{
|
||||
img->setFormat(Image::Format_ARGB);
|
||||
}
|
||||
|
||||
const uint w = img->width();
|
||||
const uint h = img->height();
|
||||
|
||||
@ -1252,23 +1044,8 @@ void DirectDrawSurface::printInfo() const
|
||||
if (header.pf.flags & DDPF_ALPHAPREMULT) printf("\t\tDDPF_ALPHAPREMULT\n");
|
||||
if (header.pf.flags & DDPF_NORMAL) printf("\t\tDDPF_NORMAL\n");
|
||||
|
||||
printf("\tFourCC: '%c%c%c%c'\n",
|
||||
((header.pf.fourcc >> 0) & 0xFF),
|
||||
((header.pf.fourcc >> 8) & 0xFF),
|
||||
((header.pf.fourcc >> 16) & 0xFF),
|
||||
((header.pf.fourcc >> 24) & 0xFF));
|
||||
if ((header.pf.fourcc & DDPF_FOURCC) && (header.pf.bitcount != 0))
|
||||
{
|
||||
printf("\tSwizzle: '%c%c%c%c'\n",
|
||||
(header.pf.bitcount >> 0) & 0xFF,
|
||||
(header.pf.bitcount >> 8) & 0xFF,
|
||||
(header.pf.bitcount >> 16) & 0xFF,
|
||||
(header.pf.bitcount >> 24) & 0xFF);
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("\tFourCC: '%c%c%c%c'\n", ((header.pf.fourcc >> 0) & 0xFF), ((header.pf.fourcc >> 8) & 0xFF), ((header.pf.fourcc >> 16) & 0xFF), ((header.pf.fourcc >> 24) & 0xFF));
|
||||
printf("\tBit count: %d\n", header.pf.bitcount);
|
||||
}
|
||||
printf("\tRed mask: 0x%.8X\n", header.pf.rmask);
|
||||
printf("\tGreen mask: 0x%.8X\n", header.pf.gmask);
|
||||
printf("\tBlue mask: 0x%.8X\n", header.pf.bmask);
|
||||
@ -1299,11 +1076,11 @@ void DirectDrawSurface::printInfo() const
|
||||
printf("\tCaps 3: 0x%.8X\n", header.caps.caps3);
|
||||
printf("\tCaps 4: 0x%.8X\n", header.caps.caps4);
|
||||
|
||||
if (header.hasDX10Header())
|
||||
if (header.pf.flags == 0)
|
||||
{
|
||||
printf("DX10 Header:\n");
|
||||
printf("\tDXGI Format: %u (%s)\n", header.header10.dxgiFormat, getDxgiFormatString((DXGI_FORMAT)header.header10.dxgiFormat));
|
||||
printf("\tResource dimension: %u (%s)\n", header.header10.resourceDimension, getD3d10ResourceDimensionString((D3D10_RESOURCE_DIMENSION)header.header10.resourceDimension));
|
||||
printf("\tDXGI Format: %u\n", header.header10.dxgiFormat);
|
||||
printf("\tResource dimension: %u\n", header.header10.resourceDimension);
|
||||
printf("\tMisc flag: %u\n", header.header10.miscFlag);
|
||||
printf("\tArray size: %u\n", header.header10.arraySize);
|
||||
}
|
||||
|
@ -119,13 +119,10 @@ namespace nv
|
||||
uint width() const;
|
||||
uint height() const;
|
||||
uint depth() const;
|
||||
bool isTexture1D() const;
|
||||
bool isTexture2D() const;
|
||||
bool isTexture3D() const;
|
||||
bool isTextureCube() const;
|
||||
|
||||
void setNormalFlag(bool b);
|
||||
|
||||
void mipmap(Image * img, uint f, uint m);
|
||||
// void mipmap(FloatImage * img, uint f, uint m);
|
||||
|
||||
|
@ -244,7 +244,7 @@ SincFilter::SincFilter(float w) : Filter(w) {}
|
||||
|
||||
float SincFilter::evaluate(float x) const
|
||||
{
|
||||
return sincf(PI * x);
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
|
||||
@ -541,17 +541,12 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
|
||||
|
||||
PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength, int samples/*= 32*/)
|
||||
{
|
||||
nvCheck(srcLength >= dstLength); // @@ Upsampling not implemented!
|
||||
nvDebugCheck(samples > 0);
|
||||
|
||||
float scale = float(dstLength) / float(srcLength);
|
||||
const float scale = float(dstLength) / float(srcLength);
|
||||
const float iscale = 1.0f / scale;
|
||||
|
||||
if (scale > 1) {
|
||||
// Upsampling.
|
||||
samples = 1;
|
||||
scale = 1;
|
||||
}
|
||||
|
||||
m_length = dstLength;
|
||||
m_width = f.width() * iscale;
|
||||
m_windowSize = (int)ceilf(m_width * 2) + 1;
|
||||
@ -582,7 +577,6 @@ PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLengt
|
||||
m_data[i * m_windowSize + j] /= total;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
PolyphaseKernel::~PolyphaseKernel()
|
||||
|
@ -376,7 +376,7 @@ FloatImage * FloatImage::fastDownSample() const
|
||||
{
|
||||
const uint n = w * h;
|
||||
|
||||
if ((m_width * m_height) & 1)
|
||||
if (n & 1)
|
||||
{
|
||||
const float scale = 1.0f / (2 * n + 1);
|
||||
|
||||
@ -540,18 +540,73 @@ FloatImage * FloatImage::fastDownSample() const
|
||||
return dst_image.release();
|
||||
}
|
||||
|
||||
/*
|
||||
/// Downsample applying a 1D kernel separately in each dimension.
|
||||
FloatImage * FloatImage::downSample(const Kernel1 & kernel, WrapMode wm) const
|
||||
{
|
||||
const uint w = max(1, m_width / 2);
|
||||
const uint h = max(1, m_height / 2);
|
||||
|
||||
return downSample(kernel, w, h, wm);
|
||||
}
|
||||
|
||||
|
||||
/// Downsample applying a 1D kernel separately in each dimension.
|
||||
FloatImage * FloatImage::downSample(const Kernel1 & kernel, uint w, uint h, WrapMode wm) const
|
||||
{
|
||||
nvCheck(!(kernel.windowSize() & 1)); // Make sure that kernel m_width is even.
|
||||
|
||||
AutoPtr<FloatImage> tmp_image( new FloatImage() );
|
||||
tmp_image->allocate(m_componentNum, w, m_height);
|
||||
|
||||
AutoPtr<FloatImage> dst_image( new FloatImage() );
|
||||
dst_image->allocate(m_componentNum, w, h);
|
||||
|
||||
const float xscale = float(m_width) / float(w);
|
||||
const float yscale = float(m_height) / float(h);
|
||||
|
||||
for(uint c = 0; c < m_componentNum; c++) {
|
||||
float * tmp_channel = tmp_image->channel(c);
|
||||
|
||||
for(uint y = 0; y < m_height; y++) {
|
||||
for(uint x = 0; x < w; x++) {
|
||||
|
||||
float sum = this->applyKernelHorizontal(&kernel, uint(x*xscale), y, c, wm);
|
||||
|
||||
const uint tmp_index = tmp_image->index(x, y);
|
||||
tmp_channel[tmp_index] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
float * dst_channel = dst_image->channel(c);
|
||||
|
||||
for(uint y = 0; y < h; y++) {
|
||||
for(uint x = 0; x < w; x++) {
|
||||
|
||||
float sum = tmp_image->applyKernelVertical(&kernel, uint(x*xscale), uint(y*yscale), c, wm);
|
||||
|
||||
const uint dst_index = dst_image->index(x, y);
|
||||
dst_channel[dst_index] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return dst_image.release();
|
||||
}
|
||||
*/
|
||||
|
||||
/// Downsample applying a 1D kernel separately in each dimension.
|
||||
FloatImage * FloatImage::downSample(const Filter & filter, WrapMode wm) const
|
||||
{
|
||||
const uint w = max(1, m_width / 2);
|
||||
const uint h = max(1, m_height / 2);
|
||||
|
||||
return resize(filter, w, h, wm);
|
||||
return downSample(filter, w, h, wm);
|
||||
}
|
||||
|
||||
|
||||
/// Downsample applying a 1D kernel separately in each dimension.
|
||||
FloatImage * FloatImage::resize(const Filter & filter, uint w, uint h, WrapMode wm) const
|
||||
FloatImage * FloatImage::downSample(const Filter & filter, uint w, uint h, WrapMode wm) const
|
||||
{
|
||||
// @@ Use monophase filters when frac(m_width / w) == 0
|
||||
|
||||
|
@ -63,7 +63,7 @@ public:
|
||||
|
||||
NVIMAGE_API FloatImage * fastDownSample() const;
|
||||
NVIMAGE_API FloatImage * downSample(const Filter & filter, WrapMode wm) const;
|
||||
NVIMAGE_API FloatImage * resize(const Filter & filter, uint w, uint h, WrapMode wm) const;
|
||||
NVIMAGE_API FloatImage * downSample(const Filter & filter, uint w, uint h, WrapMode wm) const;
|
||||
|
||||
//NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, WrapMode wm) const;
|
||||
//NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, uint w, uint h, WrapMode wm) const;
|
||||
@ -226,18 +226,14 @@ inline uint FloatImage::indexRepeat(int x, int y) const
|
||||
|
||||
inline uint FloatImage::indexMirror(int x, int y) const
|
||||
{
|
||||
if (m_width == 1) x = 0;
|
||||
|
||||
x = abs(x);
|
||||
while (x >= m_width) {
|
||||
x = abs(m_width + m_width - x - 2);
|
||||
x = m_width + m_width - x - 2;
|
||||
}
|
||||
|
||||
if (m_height == 1) y = 0;
|
||||
|
||||
y = abs(y);
|
||||
while (y >= m_height) {
|
||||
y = abs(m_height + m_height - y - 2);
|
||||
y = m_height + m_height - y - 2;
|
||||
}
|
||||
|
||||
return index(x, y);
|
||||
|
@ -296,7 +296,7 @@ static bool downsample(const FloatImage * src, const BitMap * srcMask, const Flo
|
||||
return true;
|
||||
}
|
||||
|
||||
// This is the filter used in the Lumigraph paper.
|
||||
// This is the filter used in the Lumigraph paper. The Unreal engine uses something similar.
|
||||
void nv::fillPullPush(FloatImage * img, const BitMap * bmap)
|
||||
{
|
||||
nvCheck(img != NULL);
|
||||
@ -644,8 +644,8 @@ struct LocalPixels
|
||||
|
||||
|
||||
|
||||
// This is a quadratic extrapolation filter from Charles Bloom (DoPixelSeamFix). Used with his permission.
|
||||
void nv::fillQuadraticExtrapolate(int passCount, FloatImage * img, BitMap * bmap, int coverageIndex /*= -1*/)
|
||||
// This is a cubic extrapolation filter from Charles Bloom (DoPixelSeamFix).
|
||||
void nv::fillCubicExtrapolate(int passCount, FloatImage * img, BitMap * bmap, int coverageIndex /*= -1*/)
|
||||
{
|
||||
nvCheck(passCount > 0);
|
||||
nvCheck(img != NULL);
|
||||
|
@ -89,7 +89,7 @@ namespace nv
|
||||
NVIMAGE_API void fillPullPush(FloatImage * img, const BitMap * bmap);
|
||||
|
||||
NVIMAGE_API void fillExtrapolate(int passCount, FloatImage * img, BitMap * bmap);
|
||||
NVIMAGE_API void fillQuadraticExtrapolate(int passCount, FloatImage * img, BitMap * bmap, int coverageIndex = -1);
|
||||
NVIMAGE_API void fillCubicExtrapolate(int passCount, FloatImage * img, BitMap * bmap, int coverageIndex = -1);
|
||||
|
||||
} // nv namespace
|
||||
|
||||
|
@ -15,7 +15,7 @@ Image::Image() : m_width(0), m_height(0), m_format(Format_RGB), m_data(NULL)
|
||||
{
|
||||
}
|
||||
|
||||
Image::Image(const Image & img) : m_data(NULL)
|
||||
Image::Image(const Image & img)
|
||||
{
|
||||
allocate(img.m_width, img.m_height);
|
||||
m_format = img.m_format;
|
||||
|
@ -16,7 +16,6 @@ http://www.efg2.com/Lab/Library/ImageProcessing/DHALF.TXT
|
||||
|
||||
#include <nvimage/Image.h>
|
||||
#include <nvimage/Quantize.h>
|
||||
#include <nvimage/PixelFormat.h>
|
||||
|
||||
using namespace nv;
|
||||
|
||||
@ -48,20 +47,94 @@ void nv::Quantize::BinaryAlpha( Image * image, int alpha_threshold /*= 127*/ )
|
||||
// Simple quantization.
|
||||
void nv::Quantize::RGB16( Image * image )
|
||||
{
|
||||
Truncate(image, 5, 6, 5, 8);
|
||||
nvCheck(image != NULL);
|
||||
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
for(uint y = 0; y < h; y++) {
|
||||
for(uint x = 0; x < w; x++) {
|
||||
|
||||
Color32 pixel32 = image->pixel(x, y);
|
||||
|
||||
// Convert to 16 bit and back to 32 using regular bit expansion.
|
||||
Color32 pixel16 = toColor32( toColor16(pixel32) );
|
||||
|
||||
// Store color.
|
||||
image->pixel(x, y) = pixel16;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Alpha quantization.
|
||||
void nv::Quantize::Alpha4( Image * image )
|
||||
{
|
||||
Truncate(image, 8, 8, 8, 4);
|
||||
nvCheck(image != NULL);
|
||||
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
for(uint y = 0; y < h; y++) {
|
||||
for(uint x = 0; x < w; x++) {
|
||||
|
||||
Color32 pixel = image->pixel(x, y);
|
||||
|
||||
// Convert to 4 bit using regular bit expansion.
|
||||
pixel.a = (pixel.a & 0xF0) | ((pixel.a & 0xF0) >> 4);
|
||||
|
||||
// Store color.
|
||||
image->pixel(x, y) = pixel;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Error diffusion. Floyd Steinberg.
|
||||
void nv::Quantize::FloydSteinberg_RGB16( Image * image )
|
||||
{
|
||||
FloydSteinberg(image, 5, 6, 5, 8);
|
||||
nvCheck(image != NULL);
|
||||
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
// @@ Use fixed point?
|
||||
Vector3 * row0 = new Vector3[w+2];
|
||||
Vector3 * row1 = new Vector3[w+2];
|
||||
memset(row0, 0, sizeof(Vector3)*(w+2));
|
||||
memset(row1, 0, sizeof(Vector3)*(w+2));
|
||||
|
||||
for(uint y = 0; y < h; y++) {
|
||||
for(uint x = 0; x < w; x++) {
|
||||
|
||||
Color32 pixel32 = image->pixel(x, y);
|
||||
|
||||
// Add error. // @@ We shouldn't clamp here!
|
||||
pixel32.r = clamp(int(pixel32.r) + int(row0[1+x].x()), 0, 255);
|
||||
pixel32.g = clamp(int(pixel32.g) + int(row0[1+x].y()), 0, 255);
|
||||
pixel32.b = clamp(int(pixel32.b) + int(row0[1+x].z()), 0, 255);
|
||||
|
||||
// Convert to 16 bit. @@ Use regular clamp?
|
||||
Color32 pixel16 = toColor32( toColor16(pixel32) );
|
||||
|
||||
// Store color.
|
||||
image->pixel(x, y) = pixel16;
|
||||
|
||||
// Compute new error.
|
||||
Vector3 diff(float(pixel32.r - pixel16.r), float(pixel32.g - pixel16.g), float(pixel32.b - pixel16.b));
|
||||
|
||||
// Propagate new error.
|
||||
row0[1+x+1] += 7.0f / 16.0f * diff;
|
||||
row1[1+x-1] += 3.0f / 16.0f * diff;
|
||||
row1[1+x+0] += 5.0f / 16.0f * diff;
|
||||
row1[1+x+1] += 1.0f / 16.0f * diff;
|
||||
}
|
||||
|
||||
swap(row0, row1);
|
||||
memset(row1, 0, sizeof(Vector3)*(w+2));
|
||||
}
|
||||
|
||||
delete [] row0;
|
||||
delete [] row1;
|
||||
}
|
||||
|
||||
|
||||
@ -115,55 +188,17 @@ void nv::Quantize::FloydSteinberg_BinaryAlpha( Image * image, int alpha_threshol
|
||||
|
||||
// Error diffusion. Floyd Steinberg.
|
||||
void nv::Quantize::FloydSteinberg_Alpha4( Image * image )
|
||||
{
|
||||
FloydSteinberg(image, 8, 8, 8, 4);
|
||||
}
|
||||
|
||||
|
||||
void nv::Quantize::Truncate(Image * image, uint rsize, uint gsize, uint bsize, uint asize)
|
||||
{
|
||||
nvCheck(image != NULL);
|
||||
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
for(uint y = 0; y < h; y++) {
|
||||
for(uint x = 0; x < w; x++) {
|
||||
|
||||
Color32 pixel = image->pixel(x, y);
|
||||
|
||||
// Convert to our desired size, and reconstruct.
|
||||
pixel.r = PixelFormat::convert(pixel.r, 8, rsize);
|
||||
pixel.r = PixelFormat::convert(pixel.r, rsize, 8);
|
||||
|
||||
pixel.g = PixelFormat::convert(pixel.g, 8, gsize);
|
||||
pixel.g = PixelFormat::convert(pixel.g, gsize, 8);
|
||||
|
||||
pixel.b = PixelFormat::convert(pixel.b, 8, bsize);
|
||||
pixel.b = PixelFormat::convert(pixel.b, bsize, 8);
|
||||
|
||||
pixel.a = PixelFormat::convert(pixel.a, 8, asize);
|
||||
pixel.a = PixelFormat::convert(pixel.a, asize, 8);
|
||||
|
||||
// Store color.
|
||||
image->pixel(x, y) = pixel;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Error diffusion. Floyd Steinberg.
|
||||
void nv::Quantize::FloydSteinberg(Image * image, uint rsize, uint gsize, uint bsize, uint asize)
|
||||
{
|
||||
nvCheck(image != NULL);
|
||||
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
Vector4 * row0 = new Vector4[w+2];
|
||||
Vector4 * row1 = new Vector4[w+2];
|
||||
memset(row0, 0, sizeof(Vector4)*(w+2));
|
||||
memset(row1, 0, sizeof(Vector4)*(w+2));
|
||||
// @@ Use fixed point?
|
||||
float * row0 = new float[(w+2)];
|
||||
float * row1 = new float[(w+2)];
|
||||
memset(row0, 0, sizeof(float)*(w+2));
|
||||
memset(row1, 0, sizeof(float)*(w+2));
|
||||
|
||||
for(uint y = 0; y < h; y++) {
|
||||
for(uint x = 0; x < w; x++) {
|
||||
@ -171,34 +206,16 @@ void nv::Quantize::FloydSteinberg(Image * image, uint rsize, uint gsize, uint bs
|
||||
Color32 pixel = image->pixel(x, y);
|
||||
|
||||
// Add error.
|
||||
pixel.r = clamp(int(pixel.r) + int(row0[1+x].x()), 0, 255);
|
||||
pixel.g = clamp(int(pixel.g) + int(row0[1+x].y()), 0, 255);
|
||||
pixel.b = clamp(int(pixel.b) + int(row0[1+x].z()), 0, 255);
|
||||
pixel.a = clamp(int(pixel.a) + int(row0[1+x].w()), 0, 255);
|
||||
int alpha = int(pixel.a) + int(row0[1+x]);
|
||||
|
||||
int r = pixel.r;
|
||||
int g = pixel.g;
|
||||
int b = pixel.b;
|
||||
int a = pixel.a;
|
||||
|
||||
// Convert to our desired size, and reconstruct.
|
||||
r = PixelFormat::convert(r, 8, rsize);
|
||||
r = PixelFormat::convert(r, rsize, 8);
|
||||
|
||||
g = PixelFormat::convert(g, 8, gsize);
|
||||
g = PixelFormat::convert(g, gsize, 8);
|
||||
|
||||
b = PixelFormat::convert(b, 8, bsize);
|
||||
b = PixelFormat::convert(b, bsize, 8);
|
||||
|
||||
a = PixelFormat::convert(a, 8, asize);
|
||||
a = PixelFormat::convert(a, asize, 8);
|
||||
// Convert to 4 bit using regular bit expansion.
|
||||
pixel.a = (pixel.a & 0xF0) | ((pixel.a & 0xF0) >> 4);
|
||||
|
||||
// Store color.
|
||||
image->pixel(x, y) = Color32(r, g, b, a);
|
||||
image->pixel(x, y) = pixel;
|
||||
|
||||
// Compute new error.
|
||||
Vector4 diff(float(int(pixel.r) - r), float(int(pixel.g) - g), float(int(pixel.b) - b), float(int(pixel.a) - a));
|
||||
float diff = float(alpha - pixel.a);
|
||||
|
||||
// Propagate new error.
|
||||
row0[1+x+1] += 7.0f / 16.0f * diff;
|
||||
@ -208,9 +225,10 @@ void nv::Quantize::FloydSteinberg(Image * image, uint rsize, uint gsize, uint bs
|
||||
}
|
||||
|
||||
swap(row0, row1);
|
||||
memset(row1, 0, sizeof(Vector4)*(w+2));
|
||||
memset(row1, 0, sizeof(float)*(w+2));
|
||||
}
|
||||
|
||||
delete [] row0;
|
||||
delete [] row1;
|
||||
}
|
||||
|
||||
|
@ -17,9 +17,6 @@ namespace nv
|
||||
void FloydSteinberg_BinaryAlpha(Image * img, int alpha_threshold = 127);
|
||||
void FloydSteinberg_Alpha4(Image * img);
|
||||
|
||||
void Truncate(Image * image, uint rsize, uint gsize, uint bsize, uint asize);
|
||||
void FloydSteinberg(Image * image, uint rsize, uint gsize, uint bsize, uint asize);
|
||||
|
||||
// @@ Add palette quantization algorithms!
|
||||
}
|
||||
}
|
||||
|
@ -108,7 +108,7 @@ public:
|
||||
float area() const
|
||||
{
|
||||
const Vector3 d = extents();
|
||||
return 8.0f * (d.x()*d.y() + d.x()*d.z() + d.y()*d.z());
|
||||
return 4.0f * (d.x()*d.y() + d.x()*d.z() + d.y()*d.z());
|
||||
}
|
||||
|
||||
/// Get the volume of the box.
|
||||
@ -118,14 +118,6 @@ public:
|
||||
return 8.0f * (d.x() * d.y() * d.z());
|
||||
}
|
||||
|
||||
/// Return true if the box contains the given point.
|
||||
bool contains(Vector3::Arg p) const
|
||||
{
|
||||
return
|
||||
m_mins.x() < p.x() && m_mins.y() < p.y() && m_mins.z() < p.z() &&
|
||||
m_maxs.x() > p.x() && m_maxs.y() > p.y() && m_maxs.z() > p.z();
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
Vector3 m_mins;
|
||||
@ -133,6 +125,15 @@ private:
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
/// Point inside box test.
|
||||
inline bool pointInsideBox(const Box & b, Vector3::Arg p) const
|
||||
{
|
||||
return (m_mins.x() < p.x() && m_mins.y() < p.y() && m_mins.z() < p.z() &&
|
||||
m_maxs.x() > p.x() && m_maxs.y() > p.y() && m_maxs.z() > p.z());
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
} // nv namespace
|
||||
|
||||
|
@ -7,6 +7,8 @@ SET(MATH_SRCS
|
||||
Quaternion.h
|
||||
Box.h
|
||||
Color.h
|
||||
Eigen.h Eigen.cpp
|
||||
Fitting.h Fitting.cpp
|
||||
Montecarlo.h Montecarlo.cpp
|
||||
Random.h Random.cpp
|
||||
SphericalHarmonic.h SphericalHarmonic.cpp
|
||||
|
533
src/nvmath/Eigen.cpp
Normal file
533
src/nvmath/Eigen.cpp
Normal file
@ -0,0 +1,533 @@
|
||||
// This code is in the public domain -- castanyo@yahoo.es
|
||||
|
||||
#include "Eigen.h"
|
||||
|
||||
using namespace nv;
|
||||
|
||||
static const float EPS = 0.00001f;
|
||||
static const int MAX_ITER = 100;
|
||||
|
||||
static void semi_definite_symmetric_eigen(const float *mat, int n, float *eigen_vec, float *eigen_val);
|
||||
|
||||
|
||||
// Use power method to find the first eigenvector.
|
||||
// http://www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-eigenvalues-eigenvectors.html
|
||||
Vector3 nv::firstEigenVector(float matrix[6])
|
||||
{
|
||||
// Number of iterations. @@ Use a variable number of iterations.
|
||||
const int NUM = 8;
|
||||
|
||||
Vector3 v(1, 1, 1);
|
||||
for(int i = 0; i < NUM; i++) {
|
||||
float x = v.x() * matrix[0] + v.y() * matrix[1] + v.z() * matrix[2];
|
||||
float y = v.x() * matrix[1] + v.y() * matrix[3] + v.z() * matrix[4];
|
||||
float z = v.x() * matrix[2] + v.y() * matrix[4] + v.z() * matrix[5];
|
||||
|
||||
float norm = max(max(x, y), z);
|
||||
float iv = 1.0f / norm;
|
||||
if (norm == 0.0f) {
|
||||
return Vector3(zero);
|
||||
}
|
||||
|
||||
v.set(x*iv, y*iv, z*iv);
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
|
||||
/// Solve eigen system.
|
||||
void Eigen::solve() {
|
||||
semi_definite_symmetric_eigen(matrix, N, eigen_vec, eigen_val);
|
||||
}
|
||||
|
||||
/// Solve eigen system.
|
||||
void Eigen3::solve() {
|
||||
// @@ Use lengyel code that seems to be more optimized.
|
||||
#if 1
|
||||
float v[3*3];
|
||||
semi_definite_symmetric_eigen(matrix, 3, v, eigen_val);
|
||||
|
||||
eigen_vec[0].set(v[0], v[1], v[2]);
|
||||
eigen_vec[1].set(v[3], v[4], v[5]);
|
||||
eigen_vec[2].set(v[6], v[7], v[8]);
|
||||
#else
|
||||
const int maxSweeps = 32;
|
||||
const float epsilon = 1.0e-10f;
|
||||
|
||||
float m11 = matrix[0]; // m(0,0);
|
||||
float m12 = matrix[1]; // m(0,1);
|
||||
float m13 = matrix[2]; // m(0,2);
|
||||
float m22 = matrix[3]; // m(1,1);
|
||||
float m23 = matrix[4]; // m(1,2);
|
||||
float m33 = matrix[5]; // m(2,2);
|
||||
|
||||
//r.SetIdentity();
|
||||
eigen_vec[0].set(1, 0, 0);
|
||||
eigen_vec[1].set(0, 1, 0);
|
||||
eigen_vec[2].set(0, 0, 1);
|
||||
|
||||
for (int a = 0; a < maxSweeps; a++)
|
||||
{
|
||||
// Exit if off-diagonal entries small enough
|
||||
if ((fabs(m12) < epsilon) && (fabs(m13) < epsilon) && (fabs(m23) < epsilon))
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
// Annihilate (1,2) entry
|
||||
if (m12 != 0.0f)
|
||||
{
|
||||
float u = (m22 - m11) * 0.5f / m12;
|
||||
float u2 = u * u;
|
||||
float u2p1 = u2 + 1.0f;
|
||||
float t = (u2p1 != u2) ? ((u < 0.0f) ? -1.0f : 1.0f) * (sqrt(u2p1) - fabs(u)) : 0.5f / u;
|
||||
float c = 1.0f / sqrt(t * t + 1.0f);
|
||||
float s = c * t;
|
||||
|
||||
m11 -= t * m12;
|
||||
m22 += t * m12;
|
||||
m12 = 0.0f;
|
||||
|
||||
float temp = c * m13 - s * m23;
|
||||
m23 = s * m13 + c * m23;
|
||||
m13 = temp;
|
||||
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
float temp = c * eigen_vec[i].x - s * eigen_vec[i].y;
|
||||
eigen_vec[i].y = s * eigen_vec[i].x + c * eigen_vec[i].y;
|
||||
eigen_vec[i].x = temp;
|
||||
}
|
||||
}
|
||||
|
||||
// Annihilate (1,3) entry
|
||||
if (m13 != 0.0f)
|
||||
{
|
||||
float u = (m33 - m11) * 0.5f / m13;
|
||||
float u2 = u * u;
|
||||
float u2p1 = u2 + 1.0f;
|
||||
float t = (u2p1 != u2) ? ((u < 0.0f) ? -1.0f : 1.0f) * (sqrt(u2p1) - fabs(u)) : 0.5f / u;
|
||||
float c = 1.0f / sqrt(t * t + 1.0f);
|
||||
float s = c * t;
|
||||
|
||||
m11 -= t * m13;
|
||||
m33 += t * m13;
|
||||
m13 = 0.0f;
|
||||
|
||||
float temp = c * m12 - s * m23;
|
||||
m23 = s * m12 + c * m23;
|
||||
m12 = temp;
|
||||
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
float temp = c * eigen_vec[i].x - s * eigen_vec[i].z;
|
||||
eigen_vec[i].z = s * eigen_vec[i].x + c * eigen_vec[i].z;
|
||||
eigen_vec[i].x = temp;
|
||||
}
|
||||
}
|
||||
|
||||
// Annihilate (2,3) entry
|
||||
if (m23 != 0.0f)
|
||||
{
|
||||
float u = (m33 - m22) * 0.5f / m23;
|
||||
float u2 = u * u;
|
||||
float u2p1 = u2 + 1.0f;
|
||||
float t = (u2p1 != u2) ? ((u < 0.0f) ? -1.0f : 1.0f) * (sqrt(u2p1) - fabs(u)) : 0.5f / u;
|
||||
float c = 1.0f / sqrt(t * t + 1.0f);
|
||||
float s = c * t;
|
||||
|
||||
m22 -= t * m23;
|
||||
m33 += t * m23;
|
||||
m23 = 0.0f;
|
||||
|
||||
float temp = c * m12 - s * m13;
|
||||
m13 = s * m12 + c * m13;
|
||||
m12 = temp;
|
||||
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
float temp = c * eigen_vec[i].y - s * eigen_vec[i].z;
|
||||
eigen_vec[i].z = s * eigen_vec[i].y + c * eigen_vec[i].z;
|
||||
eigen_vec[i].y = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
eigen_val[0] = m11;
|
||||
eigen_val[1] = m22;
|
||||
eigen_val[2] = m33;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/*---------------------------------------------------------------------------
|
||||
Functions
|
||||
---------------------------------------------------------------------------*/
|
||||
|
||||
|
||||
/** @@ I don't remember where did I get this function.
|
||||
* computes the eigen values and eigen vectors
|
||||
* of a semi definite symmetric matrix
|
||||
*
|
||||
* - matrix is stored in column symmetric storage, i.e.
|
||||
* matrix = { m11, m12, m22, m13, m23, m33, m14, m24, m34, m44 ... }
|
||||
* size = n(n+1)/2
|
||||
*
|
||||
* - eigen_vectors (return) = { v1, v2, v3, ..., vn } where vk = vk0, vk1, ..., vkn
|
||||
* size = n^2, must be allocated by caller
|
||||
*
|
||||
* - eigen_values (return) are in decreasing order
|
||||
* size = n, must be allocated by caller
|
||||
*/
|
||||
|
||||
void semi_definite_symmetric_eigen(
|
||||
const float *mat, int n, float *eigen_vec, float *eigen_val
|
||||
) {
|
||||
float *a,*v;
|
||||
float a_norm,a_normEPS,thr,thr_nn;
|
||||
int nb_iter = 0;
|
||||
int jj;
|
||||
int i,j,k,ij,ik,l,m,lm,mq,lq,ll,mm,imv,im,iq,ilv,il,nn;
|
||||
int *index;
|
||||
float a_ij,a_lm,a_ll,a_mm,a_im,a_il;
|
||||
float a_lm_2;
|
||||
float v_ilv,v_imv;
|
||||
float x;
|
||||
float sinx,sinx_2,cosx,cosx_2,sincos;
|
||||
float delta;
|
||||
|
||||
// Number of entries in mat
|
||||
|
||||
nn = (n*(n+1))/2;
|
||||
|
||||
// Step 1: Copy mat to a
|
||||
|
||||
a = new float[nn];
|
||||
|
||||
for( ij=0; ij<nn; ij++ ) {
|
||||
a[ij] = mat[ij];
|
||||
}
|
||||
|
||||
// Ugly Fortran-porting trick: indices for a are between 1 and n
|
||||
a--;
|
||||
|
||||
// Step 2 : Init diagonalization matrix as the unit matrix
|
||||
v = new float[n*n];
|
||||
|
||||
ij = 0;
|
||||
for( i=0; i<n; i++ ) {
|
||||
for( j=0; j<n; j++ ) {
|
||||
if( i==j ) {
|
||||
v[ij++] = 1.0;
|
||||
} else {
|
||||
v[ij++] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Ugly Fortran-porting trick: indices for v are between 1 and n
|
||||
v--;
|
||||
|
||||
// Step 3 : compute the weight of the non diagonal terms
|
||||
ij = 1 ;
|
||||
a_norm = 0.0;
|
||||
for( i=1; i<=n; i++ ) {
|
||||
for( j=1; j<=i; j++ ) {
|
||||
if( i!=j ) {
|
||||
a_ij = a[ij];
|
||||
a_norm += a_ij*a_ij;
|
||||
}
|
||||
ij++;
|
||||
}
|
||||
}
|
||||
|
||||
if( a_norm != 0.0 ) {
|
||||
|
||||
a_normEPS = a_norm*EPS;
|
||||
thr = a_norm ;
|
||||
|
||||
// Step 4 : rotations
|
||||
while( thr > a_normEPS && nb_iter < MAX_ITER ) {
|
||||
|
||||
nb_iter++;
|
||||
thr_nn = thr / nn;
|
||||
|
||||
for( l=1 ; l< n; l++ ) {
|
||||
for( m=l+1; m<=n; m++ ) {
|
||||
|
||||
// compute sinx and cosx
|
||||
|
||||
lq = (l*l-l)/2;
|
||||
mq = (m*m-m)/2;
|
||||
|
||||
lm = l+mq;
|
||||
a_lm = a[lm];
|
||||
a_lm_2 = a_lm*a_lm;
|
||||
|
||||
if( a_lm_2 < thr_nn ) {
|
||||
continue ;
|
||||
}
|
||||
|
||||
ll = l+lq;
|
||||
mm = m+mq;
|
||||
a_ll = a[ll];
|
||||
a_mm = a[mm];
|
||||
|
||||
delta = a_ll - a_mm;
|
||||
|
||||
if( delta == 0.0f ) {
|
||||
x = - PI/4 ;
|
||||
} else {
|
||||
x = - atanf( (a_lm+a_lm) / delta ) / 2.0f ;
|
||||
}
|
||||
|
||||
sinx = sinf(x);
|
||||
cosx = cosf(x);
|
||||
sinx_2 = sinx*sinx;
|
||||
cosx_2 = cosx*cosx;
|
||||
sincos = sinx*cosx;
|
||||
|
||||
// rotate L and M columns
|
||||
|
||||
ilv = n*(l-1);
|
||||
imv = n*(m-1);
|
||||
|
||||
for( i=1; i<=n;i++ ) {
|
||||
if( (i!=l) && (i!=m) ) {
|
||||
iq = (i*i-i)/2;
|
||||
|
||||
if( i<m ) {
|
||||
im = i + mq;
|
||||
} else {
|
||||
im = m + iq;
|
||||
}
|
||||
a_im = a[im];
|
||||
|
||||
if( i<l ) {
|
||||
il = i + lq;
|
||||
} else {
|
||||
il = l + iq;
|
||||
}
|
||||
a_il = a[il];
|
||||
|
||||
a[il] = a_il*cosx - a_im*sinx;
|
||||
a[im] = a_il*sinx + a_im*cosx;
|
||||
}
|
||||
|
||||
ilv++;
|
||||
imv++;
|
||||
|
||||
v_ilv = v[ilv];
|
||||
v_imv = v[imv];
|
||||
|
||||
v[ilv] = cosx*v_ilv - sinx*v_imv;
|
||||
v[imv] = sinx*v_ilv + cosx*v_imv;
|
||||
}
|
||||
|
||||
x = a_lm*sincos; x+=x;
|
||||
|
||||
a[ll] = a_ll*cosx_2 + a_mm*sinx_2 - x;
|
||||
a[mm] = a_ll*sinx_2 + a_mm*cosx_2 + x;
|
||||
a[lm] = 0.0;
|
||||
|
||||
thr = fabs( thr - a_lm_2 );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Step 5: index conversion and copy eigen values
|
||||
|
||||
// back from Fortran to C++
|
||||
a++;
|
||||
|
||||
for( i=0; i<n; i++ ) {
|
||||
k = i + (i*(i+1))/2;
|
||||
eigen_val[i] = a[k];
|
||||
}
|
||||
|
||||
delete[] a;
|
||||
|
||||
// Step 6: sort the eigen values and eigen vectors
|
||||
|
||||
index = new int[n];
|
||||
for( i=0; i<n; i++ ) {
|
||||
index[i] = i;
|
||||
}
|
||||
|
||||
for( i=0; i<(n-1); i++ ) {
|
||||
x = eigen_val[i];
|
||||
k = i;
|
||||
|
||||
for( j=i+1; j<n; j++ ) {
|
||||
if( x < eigen_val[j] ) {
|
||||
k = j;
|
||||
x = eigen_val[j];
|
||||
}
|
||||
}
|
||||
|
||||
eigen_val[k] = eigen_val[i];
|
||||
eigen_val[i] = x;
|
||||
|
||||
jj = index[k];
|
||||
index[k] = index[i];
|
||||
index[i] = jj;
|
||||
}
|
||||
|
||||
|
||||
// Step 7: save the eigen vectors
|
||||
|
||||
v++; // back from Fortran to to C++
|
||||
|
||||
ij = 0;
|
||||
for( k=0; k<n; k++ ) {
|
||||
ik = index[k]*n;
|
||||
for( i=0; i<n; i++ ) {
|
||||
eigen_vec[ij++] = v[ik++];
|
||||
}
|
||||
}
|
||||
|
||||
delete[] v ;
|
||||
delete[] index;
|
||||
return;
|
||||
}
|
||||
|
||||
//_________________________________________________________
|
||||
|
||||
|
||||
// Eric Lengyel code:
|
||||
// http://www.terathon.com/code/linear.html
|
||||
#if 0
|
||||
|
||||
const float epsilon = 1.0e-10F;
|
||||
const int maxSweeps = 32;
|
||||
|
||||
|
||||
struct Matrix3D
|
||||
{
|
||||
float n[3][3];
|
||||
|
||||
float& operator()(int i, int j)
|
||||
{
|
||||
return (n[j][i]);
|
||||
}
|
||||
|
||||
const float& operator()(int i, int j) const
|
||||
{
|
||||
return (n[j][i]);
|
||||
}
|
||||
|
||||
void SetIdentity(void)
|
||||
{
|
||||
n[0][0] = n[1][1] = n[2][2] = 1.0F;
|
||||
n[0][1] = n[0][2] = n[1][0] = n[1][2] = n[2][0] = n[2][1] = 0.0F;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void CalculateEigensystem(const Matrix3D& m, float *lambda, Matrix3D& r)
|
||||
{
|
||||
float m11 = m(0,0);
|
||||
float m12 = m(0,1);
|
||||
float m13 = m(0,2);
|
||||
float m22 = m(1,1);
|
||||
float m23 = m(1,2);
|
||||
float m33 = m(2,2);
|
||||
|
||||
r.SetIdentity();
|
||||
for (int a = 0; a < maxSweeps; a++)
|
||||
{
|
||||
// Exit if off-diagonal entries small enough
|
||||
if ((Fabs(m12) < epsilon) && (Fabs(m13) < epsilon) &&
|
||||
(Fabs(m23) < epsilon)) break;
|
||||
|
||||
// Annihilate (1,2) entry
|
||||
if (m12 != 0.0F)
|
||||
{
|
||||
float u = (m22 - m11) * 0.5F / m12;
|
||||
float u2 = u * u;
|
||||
float u2p1 = u2 + 1.0F;
|
||||
float t = (u2p1 != u2) ?
|
||||
((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) : 0.5F / u;
|
||||
float c = 1.0F / sqrt(t * t + 1.0F);
|
||||
float s = c * t;
|
||||
|
||||
m11 -= t * m12;
|
||||
m22 += t * m12;
|
||||
m12 = 0.0F;
|
||||
|
||||
float temp = c * m13 - s * m23;
|
||||
m23 = s * m13 + c * m23;
|
||||
m13 = temp;
|
||||
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
float temp = c * r(i,0) - s * r(i,1);
|
||||
r(i,1) = s * r(i,0) + c * r(i,1);
|
||||
r(i,0) = temp;
|
||||
}
|
||||
}
|
||||
|
||||
// Annihilate (1,3) entry
|
||||
if (m13 != 0.0F)
|
||||
{
|
||||
float u = (m33 - m11) * 0.5F / m13;
|
||||
float u2 = u * u;
|
||||
float u2p1 = u2 + 1.0F;
|
||||
float t = (u2p1 != u2) ?
|
||||
((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) : 0.5F / u;
|
||||
float c = 1.0F / sqrt(t * t + 1.0F);
|
||||
float s = c * t;
|
||||
|
||||
m11 -= t * m13;
|
||||
m33 += t * m13;
|
||||
m13 = 0.0F;
|
||||
|
||||
float temp = c * m12 - s * m23;
|
||||
m23 = s * m12 + c * m23;
|
||||
m12 = temp;
|
||||
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
float temp = c * r(i,0) - s * r(i,2);
|
||||
r(i,2) = s * r(i,0) + c * r(i,2);
|
||||
r(i,0) = temp;
|
||||
}
|
||||
}
|
||||
|
||||
// Annihilate (2,3) entry
|
||||
if (m23 != 0.0F)
|
||||
{
|
||||
float u = (m33 - m22) * 0.5F / m23;
|
||||
float u2 = u * u;
|
||||
float u2p1 = u2 + 1.0F;
|
||||
float t = (u2p1 != u2) ?
|
||||
((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) : 0.5F / u;
|
||||
float c = 1.0F / sqrt(t * t + 1.0F);
|
||||
float s = c * t;
|
||||
|
||||
m22 -= t * m23;
|
||||
m33 += t * m23;
|
||||
m23 = 0.0F;
|
||||
|
||||
float temp = c * m12 - s * m13;
|
||||
m13 = s * m12 + c * m13;
|
||||
m12 = temp;
|
||||
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
float temp = c * r(i,1) - s * r(i,2);
|
||||
r(i,2) = s * r(i,1) + c * r(i,2);
|
||||
r(i,1) = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
lambda[0] = m11;
|
||||
lambda[1] = m22;
|
||||
lambda[2] = m33;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
140
src/nvmath/Eigen.h
Normal file
140
src/nvmath/Eigen.h
Normal file
@ -0,0 +1,140 @@
|
||||
// This code is in the public domain -- castanyo@yahoo.es
|
||||
|
||||
#ifndef NV_MATH_EIGEN_H
|
||||
#define NV_MATH_EIGEN_H
|
||||
|
||||
#include <nvcore/Containers.h> // swap
|
||||
#include <nvmath/nvmath.h>
|
||||
#include <nvmath/Vector.h>
|
||||
|
||||
namespace nv
|
||||
{
|
||||
|
||||
// Compute first eigen vector using the power method.
|
||||
Vector3 firstEigenVector(float matrix[6]);
|
||||
|
||||
/// Generic eigen-solver.
|
||||
class Eigen
|
||||
{
|
||||
public:
|
||||
|
||||
/// Ctor.
|
||||
Eigen(uint n) : N(n)
|
||||
{
|
||||
uint size = n * (n + 1) / 2;
|
||||
matrix = new float[size];
|
||||
eigen_vec = new float[N*N];
|
||||
eigen_val = new float[N];
|
||||
}
|
||||
|
||||
/// Dtor.
|
||||
~Eigen()
|
||||
{
|
||||
delete [] matrix;
|
||||
delete [] eigen_vec;
|
||||
delete [] eigen_val;
|
||||
}
|
||||
|
||||
NVMATH_API void solve();
|
||||
|
||||
/// Matrix accesor.
|
||||
float & operator()(uint x, uint y)
|
||||
{
|
||||
if( x > y ) {
|
||||
swap(x, y);
|
||||
}
|
||||
return matrix[y * (y + 1) / 2 + x];
|
||||
}
|
||||
|
||||
/// Matrix const accessor.
|
||||
float operator()(uint x, uint y) const
|
||||
{
|
||||
if( x > y ) {
|
||||
swap(x, y);
|
||||
}
|
||||
return matrix[y * (y + 1) / 2 + x];
|
||||
}
|
||||
|
||||
Vector3 eigenVector3(uint i) const
|
||||
{
|
||||
nvCheck(3 == N);
|
||||
nvCheck(i < N);
|
||||
return Vector3(eigen_vec[i*N+0], eigen_vec[i*N+1], eigen_vec[i*N+2]);
|
||||
}
|
||||
|
||||
Vector4 eigenVector4(uint i) const
|
||||
{
|
||||
nvCheck(4 == N);
|
||||
nvCheck(i < N);
|
||||
return Vector4(eigen_vec[i*N+0], eigen_vec[i*N+1], eigen_vec[i*N+2], eigen_vec[i*N+3]);
|
||||
}
|
||||
|
||||
float eigenValue(uint i) const
|
||||
{
|
||||
nvCheck(i < N);
|
||||
return eigen_val[i];
|
||||
}
|
||||
|
||||
private:
|
||||
const uint N;
|
||||
float * matrix;
|
||||
float * eigen_vec;
|
||||
float * eigen_val;
|
||||
};
|
||||
|
||||
|
||||
/// 3x3 eigen-solver.
|
||||
/// Based on Eric Lengyel's code:
|
||||
/// http://www.terathon.com/code/linear.html
|
||||
class Eigen3
|
||||
{
|
||||
public:
|
||||
|
||||
/** Ctor. */
|
||||
Eigen3() {}
|
||||
|
||||
NVMATH_API void solve();
|
||||
|
||||
/// Matrix accesor.
|
||||
float & operator()(uint x, uint y)
|
||||
{
|
||||
nvDebugCheck( x < 3 && y < 3 );
|
||||
if( x > y ) {
|
||||
swap(x, y);
|
||||
}
|
||||
return matrix[y * (y + 1) / 2 + x];
|
||||
}
|
||||
|
||||
/// Matrix const accessor.
|
||||
float operator()(uint x, uint y) const
|
||||
{
|
||||
nvDebugCheck( x < 3 && y < 3 );
|
||||
if( x > y ) {
|
||||
swap(x, y);
|
||||
}
|
||||
return matrix[y * (y + 1) / 2 + x];
|
||||
}
|
||||
|
||||
/// Get ith eigen vector.
|
||||
Vector3 eigenVector(uint i) const
|
||||
{
|
||||
nvCheck(i < 3);
|
||||
return eigen_vec[i];
|
||||
}
|
||||
|
||||
/** Get ith eigen value. */
|
||||
float eigenValue(uint i) const
|
||||
{
|
||||
nvCheck(i < 3);
|
||||
return eigen_val[i];
|
||||
}
|
||||
|
||||
private:
|
||||
float matrix[3+2+1];
|
||||
Vector3 eigen_vec[3];
|
||||
float eigen_val[3];
|
||||
};
|
||||
|
||||
} // nv namespace
|
||||
|
||||
#endif // NV_MATH_EIGEN_H
|
134
src/nvmath/Fitting.cpp
Normal file
134
src/nvmath/Fitting.cpp
Normal file
@ -0,0 +1,134 @@
|
||||
// License: Wild Magic License Version 3
|
||||
// http://geometrictools.com/License/WildMagic3License.pdf
|
||||
|
||||
#include "Fitting.h"
|
||||
#include "Eigen.h"
|
||||
|
||||
using namespace nv;
|
||||
|
||||
|
||||
/** Fit a 3d line to the given set of points.
|
||||
*
|
||||
* Based on code from:
|
||||
* http://geometrictools.com/
|
||||
*/
|
||||
Line3 Fit::bestLine(const Array<Vector3> & pointArray)
|
||||
{
|
||||
nvDebugCheck(pointArray.count() > 0);
|
||||
|
||||
Line3 line;
|
||||
|
||||
const uint pointCount = pointArray.count();
|
||||
const float inv_num = 1.0f / pointCount;
|
||||
|
||||
// compute the mean of the points
|
||||
Vector3 center(zero);
|
||||
for(uint i = 0; i < pointCount; i++) {
|
||||
center += pointArray[i];
|
||||
}
|
||||
line.setOrigin(center * inv_num);
|
||||
|
||||
// compute the covariance matrix of the points
|
||||
float covariance[6] = {0, 0, 0, 0, 0, 0};
|
||||
for(uint i = 0; i < pointCount; i++) {
|
||||
Vector3 diff = pointArray[i] - line.origin();
|
||||
covariance[0] += diff.x() * diff.x();
|
||||
covariance[1] += diff.x() * diff.y();
|
||||
covariance[2] += diff.x() * diff.z();
|
||||
covariance[3] += diff.y() * diff.y();
|
||||
covariance[4] += diff.y() * diff.z();
|
||||
covariance[5] += diff.z() * diff.z();
|
||||
}
|
||||
|
||||
line.setDirection(normalizeSafe(firstEigenVector(covariance), Vector3(zero), 0.0f));
|
||||
|
||||
// @@ This variant is from David Eberly... I'm not sure how that works.
|
||||
/*sum_xx *= inv_num;
|
||||
sum_xy *= inv_num;
|
||||
sum_xz *= inv_num;
|
||||
sum_yy *= inv_num;
|
||||
sum_yz *= inv_num;
|
||||
sum_zz *= inv_num;
|
||||
|
||||
// set up the eigensolver
|
||||
Eigen3 ES;
|
||||
ES(0,0) = sum_yy + sum_zz;
|
||||
ES(0,1) = -sum_xy;
|
||||
ES(0,2) = -sum_xz;
|
||||
ES(1,1) = sum_xx + sum_zz;
|
||||
ES(1,2) = -sum_yz;
|
||||
ES(2,2) = sum_xx + sum_yy;
|
||||
|
||||
// compute eigenstuff, smallest eigenvalue is in last position
|
||||
ES.solve();
|
||||
|
||||
line.setDirection(ES.eigenVector(2));
|
||||
|
||||
nvCheck( isNormalized(line.direction()) );
|
||||
*/
|
||||
return line;
|
||||
}
|
||||
|
||||
|
||||
/** Fit a 3d plane to the given set of points.
|
||||
*
|
||||
* Based on code from:
|
||||
* http://geometrictools.com/
|
||||
*/
|
||||
Vector4 Fit::bestPlane(const Array<Vector3> & pointArray)
|
||||
{
|
||||
Vector3 center(zero);
|
||||
|
||||
const uint pointCount = pointArray.count();
|
||||
const float inv_num = 1.0f / pointCount;
|
||||
|
||||
// compute the mean of the points
|
||||
for(uint i = 0; i < pointCount; i++) {
|
||||
center += pointArray[i];
|
||||
}
|
||||
center *= inv_num;
|
||||
|
||||
// compute the covariance matrix of the points
|
||||
float sum_xx = 0.0f;
|
||||
float sum_xy = 0.0f;
|
||||
float sum_xz = 0.0f;
|
||||
float sum_yy = 0.0f;
|
||||
float sum_yz = 0.0f;
|
||||
float sum_zz = 0.0f;
|
||||
|
||||
for(uint i = 0; i < pointCount; i++) {
|
||||
Vector3 diff = pointArray[i] - center;
|
||||
sum_xx += diff.x() * diff.x();
|
||||
sum_xy += diff.x() * diff.y();
|
||||
sum_xz += diff.x() * diff.z();
|
||||
sum_yy += diff.y() * diff.y();
|
||||
sum_yz += diff.y() * diff.z();
|
||||
sum_zz += diff.z() * diff.z();
|
||||
}
|
||||
|
||||
sum_xx *= inv_num;
|
||||
sum_xy *= inv_num;
|
||||
sum_xz *= inv_num;
|
||||
sum_yy *= inv_num;
|
||||
sum_yz *= inv_num;
|
||||
sum_zz *= inv_num;
|
||||
|
||||
// set up the eigensolver
|
||||
Eigen3 ES;
|
||||
ES(0,0) = sum_yy + sum_zz;
|
||||
ES(0,1) = -sum_xy;
|
||||
ES(0,2) = -sum_xz;
|
||||
ES(1,1) = sum_xx + sum_zz;
|
||||
ES(1,2) = -sum_yz;
|
||||
ES(2,2) = sum_xx + sum_yy;
|
||||
|
||||
// compute eigenstuff, greatest eigenvalue is in first position
|
||||
ES.solve();
|
||||
|
||||
Vector3 normal = ES.eigenVector(0);
|
||||
nvCheck(isNormalized(normal));
|
||||
|
||||
float offset = dot(normal, center);
|
||||
|
||||
return Vector4(normal, offset);
|
||||
}
|
78
src/nvmath/Fitting.h
Normal file
78
src/nvmath/Fitting.h
Normal file
@ -0,0 +1,78 @@
|
||||
// This code is in the public domain -- castanyo@yahoo.es
|
||||
|
||||
#ifndef NV_MATH_FITTING_H
|
||||
#define NV_MATH_FITTING_H
|
||||
|
||||
#include <nvmath/Vector.h>
|
||||
|
||||
namespace nv
|
||||
{
|
||||
|
||||
/// 3D Line.
|
||||
struct Line3
|
||||
{
|
||||
/// Ctor.
|
||||
Line3() : m_origin(zero), m_direction(zero)
|
||||
{
|
||||
}
|
||||
|
||||
/// Copy ctor.
|
||||
Line3(const Line3 & l) : m_origin(l.m_origin), m_direction(l.m_direction)
|
||||
{
|
||||
}
|
||||
|
||||
/// Ctor.
|
||||
Line3(Vector3::Arg o, Vector3::Arg d) : m_origin(o), m_direction(d)
|
||||
{
|
||||
}
|
||||
|
||||
/// Normalize the line.
|
||||
void normalize()
|
||||
{
|
||||
m_direction = nv::normalize(m_direction);
|
||||
}
|
||||
|
||||
/// Project a point onto the line.
|
||||
Vector3 projectPoint(Vector3::Arg point) const
|
||||
{
|
||||
nvDebugCheck(isNormalized(m_direction));
|
||||
|
||||
Vector3 v = point - m_origin;
|
||||
return m_origin + m_direction * dot(m_direction, v);
|
||||
}
|
||||
|
||||
/// Compute distance to line.
|
||||
float distanceToPoint(Vector3::Arg point) const
|
||||
{
|
||||
nvDebugCheck(isNormalized(m_direction));
|
||||
|
||||
Vector3 v = point - m_origin;
|
||||
Vector3 l = v - m_direction * dot(m_direction, v);
|
||||
|
||||
return length(l);
|
||||
}
|
||||
|
||||
const Vector3 & origin() const { return m_origin; }
|
||||
void setOrigin(Vector3::Arg value) { m_origin = value; }
|
||||
|
||||
const Vector3 & direction() const { return m_direction; }
|
||||
void setDirection(Vector3::Arg value) { m_direction = value; }
|
||||
|
||||
|
||||
private:
|
||||
Vector3 m_origin;
|
||||
Vector3 m_direction;
|
||||
};
|
||||
|
||||
|
||||
namespace Fit
|
||||
{
|
||||
|
||||
NVMATH_API Line3 bestLine(const Array<Vector3> & pointArray);
|
||||
NVMATH_API Vector4 bestPlane(const Array<Vector3> & pointArray);
|
||||
|
||||
} // Fit namespace
|
||||
|
||||
} // nv namespace
|
||||
|
||||
#endif // _PI_MATHLIB_FITTING_H_
|
@ -1,17 +0,0 @@
|
||||
// This code is in the public domain -- castanyo@yahoo.es
|
||||
|
||||
#include "Plane.h"
|
||||
#include "Matrix.h"
|
||||
|
||||
namespace nv
|
||||
{
|
||||
Plane transformPlane(const Matrix& m, Plane::Arg p)
|
||||
{
|
||||
Vector3 newVec = transformVector(m, p.vector());
|
||||
|
||||
Vector3 ptInPlane = p.offset() * p.vector();
|
||||
ptInPlane = transformPoint(m, ptInPlane);
|
||||
|
||||
return Plane(newVec, ptInPlane);
|
||||
}
|
||||
}
|
@ -1,77 +0,0 @@
|
||||
// This code is in the public domain -- castanyo@yahoo.es
|
||||
|
||||
#ifndef NV_MATH_PLANE_H
|
||||
#define NV_MATH_PLANE_H
|
||||
|
||||
#include <nvmath/nvmath.h>
|
||||
#include <nvmath/Vector.h>
|
||||
|
||||
namespace nv
|
||||
{
|
||||
class Matrix;
|
||||
|
||||
|
||||
class NVMATH_CLASS Plane
|
||||
{
|
||||
public:
|
||||
typedef Plane const & Arg;
|
||||
|
||||
Plane();
|
||||
Plane(float x, float y, float z, float w);
|
||||
Plane(Vector4::Arg v);
|
||||
Plane(Vector3::Arg v, float d);
|
||||
Plane(Vector3::Arg normal, Vector3::Arg point);
|
||||
|
||||
const Plane & operator=(Plane::Arg v);
|
||||
|
||||
Vector3 vector() const;
|
||||
scalar offset() const;
|
||||
|
||||
const Vector4 & asVector() const;
|
||||
Vector4 & asVector();
|
||||
|
||||
void operator*=(scalar s);
|
||||
|
||||
private:
|
||||
Vector4 p;
|
||||
};
|
||||
|
||||
inline Plane::Plane() {}
|
||||
inline Plane::Plane(float x, float y, float z, float w) : p(x, y, z, w) {}
|
||||
inline Plane::Plane(Vector4::Arg v) : p(v) {}
|
||||
inline Plane::Plane(Vector3::Arg v, float d) : p(v, d) {}
|
||||
inline Plane::Plane(Vector3::Arg normal, Vector3::Arg point) : p(normal, dot(normal, point)) {}
|
||||
|
||||
inline const Plane & Plane::operator=(Plane::Arg v) { p = v.p; return *this; }
|
||||
|
||||
inline Vector3 Plane::vector() const { return p.xyz(); }
|
||||
inline scalar Plane::offset() const { return p.w(); }
|
||||
|
||||
inline const Vector4 & Plane::asVector() const { return p; }
|
||||
inline Vector4 & Plane::asVector() { return p; }
|
||||
|
||||
// Normalize plane.
|
||||
inline Plane normalize(Plane::Arg plane, float epsilon = NV_EPSILON)
|
||||
{
|
||||
const float len = length(plane.vector());
|
||||
nvDebugCheck(!isZero(len, epsilon));
|
||||
const float inv = 1.0f / len;
|
||||
return Plane(plane.asVector() * inv);
|
||||
}
|
||||
|
||||
// Get the distance from the given point to this plane.
|
||||
inline float distance(Plane::Arg plane, Vector3::Arg point)
|
||||
{
|
||||
return dot(plane.vector(), point) - plane.offset();
|
||||
}
|
||||
|
||||
inline void Plane::operator*=(scalar s)
|
||||
{
|
||||
scale(p, s);
|
||||
}
|
||||
|
||||
Plane transformPlane(const Matrix&, Plane::Arg);
|
||||
|
||||
} // nv namespace
|
||||
|
||||
#endif // NV_MATH_PLANE_H
|
@ -13,10 +13,10 @@ SET(NVTT_SRCS
|
||||
CompressDXT.cpp
|
||||
CompressRGB.h
|
||||
CompressRGB.cpp
|
||||
FastCompressDXT.h
|
||||
FastCompressDXT.cpp
|
||||
QuickCompressDXT.h
|
||||
QuickCompressDXT.cpp
|
||||
OptimalCompressDXT.h
|
||||
OptimalCompressDXT.cpp
|
||||
SingleColorLookup.h
|
||||
CompressionOptions.h
|
||||
CompressionOptions.cpp
|
||||
@ -44,8 +44,7 @@ INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
ADD_DEFINITIONS(-DNVTT_EXPORTS)
|
||||
|
||||
IF(NVTT_SHARED)
|
||||
ADD_DEFINITIONS(-DNVTT_SHARED=1)
|
||||
ADD_LIBRARY(nvtt SHARED ${NVTT_SRCS})
|
||||
ADD_LIBRARY(nvtt SHARED ${DXT_SRCS})
|
||||
ELSE(NVTT_SHARED)
|
||||
ADD_LIBRARY(nvtt ${NVTT_SRCS})
|
||||
ENDIF(NVTT_SHARED)
|
||||
|
@ -29,8 +29,8 @@
|
||||
|
||||
#include "nvtt.h"
|
||||
#include "CompressDXT.h"
|
||||
#include "FastCompressDXT.h"
|
||||
#include "QuickCompressDXT.h"
|
||||
#include "OptimalCompressDXT.h"
|
||||
#include "CompressionOptions.h"
|
||||
#include "OutputOptions.h"
|
||||
|
||||
@ -57,33 +57,26 @@ using namespace nv;
|
||||
using namespace nvtt;
|
||||
|
||||
|
||||
nv::FastCompressor::FastCompressor() : m_image(NULL), m_alphaMode(AlphaMode_None)
|
||||
void nv::fastCompressDXT1(const Image * image, const OutputOptions::Private & outputOptions)
|
||||
{
|
||||
}
|
||||
|
||||
nv::FastCompressor::~FastCompressor()
|
||||
{
|
||||
}
|
||||
|
||||
void nv::FastCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
|
||||
{
|
||||
m_image = image;
|
||||
m_alphaMode = alphaMode;
|
||||
}
|
||||
|
||||
void nv::FastCompressor::compressDXT1(const OutputOptions::Private & outputOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT1 block;
|
||||
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
rgba.init(m_image, x, y);
|
||||
rgba.init(image, x, y);
|
||||
|
||||
if (rgba.isSingleColor())
|
||||
{
|
||||
QuickCompress::compressDXT1(rgba.color(0), &block);
|
||||
}
|
||||
else
|
||||
{
|
||||
QuickCompress::compressDXT1(rgba, &block);
|
||||
}
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
outputOptions.outputHandler->writeData(&block, sizeof(block));
|
||||
@ -93,17 +86,17 @@ void nv::FastCompressor::compressDXT1(const OutputOptions::Private & outputOptio
|
||||
}
|
||||
|
||||
|
||||
void nv::FastCompressor::compressDXT1a(const OutputOptions::Private & outputOptions)
|
||||
void nv::fastCompressDXT1a(const Image * image, const OutputOptions::Private & outputOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT1 block;
|
||||
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
rgba.init(m_image, x, y);
|
||||
rgba.init(image, x, y);
|
||||
|
||||
QuickCompress::compressDXT1a(rgba, &block);
|
||||
|
||||
@ -115,19 +108,18 @@ void nv::FastCompressor::compressDXT1a(const OutputOptions::Private & outputOpti
|
||||
}
|
||||
|
||||
|
||||
void nv::FastCompressor::compressDXT3(const nvtt::OutputOptions::Private & outputOptions)
|
||||
void nv::fastCompressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT3 block;
|
||||
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
rgba.init(m_image, x, y);
|
||||
|
||||
QuickCompress::compressDXT3(rgba, &block);
|
||||
rgba.init(image, x, y);
|
||||
compressBlock_BoundsRange(rgba, &block);
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
outputOptions.outputHandler->writeData(&block, sizeof(block));
|
||||
@ -137,19 +129,18 @@ void nv::FastCompressor::compressDXT3(const nvtt::OutputOptions::Private & outpu
|
||||
}
|
||||
|
||||
|
||||
void nv::FastCompressor::compressDXT5(const nvtt::OutputOptions::Private & outputOptions)
|
||||
void nv::fastCompressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT5 block;
|
||||
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
rgba.init(m_image, x, y);
|
||||
|
||||
QuickCompress::compressDXT5(rgba, &block, 0);
|
||||
rgba.init(image, x, y);
|
||||
compressBlock_BoundsRange(rgba, &block);
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
outputOptions.outputHandler->writeData(&block, sizeof(block));
|
||||
@ -159,21 +150,22 @@ void nv::FastCompressor::compressDXT5(const nvtt::OutputOptions::Private & outpu
|
||||
}
|
||||
|
||||
|
||||
void nv::FastCompressor::compressDXT5n(const nvtt::OutputOptions::Private & outputOptions)
|
||||
void nv::fastCompressDXT5n(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT5 block;
|
||||
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
rgba.init(m_image, x, y);
|
||||
rgba.init(image, x, y);
|
||||
|
||||
// copy X coordinate to alpha channel and Y coordinate to green channel.
|
||||
rgba.swizzleDXT5n();
|
||||
|
||||
QuickCompress::compressDXT5(rgba, &block, 0);
|
||||
compressBlock_BoundsRange(rgba, &block);
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
outputOptions.outputHandler->writeData(&block, sizeof(block));
|
||||
@ -183,28 +175,42 @@ void nv::FastCompressor::compressDXT5n(const nvtt::OutputOptions::Private & outp
|
||||
}
|
||||
|
||||
|
||||
nv::SlowCompressor::SlowCompressor() : m_image(NULL), m_alphaMode(AlphaMode_None)
|
||||
void nv::fastCompressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
|
||||
{
|
||||
// @@ TODO
|
||||
// compress red channel (X)
|
||||
}
|
||||
|
||||
nv::SlowCompressor::~SlowCompressor()
|
||||
|
||||
void nv::fastCompressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
|
||||
{
|
||||
// @@ TODO
|
||||
// compress red, green channels (X,Y)
|
||||
}
|
||||
|
||||
void nv::SlowCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
|
||||
|
||||
void nv::doPrecomputation()
|
||||
{
|
||||
m_image = image;
|
||||
m_alphaMode = alphaMode;
|
||||
static bool done = false; // @@ Stop using statics for reentrancy.
|
||||
|
||||
if (!done)
|
||||
{
|
||||
done = true;
|
||||
squish::FastClusterFit::DoPrecomputation();
|
||||
}
|
||||
}
|
||||
|
||||
void nv::SlowCompressor::compressDXT1(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
|
||||
|
||||
void nv::compressDXT1(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT1 block;
|
||||
|
||||
doPrecomputation();
|
||||
|
||||
//squish::WeightedClusterFit fit;
|
||||
//squish::ClusterFit fit;
|
||||
squish::FastClusterFit fit;
|
||||
@ -213,11 +219,11 @@ void nv::SlowCompressor::compressDXT1(const CompressionOptions::Private & compre
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
|
||||
rgba.init(m_image, x, y);
|
||||
rgba.init(image, x, y);
|
||||
|
||||
if (rgba.isSingleColor())
|
||||
{
|
||||
OptimalCompress::compressDXT1(rgba.color(0), &block);
|
||||
QuickCompress::compressDXT1(rgba.color(0), &block);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -234,10 +240,10 @@ void nv::SlowCompressor::compressDXT1(const CompressionOptions::Private & compre
|
||||
}
|
||||
|
||||
|
||||
void nv::SlowCompressor::compressDXT1a(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
|
||||
void nv::compressDXT1a(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT1 block;
|
||||
@ -248,27 +254,12 @@ void nv::SlowCompressor::compressDXT1a(const CompressionOptions::Private & compr
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
|
||||
rgba.init(m_image, x, y);
|
||||
rgba.init(image, x, y);
|
||||
|
||||
bool anyAlpha = false;
|
||||
bool allAlpha = true;
|
||||
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
if (rgba.color(i).a < 128) anyAlpha = true;
|
||||
else allAlpha = false;
|
||||
}
|
||||
|
||||
if ((!anyAlpha && rgba.isSingleColor() || allAlpha))
|
||||
{
|
||||
OptimalCompress::compressDXT1a(rgba.color(0), &block);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Compress color.
|
||||
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kDxt1|squish::kWeightColourByAlpha);
|
||||
fit.SetColourSet(&colours, squish::kDxt1);
|
||||
fit.Compress(&block);
|
||||
}
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
outputOptions.outputHandler->writeData(&block, sizeof(block));
|
||||
@ -278,37 +269,29 @@ void nv::SlowCompressor::compressDXT1a(const CompressionOptions::Private & compr
|
||||
}
|
||||
|
||||
|
||||
void nv::SlowCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
|
||||
void nv::compressDXT3(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT3 block;
|
||||
|
||||
squish::WeightedClusterFit fit;
|
||||
//squish::FastClusterFit fit;
|
||||
fit.SetMetric(compressionOptions.colorWeight.x(), compressionOptions.colorWeight.y(), compressionOptions.colorWeight.z());
|
||||
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
|
||||
rgba.init(m_image, x, y);
|
||||
rgba.init(image, x, y);
|
||||
|
||||
// Compress explicit alpha.
|
||||
OptimalCompress::compressDXT3A(rgba, &block.alpha);
|
||||
compressBlock(rgba, &block.alpha);
|
||||
|
||||
// Compress color.
|
||||
if (rgba.isSingleColor())
|
||||
{
|
||||
OptimalCompress::compressDXT1(rgba.color(0), &block.color);
|
||||
}
|
||||
else
|
||||
{
|
||||
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kWeightColourByAlpha);
|
||||
fit.SetColourSet(&colours, 0);
|
||||
fit.Compress(&block.color);
|
||||
}
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
outputOptions.outputHandler->writeData(&block, sizeof(block));
|
||||
@ -317,10 +300,10 @@ void nv::SlowCompressor::compressDXT3(const CompressionOptions::Private & compre
|
||||
}
|
||||
}
|
||||
|
||||
void nv::SlowCompressor::compressDXT5(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
|
||||
void nv::compressDXT5(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT5 block;
|
||||
@ -331,29 +314,23 @@ void nv::SlowCompressor::compressDXT5(const CompressionOptions::Private & compre
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
|
||||
rgba.init(m_image, x, y);
|
||||
rgba.init(image, x, y);
|
||||
|
||||
// Compress alpha.
|
||||
uint error;
|
||||
if (compressionOptions.quality == Quality_Highest)
|
||||
{
|
||||
OptimalCompress::compressDXT5A(rgba, &block.alpha);
|
||||
error = compressBlock_BruteForce(rgba, &block.alpha);
|
||||
}
|
||||
else
|
||||
{
|
||||
QuickCompress::compressDXT5A(rgba, &block.alpha);
|
||||
error = compressBlock_Iterative(rgba, &block.alpha);
|
||||
}
|
||||
|
||||
// Compress color.
|
||||
if (rgba.isSingleColor())
|
||||
{
|
||||
OptimalCompress::compressDXT1(rgba.color(0), &block.color);
|
||||
}
|
||||
else
|
||||
{
|
||||
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kWeightColourByAlpha);
|
||||
fit.SetColourSet(&colours, 0);
|
||||
fit.Compress(&block.color);
|
||||
}
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
outputOptions.outputHandler->writeData(&block, sizeof(block));
|
||||
@ -363,33 +340,33 @@ void nv::SlowCompressor::compressDXT5(const CompressionOptions::Private & compre
|
||||
}
|
||||
|
||||
|
||||
void nv::SlowCompressor::compressDXT5n(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
|
||||
void nv::compressDXT5n(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
BlockDXT5 block;
|
||||
|
||||
doPrecomputation();
|
||||
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
|
||||
rgba.init(m_image, x, y);
|
||||
rgba.init(image, x, y);
|
||||
|
||||
// copy X coordinate to green channel and Y coordinate to alpha channel.
|
||||
rgba.swizzleDXT5n();
|
||||
|
||||
// Compress X.
|
||||
uint error = compressBlock_Iterative(rgba, &block.alpha);
|
||||
if (compressionOptions.quality == Quality_Highest)
|
||||
{
|
||||
OptimalCompress::compressDXT5A(rgba, &block.alpha);
|
||||
}
|
||||
else
|
||||
{
|
||||
QuickCompress::compressDXT5A(rgba, &block.alpha);
|
||||
error = compressBlock_BruteForce(rgba, &block.alpha);
|
||||
}
|
||||
|
||||
// Compress Y.
|
||||
OptimalCompress::compressDXT1G(rgba, &block.color);
|
||||
QuickCompress::compressDXT1G(rgba, &block.color);
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
outputOptions.outputHandler->writeData(&block, sizeof(block));
|
||||
@ -399,28 +376,32 @@ void nv::SlowCompressor::compressDXT5n(const CompressionOptions::Private & compr
|
||||
}
|
||||
|
||||
|
||||
void nv::SlowCompressor::compressBC4(const CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
|
||||
void nv::compressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock rgba;
|
||||
AlphaBlockDXT5 block;
|
||||
|
||||
uint totalError = 0;
|
||||
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
|
||||
rgba.init(m_image, x, y);
|
||||
rgba.init(image, x, y);
|
||||
|
||||
//error = compressBlock_BoundsRange(rgba, &block);
|
||||
uint error = compressBlock_Iterative(rgba, &block);
|
||||
|
||||
if (compressionOptions.quality == Quality_Highest)
|
||||
{
|
||||
OptimalCompress::compressDXT5A(rgba, &block);
|
||||
}
|
||||
else
|
||||
{
|
||||
QuickCompress::compressDXT5A(rgba, &block);
|
||||
// Try brute force algorithm.
|
||||
error = compressBlock_BruteForce(rgba, &block);
|
||||
}
|
||||
|
||||
totalError += error;
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
outputOptions.outputHandler->writeData(&block, sizeof(block));
|
||||
}
|
||||
@ -429,10 +410,10 @@ void nv::SlowCompressor::compressBC4(const CompressionOptions::Private & compres
|
||||
}
|
||||
|
||||
|
||||
void nv::SlowCompressor::compressBC5(const CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
|
||||
void nv::compressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
const uint w = m_image->width();
|
||||
const uint h = m_image->height();
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
ColorBlock xcolor;
|
||||
ColorBlock ycolor;
|
||||
@ -442,21 +423,24 @@ void nv::SlowCompressor::compressBC5(const CompressionOptions::Private & compres
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
|
||||
xcolor.init(m_image, x, y);
|
||||
xcolor.init(image, x, y);
|
||||
xcolor.splatX();
|
||||
|
||||
ycolor.init(m_image, x, y);
|
||||
ycolor.init(image, x, y);
|
||||
ycolor.splatY();
|
||||
|
||||
// @@ Compute normal error, instead of separate xy errors.
|
||||
uint xerror, yerror;
|
||||
|
||||
if (compressionOptions.quality == Quality_Highest)
|
||||
{
|
||||
OptimalCompress::compressDXT5A(xcolor, &block.x);
|
||||
OptimalCompress::compressDXT5A(ycolor, &block.y);
|
||||
xerror = compressBlock_BruteForce(xcolor, &block.x);
|
||||
yerror = compressBlock_BruteForce(ycolor, &block.y);
|
||||
}
|
||||
else
|
||||
{
|
||||
QuickCompress::compressDXT5A(xcolor, &block.x);
|
||||
QuickCompress::compressDXT5A(ycolor, &block.y);
|
||||
xerror = compressBlock_Iterative(xcolor, &block.x);
|
||||
yerror = compressBlock_Iterative(ycolor, &block.y);
|
||||
}
|
||||
|
||||
if (outputOptions.outputHandler != NULL) {
|
||||
|
@ -32,45 +32,25 @@ namespace nv
|
||||
class Image;
|
||||
class FloatImage;
|
||||
|
||||
class FastCompressor
|
||||
{
|
||||
public:
|
||||
FastCompressor();
|
||||
~FastCompressor();
|
||||
void doPrecomputation();
|
||||
|
||||
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
|
||||
// Fast compressors.
|
||||
void fastCompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void fastCompressDXT1a(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void fastCompressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void fastCompressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void fastCompressDXT5n(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void fastCompressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void fastCompressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
|
||||
|
||||
void compressDXT1(const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT1a(const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT3(const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT5(const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT5n(const nvtt::OutputOptions::Private & outputOptions);
|
||||
|
||||
private:
|
||||
const Image * m_image;
|
||||
nvtt::AlphaMode m_alphaMode;
|
||||
};
|
||||
|
||||
class SlowCompressor
|
||||
{
|
||||
public:
|
||||
SlowCompressor();
|
||||
~SlowCompressor();
|
||||
|
||||
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
|
||||
|
||||
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT1a(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT5n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressBC4(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressBC5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
|
||||
private:
|
||||
const Image * m_image;
|
||||
nvtt::AlphaMode m_alphaMode;
|
||||
};
|
||||
// Normal compressors.
|
||||
void compressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
void compressDXT1a(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
void compressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
void compressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
void compressDXT5n(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
void compressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
void compressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
|
||||
// External compressors.
|
||||
#if defined(HAVE_S3QUANT)
|
||||
|
@ -115,18 +115,12 @@ void nv::compressRGB(const Image * image, const OutputOptions::Private & outputO
|
||||
c |= PixelFormat::convert(src[x].b, 8, bsize) << bshift;
|
||||
c |= PixelFormat::convert(src[x].a, 8, asize) << ashift;
|
||||
|
||||
// Output one byte at a time.
|
||||
// Output one byte at a time. @@ Not tested... Does this work on LE and BE?
|
||||
for (uint i = 0; i < byteCount; i++)
|
||||
{
|
||||
*(dst + x * byteCount + i) = (c >> (i * 8)) & 0xFF;
|
||||
*(dst + x * byteCount) = (c >> (i * 8)) & 0xFF;
|
||||
}
|
||||
}
|
||||
|
||||
// Zero padding.
|
||||
for (uint x = w * byteCount; x < pitch; x++)
|
||||
{
|
||||
*(dst + x) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (outputOptions.outputHandler != NULL)
|
||||
|
@ -34,7 +34,6 @@
|
||||
#include <nvimage/Filter.h>
|
||||
#include <nvimage/Quantize.h>
|
||||
#include <nvimage/NormalMap.h>
|
||||
#include <nvimage/PixelFormat.h>
|
||||
|
||||
#include "Compressor.h"
|
||||
#include "InputOptions.h"
|
||||
@ -42,6 +41,7 @@
|
||||
#include "OutputOptions.h"
|
||||
|
||||
#include "CompressDXT.h"
|
||||
#include "FastCompressDXT.h"
|
||||
#include "CompressRGB.h"
|
||||
#include "cuda/CudaUtils.h"
|
||||
#include "cuda/CudaCompressDXT.h"
|
||||
@ -200,7 +200,7 @@ namespace nvtt
|
||||
AutoPtr<FloatImage> m_floatImage;
|
||||
};
|
||||
|
||||
} // nvtt namespace
|
||||
}
|
||||
|
||||
|
||||
Compressor::Compressor() : m(*new Compressor::Private())
|
||||
@ -211,10 +211,6 @@ Compressor::Compressor() : m(*new Compressor::Private())
|
||||
|
||||
if (m.cudaEnabled)
|
||||
{
|
||||
// Select fastest CUDA device.
|
||||
int device = cuda::getFastestDevice();
|
||||
cuda::setDevice(device);
|
||||
|
||||
m.cuda = new CudaCompressor();
|
||||
|
||||
if (!m.cuda->isValid())
|
||||
@ -241,10 +237,6 @@ void Compressor::enableCudaAcceleration(bool enable)
|
||||
|
||||
if (m.cudaEnabled && m.cuda == NULL)
|
||||
{
|
||||
// Select fastest CUDA device.
|
||||
int device = cuda::getFastestDevice();
|
||||
cuda::setDevice(device);
|
||||
|
||||
m.cuda = new CudaCompressor();
|
||||
|
||||
if (!m.cuda->isValid())
|
||||
@ -346,7 +338,7 @@ bool Compressor::Private::outputHeader(const InputOptions::Private & inputOption
|
||||
|
||||
if (compressionOptions.format == Format_RGBA)
|
||||
{
|
||||
header.setPitch(computePitch(inputOptions.targetWidth, compressionOptions.bitcount));
|
||||
header.setPitch(4 * inputOptions.targetWidth);
|
||||
header.setPixelFormat(compressionOptions.bitcount, compressionOptions.rmask, compressionOptions.gmask, compressionOptions.bmask, compressionOptions.amask);
|
||||
}
|
||||
else
|
||||
@ -430,7 +422,7 @@ bool Compressor::Private::compressMipmaps(uint f, const InputOptions::Private &
|
||||
|
||||
quantizeMipmap(mipmap, compressionOptions);
|
||||
|
||||
compressMipmap(mipmap, inputOptions, compressionOptions, outputOptions);
|
||||
compressMipmap(mipmap, compressionOptions, outputOptions);
|
||||
|
||||
// Compute extents of next mipmap:
|
||||
w = max(1U, w / 2);
|
||||
@ -579,7 +571,7 @@ void Compressor::Private::scaleMipmap(Mipmap & mipmap, const InputOptions::Priva
|
||||
|
||||
// Resize image.
|
||||
BoxFilter boxFilter;
|
||||
mipmap.setImage(mipmap.asFloatImage()->resize(boxFilter, w, h, (FloatImage::WrapMode)inputOptions.wrapMode));
|
||||
mipmap.setImage(mipmap.asFloatImage()->downSample(boxFilter, w, h, (FloatImage::WrapMode)inputOptions.wrapMode));
|
||||
}
|
||||
|
||||
|
||||
@ -626,6 +618,13 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
|
||||
{
|
||||
nvDebugCheck(mipmap.asFixedImage() != NULL);
|
||||
|
||||
if (compressionOptions.enableColorDithering)
|
||||
{
|
||||
if (compressionOptions.format >= Format_DXT1 && compressionOptions.format <= Format_DXT5)
|
||||
{
|
||||
Quantize::FloydSteinberg_RGB16(mipmap.asMutableFixedImage());
|
||||
}
|
||||
}
|
||||
if (compressionOptions.binaryAlpha)
|
||||
{
|
||||
if (compressionOptions.enableAlphaDithering)
|
||||
@ -637,67 +636,30 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
|
||||
Quantize::BinaryAlpha(mipmap.asMutableFixedImage(), compressionOptions.alphaThreshold);
|
||||
}
|
||||
}
|
||||
|
||||
if (compressionOptions.enableColorDithering || compressionOptions.enableAlphaDithering)
|
||||
else
|
||||
{
|
||||
uint rsize = 8;
|
||||
uint gsize = 8;
|
||||
uint bsize = 8;
|
||||
uint asize = 8;
|
||||
|
||||
if (compressionOptions.enableColorDithering)
|
||||
{
|
||||
if (compressionOptions.format >= Format_DXT1 && compressionOptions.format <= Format_DXT5)
|
||||
{
|
||||
rsize = 5;
|
||||
gsize = 6;
|
||||
bsize = 5;
|
||||
}
|
||||
else if (compressionOptions.format == Format_RGB)
|
||||
{
|
||||
uint rshift, gshift, bshift;
|
||||
PixelFormat::maskShiftAndSize(compressionOptions.rmask, &rshift, &rsize);
|
||||
PixelFormat::maskShiftAndSize(compressionOptions.gmask, &gshift, &gsize);
|
||||
PixelFormat::maskShiftAndSize(compressionOptions.bmask, &bshift, &bsize);
|
||||
}
|
||||
}
|
||||
|
||||
if (compressionOptions.enableAlphaDithering)
|
||||
{
|
||||
if (compressionOptions.format == Format_DXT3)
|
||||
{
|
||||
asize = 4;
|
||||
Quantize::Alpha4(mipmap.asMutableFixedImage());
|
||||
}
|
||||
else if (compressionOptions.format == Format_RGB)
|
||||
else if (compressionOptions.format == Format_DXT1a)
|
||||
{
|
||||
uint ashift;
|
||||
PixelFormat::maskShiftAndSize(compressionOptions.amask, &ashift, &asize);
|
||||
Quantize::BinaryAlpha(mipmap.asMutableFixedImage(), compressionOptions.alphaThreshold);
|
||||
}
|
||||
}
|
||||
|
||||
if (compressionOptions.binaryAlpha)
|
||||
{
|
||||
asize = 8; // Already quantized.
|
||||
}
|
||||
|
||||
Quantize::FloydSteinberg(mipmap.asMutableFixedImage(), rsize, gsize, bsize, asize);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Compress the given mipmap.
|
||||
bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const
|
||||
bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const
|
||||
{
|
||||
const Image * image = mipmap.asFixedImage();
|
||||
|
||||
nvDebugCheck(image != NULL);
|
||||
|
||||
FastCompressor fast;
|
||||
fast.setImage(image, inputOptions.alphaMode);
|
||||
|
||||
SlowCompressor slow;
|
||||
slow.setImage(image, inputOptions.alphaMode);
|
||||
|
||||
|
||||
if (compressionOptions.format == Format_RGBA || compressionOptions.format == Format_RGB)
|
||||
{
|
||||
compressRGB(image, outputOptions, compressionOptions);
|
||||
@ -721,19 +683,18 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
|
||||
#endif
|
||||
if (compressionOptions.quality == Quality_Fastest)
|
||||
{
|
||||
fast.compressDXT1(outputOptions);
|
||||
fastCompressDXT1(image, outputOptions);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (cudaEnabled)
|
||||
{
|
||||
nvDebugCheck(cudaSupported);
|
||||
cuda->setImage(image, inputOptions.alphaMode);
|
||||
cuda->compressDXT1(compressionOptions, outputOptions);
|
||||
cuda->compressDXT1(image, outputOptions, compressionOptions);
|
||||
}
|
||||
else
|
||||
{
|
||||
slow.compressDXT1(compressionOptions, outputOptions);
|
||||
compressDXT1(image, outputOptions, compressionOptions);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -741,18 +702,18 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
|
||||
{
|
||||
if (compressionOptions.quality == Quality_Fastest)
|
||||
{
|
||||
fast.compressDXT1a(outputOptions);
|
||||
fastCompressDXT1a(image, outputOptions);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (cudaEnabled)
|
||||
{
|
||||
nvDebugCheck(cudaSupported);
|
||||
/*cuda*/slow.compressDXT1a(compressionOptions, outputOptions);
|
||||
/*cuda*/compressDXT1a(image, outputOptions, compressionOptions);
|
||||
}
|
||||
else
|
||||
{
|
||||
slow.compressDXT1a(compressionOptions, outputOptions);
|
||||
compressDXT1a(image, outputOptions, compressionOptions);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -760,19 +721,18 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
|
||||
{
|
||||
if (compressionOptions.quality == Quality_Fastest)
|
||||
{
|
||||
fast.compressDXT3(outputOptions);
|
||||
fastCompressDXT3(image, outputOptions);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (cudaEnabled)
|
||||
{
|
||||
nvDebugCheck(cudaSupported);
|
||||
cuda->setImage(image, inputOptions.alphaMode);
|
||||
cuda->compressDXT3(compressionOptions, outputOptions);
|
||||
cuda->compressDXT3(image, outputOptions, compressionOptions);
|
||||
}
|
||||
else
|
||||
{
|
||||
slow.compressDXT3(compressionOptions, outputOptions);
|
||||
compressDXT3(image, outputOptions, compressionOptions);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -780,19 +740,18 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
|
||||
{
|
||||
if (compressionOptions.quality == Quality_Fastest)
|
||||
{
|
||||
fast.compressDXT5(outputOptions);
|
||||
fastCompressDXT5(image, outputOptions);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (cudaEnabled)
|
||||
{
|
||||
nvDebugCheck(cudaSupported);
|
||||
cuda->setImage(image, inputOptions.alphaMode);
|
||||
cuda->compressDXT5(compressionOptions, outputOptions);
|
||||
cuda->compressDXT5(image, outputOptions, compressionOptions);
|
||||
}
|
||||
else
|
||||
{
|
||||
slow.compressDXT5(compressionOptions, outputOptions);
|
||||
compressDXT5(image, outputOptions, compressionOptions);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -800,20 +759,20 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
|
||||
{
|
||||
if (compressionOptions.quality == Quality_Fastest)
|
||||
{
|
||||
fast.compressDXT5n(outputOptions);
|
||||
fastCompressDXT5n(image, outputOptions);
|
||||
}
|
||||
else
|
||||
{
|
||||
slow.compressDXT5n(compressionOptions, outputOptions);
|
||||
compressDXT5n(image, outputOptions, compressionOptions);
|
||||
}
|
||||
}
|
||||
else if (compressionOptions.format == Format_BC4)
|
||||
{
|
||||
slow.compressBC4(compressionOptions, outputOptions);
|
||||
compressBC4(image, outputOptions, compressionOptions);
|
||||
}
|
||||
else if (compressionOptions.format == Format_BC5)
|
||||
{
|
||||
slow.compressBC5(compressionOptions, outputOptions);
|
||||
compressBC5(image, outputOptions, compressionOptions);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -60,7 +60,7 @@ namespace nvtt
|
||||
void scaleMipmap(Mipmap & mipmap, const InputOptions::Private & inputOptions, uint w, uint h, uint d) const;
|
||||
void processInputImage(Mipmap & mipmap, const InputOptions::Private & inputOptions) const;
|
||||
void quantizeMipmap(Mipmap & mipmap, const CompressionOptions::Private & compressionOptions) const;
|
||||
bool compressMipmap(const Mipmap & mipmap, const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const;
|
||||
bool compressMipmap(const Mipmap & mipmap, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const;
|
||||
|
||||
|
||||
public:
|
||||
|
1444
src/nvtt/FastCompressDXT.cpp
Normal file
1444
src/nvtt/FastCompressDXT.cpp
Normal file
File diff suppressed because it is too large
Load Diff
87
src/nvtt/FastCompressDXT.h
Normal file
87
src/nvtt/FastCompressDXT.h
Normal file
@ -0,0 +1,87 @@
|
||||
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person
|
||||
// obtaining a copy of this software and associated documentation
|
||||
// files (the "Software"), to deal in the Software without
|
||||
// restriction, including without limitation the rights to use,
|
||||
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following
|
||||
// conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be
|
||||
// included in all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
||||
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
||||
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
||||
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
// OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
#ifndef NV_TT_FASTCOMPRESSDXT_H
|
||||
#define NV_TT_FASTCOMPRESSDXT_H
|
||||
|
||||
#include <nvimage/nvimage.h>
|
||||
|
||||
namespace nv
|
||||
{
|
||||
struct ColorBlock;
|
||||
struct BlockDXT1;
|
||||
struct BlockDXT3;
|
||||
struct BlockDXT5;
|
||||
struct AlphaBlockDXT3;
|
||||
struct AlphaBlockDXT5;
|
||||
|
||||
// Color compression:
|
||||
|
||||
// Compressor that uses the extremes of the luminance axis.
|
||||
void compressBlock_DiameterAxis(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
// Compressor that uses the extremes of the luminance axis.
|
||||
void compressBlock_LuminanceAxis(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
// Compressor that uses bounding box.
|
||||
void compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
// Compressor that uses bounding box and takes alpha into account.
|
||||
void compressBlock_BoundsRangeAlpha(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
// Compressor that uses the best fit axis.
|
||||
void compressBlock_BestFitAxis(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
|
||||
// Simple, but slow compressor that tests all color pairs.
|
||||
void compressBlock_TestAllPairs(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
// Brute force 6d search along the best fit axis.
|
||||
void compressBlock_AnalyzeBestFitAxis(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
// Spatial greedy search.
|
||||
void refineSolution_1dSearch(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
void refineSolution_3dSearch(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
void refineSolution_6dSearch(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
// Brute force compressor for DXT5n
|
||||
void compressGreenBlock_BruteForce(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
// Minimize error of the endpoints.
|
||||
void optimizeEndPoints(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
uint blockError(const ColorBlock & rgba, const BlockDXT1 & block);
|
||||
uint blockError(const ColorBlock & rgba, const AlphaBlockDXT5 & block);
|
||||
|
||||
// Alpha compression:
|
||||
void compressBlock(const ColorBlock & rgba, AlphaBlockDXT3 * block);
|
||||
void compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT3 * block);
|
||||
void compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT5 * block);
|
||||
|
||||
uint compressBlock_BoundsRange(const ColorBlock & rgba, AlphaBlockDXT5 * block);
|
||||
uint compressBlock_BruteForce(const ColorBlock & rgba, AlphaBlockDXT5 * block);
|
||||
uint compressBlock_Iterative(const ColorBlock & rgba, AlphaBlockDXT5 * block);
|
||||
|
||||
} // nv namespace
|
||||
|
||||
#endif // NV_TT_FASTCOMPRESSDXT_H
|
@ -1,368 +0,0 @@
|
||||
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person
|
||||
// obtaining a copy of this software and associated documentation
|
||||
// files (the "Software"), to deal in the Software without
|
||||
// restriction, including without limitation the rights to use,
|
||||
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following
|
||||
// conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be
|
||||
// included in all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
||||
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
||||
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
||||
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
// OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
#include <nvcore/Containers.h> // swap
|
||||
|
||||
#include <nvmath/Color.h>
|
||||
|
||||
#include <nvimage/ColorBlock.h>
|
||||
#include <nvimage/BlockDXT.h>
|
||||
|
||||
#include "OptimalCompressDXT.h"
|
||||
#include "SingleColorLookup.h"
|
||||
|
||||
|
||||
using namespace nv;
|
||||
using namespace OptimalCompress;
|
||||
|
||||
|
||||
|
||||
namespace
|
||||
{
|
||||
static int computeGreenError(const ColorBlock & rgba, const BlockDXT1 * block)
|
||||
{
|
||||
nvDebugCheck(block != NULL);
|
||||
|
||||
int palette[4];
|
||||
palette[0] = (block->col0.g << 2) | (block->col0.g >> 4);
|
||||
palette[1] = (block->col1.g << 2) | (block->col1.g >> 4);
|
||||
palette[2] = (2 * palette[0] + palette[1]) / 3;
|
||||
palette[3] = (2 * palette[1] + palette[0]) / 3;
|
||||
|
||||
int totalError = 0;
|
||||
|
||||
for (int i = 0; i < 16; i++)
|
||||
{
|
||||
const int green = rgba.color(i).g;
|
||||
|
||||
int error = abs(green - palette[0]);
|
||||
error = min(error, abs(green - palette[1]));
|
||||
error = min(error, abs(green - palette[2]));
|
||||
error = min(error, abs(green - palette[3]));
|
||||
|
||||
totalError += error;
|
||||
}
|
||||
|
||||
return totalError;
|
||||
}
|
||||
|
||||
static uint computeGreenIndices(const ColorBlock & rgba, const Color32 palette[4])
|
||||
{
|
||||
const int color0 = palette[0].g;
|
||||
const int color1 = palette[1].g;
|
||||
const int color2 = palette[2].g;
|
||||
const int color3 = palette[3].g;
|
||||
|
||||
uint indices = 0;
|
||||
for (int i = 0; i < 16; i++)
|
||||
{
|
||||
const int color = rgba.color(i).g;
|
||||
|
||||
uint d0 = abs(color0 - color);
|
||||
uint d1 = abs(color1 - color);
|
||||
uint d2 = abs(color2 - color);
|
||||
uint d3 = abs(color3 - color);
|
||||
|
||||
uint b0 = d0 > d3;
|
||||
uint b1 = d1 > d2;
|
||||
uint b2 = d0 > d2;
|
||||
uint b3 = d1 > d3;
|
||||
uint b4 = d2 > d3;
|
||||
|
||||
uint x0 = b1 & b2;
|
||||
uint x1 = b0 & b3;
|
||||
uint x2 = b0 & b4;
|
||||
|
||||
indices |= (x2 | ((x0 | x1) << 1)) << (2 * i);
|
||||
}
|
||||
|
||||
return indices;
|
||||
}
|
||||
|
||||
// Choose quantized color that produces less error. Used by DXT3 compressor.
|
||||
inline static uint quantize4(uint8 a)
|
||||
{
|
||||
int q0 = (a >> 4) - 1;
|
||||
int q1 = (a >> 4);
|
||||
int q2 = (a >> 4) + 1;
|
||||
|
||||
q0 = (q0 << 4) | q0;
|
||||
q1 = (q1 << 4) | q1;
|
||||
q2 = (q2 << 4) | q2;
|
||||
|
||||
int d0 = abs(q0 - a);
|
||||
int d1 = abs(q1 - a);
|
||||
int d2 = abs(q2 - a);
|
||||
|
||||
if (d0 < d1 && d0 < d2) return q0 >> 4;
|
||||
if (d1 < d2) return q1 >> 4;
|
||||
return q2 >> 4;
|
||||
}
|
||||
|
||||
static uint computeAlphaError(const ColorBlock & rgba, const AlphaBlockDXT5 * block)
|
||||
{
|
||||
uint8 alphas[8];
|
||||
block->evaluatePalette(alphas);
|
||||
|
||||
uint totalError = 0;
|
||||
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
uint8 alpha = rgba.color(i).a;
|
||||
|
||||
uint besterror = 256*256;
|
||||
uint best;
|
||||
for (uint p = 0; p < 8; p++)
|
||||
{
|
||||
int d = alphas[p] - alpha;
|
||||
uint error = d * d;
|
||||
|
||||
if (error < besterror)
|
||||
{
|
||||
besterror = error;
|
||||
best = p;
|
||||
}
|
||||
}
|
||||
|
||||
totalError += besterror;
|
||||
}
|
||||
|
||||
return totalError;
|
||||
}
|
||||
|
||||
static void computeAlphaIndices(const ColorBlock & rgba, AlphaBlockDXT5 * block)
|
||||
{
|
||||
uint8 alphas[8];
|
||||
block->evaluatePalette(alphas);
|
||||
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
uint8 alpha = rgba.color(i).a;
|
||||
|
||||
uint besterror = 256*256;
|
||||
uint best = 8;
|
||||
for(uint p = 0; p < 8; p++)
|
||||
{
|
||||
int d = alphas[p] - alpha;
|
||||
uint error = d * d;
|
||||
|
||||
if (error < besterror)
|
||||
{
|
||||
besterror = error;
|
||||
best = p;
|
||||
}
|
||||
}
|
||||
nvDebugCheck(best < 8);
|
||||
|
||||
block->setIndex(i, best);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Single color compressor, based on:
|
||||
// https://mollyrocket.com/forums/viewtopic.php?t=392
|
||||
void OptimalCompress::compressDXT1(Color32 c, BlockDXT1 * dxtBlock)
|
||||
{
|
||||
dxtBlock->col0.r = OMatch5[c.r][0];
|
||||
dxtBlock->col0.g = OMatch6[c.g][0];
|
||||
dxtBlock->col0.b = OMatch5[c.b][0];
|
||||
dxtBlock->col1.r = OMatch5[c.r][1];
|
||||
dxtBlock->col1.g = OMatch6[c.g][1];
|
||||
dxtBlock->col1.b = OMatch5[c.b][1];
|
||||
dxtBlock->indices = 0xaaaaaaaa;
|
||||
|
||||
if (dxtBlock->col0.u < dxtBlock->col1.u)
|
||||
{
|
||||
swap(dxtBlock->col0.u, dxtBlock->col1.u);
|
||||
dxtBlock->indices ^= 0x55555555;
|
||||
}
|
||||
}
|
||||
|
||||
void OptimalCompress::compressDXT1a(Color32 rgba, BlockDXT1 * dxtBlock)
|
||||
{
|
||||
if (rgba.a < 128)
|
||||
{
|
||||
dxtBlock->col0.u = 0;
|
||||
dxtBlock->col1.u = 0;
|
||||
dxtBlock->indices = 0xFFFFFFFF;
|
||||
}
|
||||
else
|
||||
{
|
||||
compressDXT1(rgba, dxtBlock);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Brute force green channel compressor
|
||||
void OptimalCompress::compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block)
|
||||
{
|
||||
nvDebugCheck(block != NULL);
|
||||
|
||||
uint8 ming = 63;
|
||||
uint8 maxg = 0;
|
||||
|
||||
// Get min/max green.
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
uint8 green = rgba.color(i).g >> 2;
|
||||
ming = min(ming, green);
|
||||
maxg = max(maxg, green);
|
||||
}
|
||||
|
||||
block->col0.r = 31;
|
||||
block->col1.r = 31;
|
||||
block->col0.g = maxg;
|
||||
block->col1.g = ming;
|
||||
block->col0.b = 0;
|
||||
block->col1.b = 0;
|
||||
|
||||
if (maxg - ming > 4)
|
||||
{
|
||||
int besterror = computeGreenError(rgba, block);
|
||||
int bestg0 = maxg;
|
||||
int bestg1 = ming;
|
||||
|
||||
for (int g0 = ming+5; g0 < maxg; g0++)
|
||||
{
|
||||
for (int g1 = ming; g1 < g0-4; g1++)
|
||||
{
|
||||
if ((maxg-g0) + (g1-ming) > besterror)
|
||||
continue;
|
||||
|
||||
block->col0.g = g0;
|
||||
block->col1.g = g1;
|
||||
int error = computeGreenError(rgba, block);
|
||||
|
||||
if (error < besterror)
|
||||
{
|
||||
besterror = error;
|
||||
bestg0 = g0;
|
||||
bestg1 = g1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
block->col0.g = bestg0;
|
||||
block->col1.g = bestg1;
|
||||
}
|
||||
|
||||
Color32 palette[4];
|
||||
block->evaluatePalette(palette);
|
||||
block->indices = computeGreenIndices(rgba, palette);
|
||||
}
|
||||
|
||||
void OptimalCompress::compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock)
|
||||
{
|
||||
dxtBlock->alpha0 = quantize4(rgba.color(0).a);
|
||||
dxtBlock->alpha1 = quantize4(rgba.color(1).a);
|
||||
dxtBlock->alpha2 = quantize4(rgba.color(2).a);
|
||||
dxtBlock->alpha3 = quantize4(rgba.color(3).a);
|
||||
dxtBlock->alpha4 = quantize4(rgba.color(4).a);
|
||||
dxtBlock->alpha5 = quantize4(rgba.color(5).a);
|
||||
dxtBlock->alpha6 = quantize4(rgba.color(6).a);
|
||||
dxtBlock->alpha7 = quantize4(rgba.color(7).a);
|
||||
dxtBlock->alpha8 = quantize4(rgba.color(8).a);
|
||||
dxtBlock->alpha9 = quantize4(rgba.color(9).a);
|
||||
dxtBlock->alphaA = quantize4(rgba.color(10).a);
|
||||
dxtBlock->alphaB = quantize4(rgba.color(11).a);
|
||||
dxtBlock->alphaC = quantize4(rgba.color(12).a);
|
||||
dxtBlock->alphaD = quantize4(rgba.color(13).a);
|
||||
dxtBlock->alphaE = quantize4(rgba.color(14).a);
|
||||
dxtBlock->alphaF = quantize4(rgba.color(15).a);
|
||||
}
|
||||
|
||||
|
||||
void OptimalCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock)
|
||||
{
|
||||
uint8 mina = 255;
|
||||
uint8 maxa = 0;
|
||||
|
||||
// Get min/max alpha.
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
uint8 alpha = rgba.color(i).a;
|
||||
mina = min(mina, alpha);
|
||||
maxa = max(maxa, alpha);
|
||||
}
|
||||
|
||||
dxtBlock->alpha0 = maxa;
|
||||
dxtBlock->alpha1 = mina;
|
||||
|
||||
/*int centroidDist = 256;
|
||||
int centroid;
|
||||
|
||||
// Get the closest to the centroid.
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
uint8 alpha = rgba.color(i).a;
|
||||
int dist = abs(alpha - (maxa + mina) / 2);
|
||||
if (dist < centroidDist)
|
||||
{
|
||||
centroidDist = dist;
|
||||
centroid = alpha;
|
||||
}
|
||||
}*/
|
||||
|
||||
if (maxa - mina > 8)
|
||||
{
|
||||
int besterror = computeAlphaError(rgba, dxtBlock);
|
||||
int besta0 = maxa;
|
||||
int besta1 = mina;
|
||||
|
||||
for (int a0 = mina+9; a0 < maxa; a0++)
|
||||
{
|
||||
for (int a1 = mina; a1 < a0-8; a1++)
|
||||
//for (int a1 = mina; a1 < maxa; a1++)
|
||||
{
|
||||
//nvCheck(abs(a1-a0) > 8);
|
||||
|
||||
//if (abs(a0 - a1) < 8) continue;
|
||||
//if ((maxa-a0) + (a1-mina) + min(abs(centroid-a0), abs(centroid-a1)) > besterror)
|
||||
if ((maxa-a0) + (a1-mina) > besterror)
|
||||
continue;
|
||||
|
||||
dxtBlock->alpha0 = a0;
|
||||
dxtBlock->alpha1 = a1;
|
||||
int error = computeAlphaError(rgba, dxtBlock);
|
||||
|
||||
if (error < besterror)
|
||||
{
|
||||
besterror = error;
|
||||
besta0 = a0;
|
||||
besta1 = a1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dxtBlock->alpha0 = besta0;
|
||||
dxtBlock->alpha1 = besta1;
|
||||
}
|
||||
|
||||
computeAlphaIndices(rgba, dxtBlock);
|
||||
}
|
||||
|
@ -1,49 +0,0 @@
|
||||
// Copyright NVIDIA Corporation 2008 -- Ignacio Castano <icastano@nvidia.com>
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person
|
||||
// obtaining a copy of this software and associated documentation
|
||||
// files (the "Software"), to deal in the Software without
|
||||
// restriction, including without limitation the rights to use,
|
||||
// copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following
|
||||
// conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be
|
||||
// included in all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
||||
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
||||
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
||||
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
||||
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
// OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
#ifndef NV_TT_OPTIMALCOMPRESSDXT_H
|
||||
#define NV_TT_OPTIMALCOMPRESSDXT_H
|
||||
|
||||
#include <nvimage/nvimage.h>
|
||||
|
||||
namespace nv
|
||||
{
|
||||
struct ColorBlock;
|
||||
struct BlockDXT1;
|
||||
struct BlockDXT3;
|
||||
struct BlockDXT5;
|
||||
struct AlphaBlockDXT3;
|
||||
struct AlphaBlockDXT5;
|
||||
|
||||
namespace OptimalCompress
|
||||
{
|
||||
void compressDXT1(Color32 rgba, BlockDXT1 * dxtBlock);
|
||||
void compressDXT1a(Color32 rgba, BlockDXT1 * dxtBlock);
|
||||
|
||||
void compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
void compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock);
|
||||
void compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock);
|
||||
}
|
||||
} // nv namespace
|
||||
|
||||
#endif // NV_TT_OPTIMALCOMPRESSDXT_H
|
@ -27,7 +27,7 @@
|
||||
#include <nvimage/BlockDXT.h>
|
||||
|
||||
#include "QuickCompressDXT.h"
|
||||
#include "OptimalCompressDXT.h"
|
||||
#include "SingleColorLookup.h"
|
||||
|
||||
|
||||
using namespace nv;
|
||||
@ -288,41 +288,6 @@ static void optimizeEndPoints4(Vector3 block[16], BlockDXT1 * dxtBlock)
|
||||
dxtBlock->indices = computeIndices3(block, a, b);
|
||||
}*/
|
||||
|
||||
namespace
|
||||
{
|
||||
|
||||
static uint computeAlphaIndices(const ColorBlock & rgba, AlphaBlockDXT5 * block)
|
||||
{
|
||||
uint8 alphas[8];
|
||||
block->evaluatePalette(alphas);
|
||||
|
||||
uint totalError = 0;
|
||||
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
uint8 alpha = rgba.color(i).a;
|
||||
|
||||
uint besterror = 256*256;
|
||||
uint best = 8;
|
||||
for(uint p = 0; p < 8; p++)
|
||||
{
|
||||
int d = alphas[p] - alpha;
|
||||
uint error = d * d;
|
||||
|
||||
if (error < besterror)
|
||||
{
|
||||
besterror = error;
|
||||
best = p;
|
||||
}
|
||||
}
|
||||
nvDebugCheck(best < 8);
|
||||
|
||||
totalError += besterror;
|
||||
block->setIndex(i, best);
|
||||
}
|
||||
|
||||
return totalError;
|
||||
}
|
||||
|
||||
static void optimizeAlpha8(const ColorBlock & rgba, AlphaBlockDXT5 * block)
|
||||
{
|
||||
@ -380,72 +345,29 @@ namespace
|
||||
block->alpha1 = alpha1;
|
||||
}
|
||||
|
||||
/*
|
||||
static void optimizeAlpha6(const ColorBlock & rgba, AlphaBlockDXT5 * block)
|
||||
|
||||
|
||||
|
||||
// Single color compressor, based on:
|
||||
// https://mollyrocket.com/forums/viewtopic.php?t=392
|
||||
void QuickCompress::compressDXT1(Color32 c, BlockDXT1 * dxtBlock)
|
||||
{
|
||||
float alpha2_sum = 0;
|
||||
float beta2_sum = 0;
|
||||
float alphabeta_sum = 0;
|
||||
float alphax_sum = 0;
|
||||
float betax_sum = 0;
|
||||
dxtBlock->col0.r = OMatch5[c.r][0];
|
||||
dxtBlock->col0.g = OMatch6[c.g][0];
|
||||
dxtBlock->col0.b = OMatch5[c.b][0];
|
||||
dxtBlock->col1.r = OMatch5[c.r][1];
|
||||
dxtBlock->col1.g = OMatch6[c.g][1];
|
||||
dxtBlock->col1.b = OMatch5[c.b][1];
|
||||
dxtBlock->indices = 0xaaaaaaaa;
|
||||
|
||||
for (int i = 0; i < 16; i++)
|
||||
if (dxtBlock->col0.u < dxtBlock->col1.u)
|
||||
{
|
||||
uint8 x = rgba.color(i).a;
|
||||
if (x == 0 || x == 255) continue;
|
||||
|
||||
uint bits = block->index(i);
|
||||
if (bits == 6 || bits == 7) continue;
|
||||
|
||||
float alpha;
|
||||
if (bits == 0) alpha = 1.0f;
|
||||
else if (bits == 1) alpha = 0.0f;
|
||||
else alpha = (6.0f - block->index(i)) / 5.0f;
|
||||
|
||||
float beta = 1 - alpha;
|
||||
|
||||
alpha2_sum += alpha * alpha;
|
||||
beta2_sum += beta * beta;
|
||||
alphabeta_sum += alpha * beta;
|
||||
alphax_sum += alpha * x;
|
||||
betax_sum += beta * x;
|
||||
swap(dxtBlock->col0.u, dxtBlock->col1.u);
|
||||
dxtBlock->indices ^= 0x55555555;
|
||||
}
|
||||
|
||||
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
||||
|
||||
float a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
|
||||
float b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
|
||||
|
||||
uint alpha0 = uint(min(max(a, 0.0f), 255.0f));
|
||||
uint alpha1 = uint(min(max(b, 0.0f), 255.0f));
|
||||
|
||||
if (alpha0 > alpha1)
|
||||
{
|
||||
swap(alpha0, alpha1);
|
||||
}
|
||||
|
||||
block->alpha0 = alpha0;
|
||||
block->alpha1 = alpha1;
|
||||
}
|
||||
*/
|
||||
|
||||
static bool sameIndices(const AlphaBlockDXT5 & block0, const AlphaBlockDXT5 & block1)
|
||||
{
|
||||
const uint64 mask = ~uint64(0xFFFF);
|
||||
return (block0.u | mask) == (block1.u | mask);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
|
||||
void QuickCompress::compressDXT1(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
|
||||
{
|
||||
if (rgba.isSingleColor())
|
||||
{
|
||||
OptimalCompress::compressDXT1(rgba.color(0), dxtBlock);
|
||||
}
|
||||
else
|
||||
{
|
||||
// read block
|
||||
Vector3 block[16];
|
||||
@ -474,27 +396,14 @@ void QuickCompress::compressDXT1(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
|
||||
|
||||
optimizeEndPoints4(block, dxtBlock);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void QuickCompress::compressDXT1a(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
|
||||
{
|
||||
bool hasAlpha = false;
|
||||
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
if (rgba.color(i).a < 128) {
|
||||
hasAlpha = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!hasAlpha)
|
||||
if (!rgba.hasAlpha())
|
||||
{
|
||||
compressDXT1(rgba, dxtBlock);
|
||||
}
|
||||
// @@ Handle single RGB, with varying alpha? We need tables for single color compressor in 3 color mode.
|
||||
//else if (rgba.isSingleColorNoAlpha()) { ... }
|
||||
else
|
||||
{
|
||||
// read block
|
||||
@ -527,59 +436,160 @@ void QuickCompress::compressDXT1a(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
|
||||
}
|
||||
|
||||
|
||||
static int computeGreenError(const ColorBlock & rgba, const BlockDXT1 * block)
|
||||
{
|
||||
nvDebugCheck(block != NULL);
|
||||
|
||||
int palette[4];
|
||||
palette[0] = (block->col0.g << 2) | (block->col0.g >> 4);
|
||||
palette[1] = (block->col1.g << 2) | (block->col1.g >> 4);
|
||||
palette[2] = (2 * palette[0] + palette[1]) / 3;
|
||||
palette[3] = (2 * palette[1] + palette[0]) / 3;
|
||||
|
||||
int totalError = 0;
|
||||
|
||||
for (int i = 0; i < 16; i++)
|
||||
{
|
||||
const int green = rgba.color(i).g;
|
||||
|
||||
int error = abs(green - palette[0]);
|
||||
error = min(error, abs(green - palette[1]));
|
||||
error = min(error, abs(green - palette[2]));
|
||||
error = min(error, abs(green - palette[3]));
|
||||
|
||||
totalError += error;
|
||||
}
|
||||
|
||||
return totalError;
|
||||
}
|
||||
|
||||
static uint computeGreenIndices(const ColorBlock & rgba, const Color32 palette[4])
|
||||
{
|
||||
const int color0 = palette[0].g;
|
||||
const int color1 = palette[1].g;
|
||||
const int color2 = palette[2].g;
|
||||
const int color3 = palette[3].g;
|
||||
|
||||
uint indices = 0;
|
||||
for (int i = 0; i < 16; i++)
|
||||
{
|
||||
const int color = rgba.color(i).g;
|
||||
|
||||
uint d0 = abs(color0 - color);
|
||||
uint d1 = abs(color1 - color);
|
||||
uint d2 = abs(color2 - color);
|
||||
uint d3 = abs(color3 - color);
|
||||
|
||||
uint b0 = d0 > d3;
|
||||
uint b1 = d1 > d2;
|
||||
uint b2 = d0 > d2;
|
||||
uint b3 = d1 > d3;
|
||||
uint b4 = d2 > d3;
|
||||
|
||||
uint x0 = b1 & b2;
|
||||
uint x1 = b0 & b3;
|
||||
uint x2 = b0 & b4;
|
||||
|
||||
indices |= (x2 | ((x0 | x1) << 1)) << (2 * i);
|
||||
}
|
||||
|
||||
return indices;
|
||||
}
|
||||
|
||||
// Brute force green channel compressor
|
||||
void QuickCompress::compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block)
|
||||
{
|
||||
nvDebugCheck(block != NULL);
|
||||
|
||||
uint8 ming = 63;
|
||||
uint8 maxg = 0;
|
||||
|
||||
// Get min/max green.
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
uint8 green = rgba.color(i).g >> 2;
|
||||
ming = min(ming, green);
|
||||
maxg = max(maxg, green);
|
||||
}
|
||||
|
||||
block->col0.r = 31;
|
||||
block->col1.r = 31;
|
||||
block->col0.g = maxg;
|
||||
block->col1.g = ming;
|
||||
block->col0.b = 0;
|
||||
block->col1.b = 0;
|
||||
|
||||
if (maxg - ming > 4)
|
||||
{
|
||||
int besterror = computeGreenError(rgba, block);
|
||||
int bestg0 = maxg;
|
||||
int bestg1 = ming;
|
||||
|
||||
for (int g0 = ming+5; g0 < maxg; g0++)
|
||||
{
|
||||
for (int g1 = ming; g1 < g0-4; g1++)
|
||||
{
|
||||
if ((maxg-g0) + (g1-ming) > besterror)
|
||||
continue;
|
||||
|
||||
block->col0.g = g0;
|
||||
block->col1.g = g1;
|
||||
int error = computeGreenError(rgba, block);
|
||||
|
||||
if (error < besterror)
|
||||
{
|
||||
besterror = error;
|
||||
bestg0 = g0;
|
||||
bestg1 = g1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
block->col0.g = bestg0;
|
||||
block->col1.g = bestg1;
|
||||
}
|
||||
|
||||
Color32 palette[4];
|
||||
block->evaluatePalette(palette);
|
||||
block->indices = computeGreenIndices(rgba, palette);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void QuickCompress::compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock)
|
||||
{
|
||||
dxtBlock->alpha0 = rgba.color(0).a >> 4;
|
||||
dxtBlock->alpha1 = rgba.color(1).a >> 4;
|
||||
dxtBlock->alpha2 = rgba.color(2).a >> 4;
|
||||
dxtBlock->alpha3 = rgba.color(3).a >> 4;
|
||||
dxtBlock->alpha4 = rgba.color(4).a >> 4;
|
||||
dxtBlock->alpha5 = rgba.color(5).a >> 4;
|
||||
dxtBlock->alpha6 = rgba.color(6).a >> 4;
|
||||
dxtBlock->alpha7 = rgba.color(7).a >> 4;
|
||||
dxtBlock->alpha8 = rgba.color(8).a >> 4;
|
||||
dxtBlock->alpha9 = rgba.color(9).a >> 4;
|
||||
dxtBlock->alphaA = rgba.color(10).a >> 4;
|
||||
dxtBlock->alphaB = rgba.color(11).a >> 4;
|
||||
dxtBlock->alphaC = rgba.color(12).a >> 4;
|
||||
dxtBlock->alphaD = rgba.color(13).a >> 4;
|
||||
dxtBlock->alphaE = rgba.color(14).a >> 4;
|
||||
dxtBlock->alphaF = rgba.color(15).a >> 4;
|
||||
}
|
||||
|
||||
void QuickCompress::compressDXT3(const ColorBlock & rgba, BlockDXT3 * dxtBlock)
|
||||
{
|
||||
compressDXT1(rgba, &dxtBlock->color);
|
||||
OptimalCompress::compressDXT3A(rgba, &dxtBlock->alpha);
|
||||
compressDXT3A(rgba, &dxtBlock->alpha);
|
||||
}
|
||||
|
||||
|
||||
void QuickCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock, int iterationCount/*=8*/)
|
||||
void QuickCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock)
|
||||
{
|
||||
uint8 alpha0 = 0;
|
||||
uint8 alpha1 = 255;
|
||||
|
||||
// Get min/max alpha.
|
||||
for (uint i = 0; i < 16; i++)
|
||||
{
|
||||
uint8 alpha = rgba.color(i).a;
|
||||
alpha0 = max(alpha0, alpha);
|
||||
alpha1 = min(alpha1, alpha);
|
||||
// @@ TODO
|
||||
}
|
||||
|
||||
AlphaBlockDXT5 block;
|
||||
block.alpha0 = alpha0 - (alpha0 - alpha1) / 34;
|
||||
block.alpha1 = alpha1 + (alpha0 - alpha1) / 34;
|
||||
uint besterror = computeAlphaIndices(rgba, &block);
|
||||
|
||||
AlphaBlockDXT5 bestblock = block;
|
||||
|
||||
for (int i = 0; i < iterationCount; i++)
|
||||
{
|
||||
optimizeAlpha8(rgba, &block);
|
||||
uint error = computeAlphaIndices(rgba, &block);
|
||||
|
||||
if (error >= besterror)
|
||||
{
|
||||
// No improvement, stop.
|
||||
break;
|
||||
}
|
||||
if (sameIndices(block, bestblock))
|
||||
{
|
||||
bestblock = block;
|
||||
break;
|
||||
}
|
||||
|
||||
besterror = error;
|
||||
bestblock = block;
|
||||
};
|
||||
|
||||
// Copy best block to result;
|
||||
*dxtBlock = bestblock;
|
||||
}
|
||||
|
||||
void QuickCompress::compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock, int iterationCount/*=8*/)
|
||||
void QuickCompress::compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock)
|
||||
{
|
||||
compressDXT1(rgba, &dxtBlock->color);
|
||||
compressDXT5A(rgba, &dxtBlock->alpha, iterationCount);
|
||||
compressDXT5A(rgba, &dxtBlock->alpha);
|
||||
}
|
||||
|
||||
|
@ -37,13 +37,16 @@ namespace nv
|
||||
|
||||
namespace QuickCompress
|
||||
{
|
||||
void compressDXT1(const Color32 rgba, BlockDXT1 * dxtBlock);
|
||||
void compressDXT1(const ColorBlock & rgba, BlockDXT1 * dxtBlock);
|
||||
void compressDXT1a(const ColorBlock & rgba, BlockDXT1 * dxtBlock);
|
||||
void compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block);
|
||||
|
||||
void compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock);
|
||||
void compressDXT3(const ColorBlock & rgba, BlockDXT3 * dxtBlock);
|
||||
|
||||
void compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock, int iterationCount=8);
|
||||
void compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock, int iterationCount=8);
|
||||
void compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock);
|
||||
void compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock);
|
||||
}
|
||||
} // nv namespace
|
||||
|
||||
|
@ -159,7 +159,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
|
||||
}
|
||||
}
|
||||
|
||||
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
|
||||
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16])
|
||||
{
|
||||
const int bid = blockIdx.x;
|
||||
const int idx = threadIdx.x;
|
||||
@ -189,11 +189,6 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
|
||||
colorSums(colors, sums);
|
||||
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
|
||||
|
||||
*sameColor = (axis == make_float3(0, 0, 0));
|
||||
|
||||
// Single color compressor needs unweighted colors.
|
||||
if (*sameColor) colors[idx] = rawColors[idx];
|
||||
|
||||
dps[idx] = dot(rawColors[idx], axis);
|
||||
|
||||
#if __DEVICE_EMULATION__
|
||||
@ -597,40 +592,6 @@ __device__ void evalAllPermutations(const float3 * colors, const float * weights
|
||||
}
|
||||
*/
|
||||
|
||||
__device__ void evalLevel4Permutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
|
||||
{
|
||||
const int idx = threadIdx.x;
|
||||
|
||||
float bestError = FLT_MAX;
|
||||
|
||||
for(int i = 0; i < 16; i++)
|
||||
{
|
||||
int pidx = idx + NUM_THREADS * i;
|
||||
if (pidx >= 992) break;
|
||||
|
||||
ushort start, end;
|
||||
uint permutation = permutations[pidx];
|
||||
|
||||
float error = evalPermutation4(colors, colorSum, permutation, &start, &end);
|
||||
|
||||
if (error < bestError)
|
||||
{
|
||||
bestError = error;
|
||||
bestPermutation = permutation;
|
||||
bestStart = start;
|
||||
bestEnd = end;
|
||||
}
|
||||
}
|
||||
|
||||
if (bestStart < bestEnd)
|
||||
{
|
||||
swap(bestEnd, bestStart);
|
||||
bestPermutation ^= 0x55555555; // Flip indices.
|
||||
}
|
||||
|
||||
errors[idx] = bestError;
|
||||
}
|
||||
|
||||
__device__ void evalLevel4Permutations(const float3 * colors, const float * weights, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
|
||||
{
|
||||
const int idx = threadIdx.x;
|
||||
@ -666,6 +627,7 @@ __device__ void evalLevel4Permutations(const float3 * colors, const float * weig
|
||||
}
|
||||
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Find index with minimum error
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -836,39 +798,6 @@ __global__ void compressDXT1(const uint * permutations, const uint * image, uint
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compressLevel4DXT1(const uint * permutations, const uint * image, uint2 * result)
|
||||
{
|
||||
__shared__ float3 colors[16];
|
||||
__shared__ float3 sums[16];
|
||||
__shared__ int xrefs[16];
|
||||
__shared__ int sameColor;
|
||||
|
||||
loadColorBlock(image, colors, sums, xrefs, &sameColor);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (sameColor)
|
||||
{
|
||||
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
|
||||
return;
|
||||
}
|
||||
|
||||
ushort bestStart, bestEnd;
|
||||
uint bestPermutation;
|
||||
|
||||
__shared__ float errors[NUM_THREADS];
|
||||
|
||||
evalLevel4Permutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
|
||||
|
||||
// Use a parallel reduction to find minimum error.
|
||||
const int minIdx = findMinError(errors);
|
||||
|
||||
// Only write the result of the winner thread.
|
||||
if (threadIdx.x == minIdx)
|
||||
{
|
||||
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compressWeightedDXT1(const uint * permutations, const uint * image, uint2 * result)
|
||||
{
|
||||
@ -876,18 +805,11 @@ __global__ void compressWeightedDXT1(const uint * permutations, const uint * ima
|
||||
__shared__ float3 sums[16];
|
||||
__shared__ float weights[16];
|
||||
__shared__ int xrefs[16];
|
||||
__shared__ int sameColor;
|
||||
|
||||
loadColorBlock(image, colors, sums, weights, xrefs, &sameColor);
|
||||
loadColorBlock(image, colors, sums, weights, xrefs);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (sameColor)
|
||||
{
|
||||
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
|
||||
return;
|
||||
}
|
||||
|
||||
ushort bestStart, bestEnd;
|
||||
uint bestPermutation;
|
||||
|
||||
@ -1111,11 +1033,6 @@ extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result
|
||||
compressDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
|
||||
}
|
||||
|
||||
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
|
||||
{
|
||||
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
|
||||
}
|
||||
|
||||
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
|
||||
{
|
||||
compressWeightedDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
|
||||
|
@ -24,13 +24,13 @@
|
||||
#include <nvcore/Debug.h>
|
||||
#include <nvcore/Containers.h>
|
||||
#include <nvmath/Color.h>
|
||||
#include <nvmath/Fitting.h>
|
||||
#include <nvimage/Image.h>
|
||||
#include <nvimage/ColorBlock.h>
|
||||
#include <nvimage/BlockDXT.h>
|
||||
#include <nvtt/CompressionOptions.h>
|
||||
#include <nvtt/OutputOptions.h>
|
||||
#include <nvtt/QuickCompressDXT.h>
|
||||
#include <nvtt/OptimalCompressDXT.h>
|
||||
#include <nvtt/FastCompressDXT.h>
|
||||
|
||||
#include "CudaCompressDXT.h"
|
||||
#include "CudaUtils.h"
|
||||
@ -53,7 +53,6 @@ using namespace nvtt;
|
||||
|
||||
extern "C" void setupCompressKernel(const float weights[3]);
|
||||
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
|
||||
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
|
||||
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
|
||||
|
||||
#include "Bitmaps.h" // @@ Rename to BitmapTable.h
|
||||
@ -120,25 +119,20 @@ bool CudaCompressor::isValid() const
|
||||
|
||||
// @@ This code is very repetitive and needs to be cleaned up.
|
||||
|
||||
void CudaCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
|
||||
{
|
||||
m_image = image;
|
||||
m_alphaMode = alphaMode;
|
||||
}
|
||||
|
||||
/// Compress image using CUDA.
|
||||
void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
|
||||
void CudaCompressor::compressDXT1(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
nvDebugCheck(cuda::isHardwarePresent());
|
||||
#if defined HAVE_CUDA
|
||||
|
||||
// Image size in blocks.
|
||||
const uint w = (m_image->width() + 3) / 4;
|
||||
const uint h = (m_image->height() + 3) / 4;
|
||||
const uint w = (image->width() + 3) / 4;
|
||||
const uint h = (image->height() + 3) / 4;
|
||||
|
||||
uint imageSize = w * h * 16 * sizeof(Color32);
|
||||
uint * blockLinearImage = (uint *) malloc(imageSize);
|
||||
convertToBlockLinear(m_image, blockLinearImage); // @@ Do this in parallel with the GPU, or in the GPU!
|
||||
convertToBlockLinear(image, blockLinearImage); // @@ Do this in parallel with the GPU, or in the GPU!
|
||||
|
||||
const uint blockNum = w * h;
|
||||
const uint compressedSize = blockNum * 8;
|
||||
@ -183,7 +177,7 @@ void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressio
|
||||
}
|
||||
|
||||
clock_t end = clock();
|
||||
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
|
||||
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
|
||||
|
||||
free(blockLinearImage);
|
||||
|
||||
@ -197,18 +191,18 @@ void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressio
|
||||
|
||||
|
||||
/// Compress image using CUDA.
|
||||
void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
|
||||
void CudaCompressor::compressDXT3(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
nvDebugCheck(cuda::isHardwarePresent());
|
||||
#if defined HAVE_CUDA
|
||||
|
||||
// Image size in blocks.
|
||||
const uint w = (m_image->width() + 3) / 4;
|
||||
const uint h = (m_image->height() + 3) / 4;
|
||||
const uint w = (image->width() + 3) / 4;
|
||||
const uint h = (image->height() + 3) / 4;
|
||||
|
||||
uint imageSize = w * h * 16 * sizeof(Color32);
|
||||
uint * blockLinearImage = (uint *) malloc(imageSize);
|
||||
convertToBlockLinear(m_image, blockLinearImage);
|
||||
convertToBlockLinear(image, blockLinearImage);
|
||||
|
||||
const uint blockNum = w * h;
|
||||
const uint compressedSize = blockNum * 8;
|
||||
@ -228,20 +222,13 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
|
||||
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
|
||||
|
||||
// Launch kernel.
|
||||
if (m_alphaMode == AlphaMode_Transparency)
|
||||
{
|
||||
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
|
||||
}
|
||||
else
|
||||
{
|
||||
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
|
||||
}
|
||||
|
||||
// Compress alpha in parallel with the GPU.
|
||||
for (uint i = 0; i < count; i++)
|
||||
{
|
||||
ColorBlock rgba(blockLinearImage + (bn + i) * 16);
|
||||
OptimalCompress::compressDXT3A(rgba, alphaBlocks + i);
|
||||
compressBlock(rgba, alphaBlocks + i);
|
||||
}
|
||||
|
||||
// Check for errors.
|
||||
@ -273,7 +260,7 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
|
||||
}
|
||||
|
||||
clock_t end = clock();
|
||||
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
|
||||
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
|
||||
|
||||
free(alphaBlocks);
|
||||
free(blockLinearImage);
|
||||
@ -288,18 +275,18 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
|
||||
|
||||
|
||||
/// Compress image using CUDA.
|
||||
void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
|
||||
void CudaCompressor::compressDXT5(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
nvDebugCheck(cuda::isHardwarePresent());
|
||||
#if defined HAVE_CUDA
|
||||
|
||||
// Image size in blocks.
|
||||
const uint w = (m_image->width() + 3) / 4;
|
||||
const uint h = (m_image->height() + 3) / 4;
|
||||
const uint w = (image->width() + 3) / 4;
|
||||
const uint h = (image->height() + 3) / 4;
|
||||
|
||||
uint imageSize = w * h * 16 * sizeof(Color32);
|
||||
uint * blockLinearImage = (uint *) malloc(imageSize);
|
||||
convertToBlockLinear(m_image, blockLinearImage);
|
||||
convertToBlockLinear(image, blockLinearImage);
|
||||
|
||||
const uint blockNum = w * h;
|
||||
const uint compressedSize = blockNum * 8;
|
||||
@ -319,20 +306,13 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
|
||||
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
|
||||
|
||||
// Launch kernel.
|
||||
if (m_alphaMode == AlphaMode_Transparency)
|
||||
{
|
||||
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
|
||||
}
|
||||
else
|
||||
{
|
||||
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
|
||||
}
|
||||
|
||||
// Compress alpha in parallel with the GPU.
|
||||
for (uint i = 0; i < count; i++)
|
||||
{
|
||||
ColorBlock rgba(blockLinearImage + (bn + i) * 16);
|
||||
QuickCompress::compressDXT5A(rgba, alphaBlocks + i);
|
||||
compressBlock_Iterative(rgba, alphaBlocks + i);
|
||||
}
|
||||
|
||||
// Check for errors.
|
||||
@ -364,7 +344,7 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
|
||||
}
|
||||
|
||||
clock_t end = clock();
|
||||
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
|
||||
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
|
||||
|
||||
free(alphaBlocks);
|
||||
free(blockLinearImage);
|
||||
@ -378,3 +358,185 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if 0
|
||||
|
||||
class Task
|
||||
{
|
||||
public:
|
||||
explicit Task(uint numBlocks) : blockMaxCount(numBlocks), blockCount(0)
|
||||
{
|
||||
// System memory allocations.
|
||||
blockLinearImage = new uint[blockMaxCount * 16];
|
||||
xrefs = new uint[blockMaxCount * 16];
|
||||
|
||||
// Device memory allocations.
|
||||
cudaMalloc((void**) &d_blockLinearImage, blockMaxCount * 16 * sizeof(uint));
|
||||
cudaMalloc((void**) &d_compressedImage, blockMaxCount * 8U);
|
||||
|
||||
// @@ Check for allocation errors.
|
||||
}
|
||||
|
||||
~Task()
|
||||
{
|
||||
delete [] blockLinearImage;
|
||||
delete [] xrefs;
|
||||
|
||||
cudaFree(d_blockLinearImage);
|
||||
cudaFree(d_compressedImage);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void addColorBlock(const ColorBlock & rgba)
|
||||
{
|
||||
nvDebugCheck(!isFull());
|
||||
|
||||
// @@ Count unique colors?
|
||||
/*
|
||||
// Convert colors to vectors.
|
||||
Array<Vector3> pointArray(16);
|
||||
|
||||
for(int i = 0; i < 16; i++) {
|
||||
const Color32 color = rgba.color(i);
|
||||
pointArray.append(Vector3(color.r, color.g, color.b));
|
||||
}
|
||||
|
||||
// Find best fit line.
|
||||
const Vector3 axis = Fit::bestLine(pointArray).direction();
|
||||
|
||||
// Project points to axis.
|
||||
float dps[16];
|
||||
uint * order = &xrefs[blockCount * 16];
|
||||
|
||||
for (uint i = 0; i < 16; ++i)
|
||||
{
|
||||
dps[i] = dot(pointArray[i], axis);
|
||||
order[i] = i;
|
||||
}
|
||||
|
||||
// Sort them.
|
||||
for (uint i = 0; i < 16; ++i)
|
||||
{
|
||||
for (uint j = i; j > 0 && dps[j] < dps[j - 1]; --j)
|
||||
{
|
||||
swap(dps[j], dps[j - 1]);
|
||||
swap(order[j], order[j - 1]);
|
||||
}
|
||||
}
|
||||
*/
|
||||
// Write sorted colors to blockLinearImage.
|
||||
for(uint i = 0; i < 16; ++i)
|
||||
{
|
||||
// blockLinearImage[blockCount * 16 + i] = rgba.color(order[i]);
|
||||
blockLinearImage[blockCount * 16 + i] = rgba.color(i);
|
||||
}
|
||||
|
||||
++blockCount;
|
||||
}
|
||||
|
||||
bool isFull()
|
||||
{
|
||||
nvDebugCheck(blockCount <= blockMaxCount);
|
||||
return blockCount == blockMaxCount;
|
||||
}
|
||||
|
||||
void flush(const OutputOptions::Private & outputOptions)
|
||||
{
|
||||
if (blockCount == 0)
|
||||
{
|
||||
// Nothing to do.
|
||||
return;
|
||||
}
|
||||
|
||||
// Copy input color blocks.
|
||||
cudaMemcpy(d_blockLinearImage, blockLinearImage, blockCount * 64, cudaMemcpyHostToDevice);
|
||||
|
||||
// Launch kernel.
|
||||
compressKernelDXT1(blockCount, d_blockLinearImage, d_compressedImage, d_bitmaps);
|
||||
|
||||
// Check for errors.
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
|
||||
|
||||
if (outputOptions.errorHandler != NULL)
|
||||
{
|
||||
outputOptions.errorHandler->error(Error_CudaError);
|
||||
}
|
||||
}
|
||||
|
||||
// Copy result to host, overwrite swizzled image.
|
||||
uint * compressedImage = blockLinearImage;
|
||||
cudaMemcpy(compressedImage, d_compressedImage, blockCount * 8, cudaMemcpyDeviceToHost);
|
||||
|
||||
// @@ Sort block indices.
|
||||
|
||||
// Output result.
|
||||
if (outputOptions.outputHandler != NULL)
|
||||
{
|
||||
// outputOptions.outputHandler->writeData(compressedImage, blockCount * 8);
|
||||
}
|
||||
|
||||
blockCount = 0;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
const uint blockMaxCount;
|
||||
uint blockCount;
|
||||
|
||||
uint * blockLinearImage;
|
||||
uint * xrefs;
|
||||
|
||||
uint * d_blockLinearImage;
|
||||
uint * d_compressedImage;
|
||||
|
||||
};
|
||||
|
||||
|
||||
void nv::cudaCompressDXT1_2(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
|
||||
{
|
||||
#if defined HAVE_CUDA
|
||||
const uint w = image->width();
|
||||
const uint h = image->height();
|
||||
|
||||
const uint blockNum = ((w + 3) / 4) * ((h + 3) / 4);
|
||||
const uint blockMax = 32768; // 49152, 65535
|
||||
|
||||
setupCompressKernelDXT1(compressionOptions.colorWeight.ptr());
|
||||
|
||||
ColorBlock rgba;
|
||||
Task task(min(blockNum, blockMax));
|
||||
|
||||
clock_t start = clock();
|
||||
|
||||
for (uint y = 0; y < h; y += 4) {
|
||||
for (uint x = 0; x < w; x += 4) {
|
||||
|
||||
rgba.init(image, x, y);
|
||||
|
||||
task.addColorBlock(rgba);
|
||||
|
||||
if (task.isFull())
|
||||
{
|
||||
task.flush(outputOptions);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
task.flush(outputOptions);
|
||||
|
||||
clock_t end = clock();
|
||||
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
|
||||
|
||||
#else
|
||||
if (outputOptions.errorHandler != NULL)
|
||||
{
|
||||
outputOptions.errorHandler->error(Error_CudaError);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // 0
|
||||
|
@ -39,20 +39,15 @@ namespace nv
|
||||
|
||||
bool isValid() const;
|
||||
|
||||
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
|
||||
|
||||
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
|
||||
void compressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
void compressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
void compressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
|
||||
|
||||
private:
|
||||
|
||||
uint * m_bitmapTable;
|
||||
uint * m_data;
|
||||
uint * m_result;
|
||||
|
||||
const Image * m_image;
|
||||
nvtt::AlphaMode m_alphaMode;
|
||||
};
|
||||
|
||||
} // nv namespace
|
||||
|
@ -22,7 +22,6 @@
|
||||
// OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
#include <nvcore/Debug.h>
|
||||
#include <nvcore/Library.h>
|
||||
#include "CudaUtils.h"
|
||||
|
||||
#if defined HAVE_CUDA
|
||||
@ -70,41 +69,12 @@ static bool isWow32()
|
||||
#endif
|
||||
|
||||
|
||||
static bool isCudaDriverAvailable(uint version)
|
||||
{
|
||||
#if NV_OS_WIN32
|
||||
Library nvcuda("nvcuda.dll");
|
||||
#else
|
||||
Library nvcuda(NV_LIBRARY_NAME(cuda));
|
||||
#endif
|
||||
|
||||
if (!nvcuda.isValid())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
if (version > 2000)
|
||||
{
|
||||
void * address = nvcuda.bindSymbol("cuStreamCreate");
|
||||
if (address == NULL) return false;
|
||||
}
|
||||
|
||||
if (version > 2010)
|
||||
{
|
||||
void * address = nvcuda.bindSymbol("cuLoadDataEx");
|
||||
if (address == NULL) return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/// Determine if CUDA is available.
|
||||
bool nv::cuda::isHardwarePresent()
|
||||
{
|
||||
#if defined HAVE_CUDA
|
||||
#if NV_OS_WIN32
|
||||
//if (isWindowsVista()) return false;
|
||||
if (isWindowsVista()) return false;
|
||||
//if (isWindowsVista() || !isWow32()) return false;
|
||||
#endif
|
||||
int count = deviceCount();
|
||||
@ -120,12 +90,6 @@ bool nv::cuda::isHardwarePresent()
|
||||
return false;
|
||||
}
|
||||
|
||||
// Make sure that CUDA driver matches CUDA runtime.
|
||||
if (!isCudaDriverAvailable(CUDART_VERSION))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
// @@ Make sure that warp size == 32
|
||||
}
|
||||
|
||||
@ -151,35 +115,6 @@ int nv::cuda::deviceCount()
|
||||
return 0;
|
||||
}
|
||||
|
||||
int nv::cuda::getFastestDevice()
|
||||
{
|
||||
int max_gflops_device = 0;
|
||||
#if defined HAVE_CUDA
|
||||
int max_gflops = 0;
|
||||
|
||||
const int device_count = deviceCount();
|
||||
int current_device = 0;
|
||||
while (current_device < device_count)
|
||||
{
|
||||
cudaDeviceProp device_properties;
|
||||
cudaGetDeviceProperties(&device_properties, current_device);
|
||||
int gflops = device_properties.multiProcessorCount * device_properties.clockRate;
|
||||
|
||||
if (device_properties.major != -1 && device_properties.minor != -1)
|
||||
{
|
||||
if( gflops > max_gflops )
|
||||
{
|
||||
max_gflops = gflops;
|
||||
max_gflops_device = current_device;
|
||||
}
|
||||
}
|
||||
|
||||
current_device++;
|
||||
}
|
||||
#endif
|
||||
return max_gflops_device;
|
||||
}
|
||||
|
||||
/// Activate the given devices.
|
||||
bool nv::cuda::setDevice(int i)
|
||||
{
|
||||
|
@ -31,7 +31,6 @@ namespace nv
|
||||
{
|
||||
bool isHardwarePresent();
|
||||
int deviceCount();
|
||||
int getFastestDevice();
|
||||
bool setDevice(int i);
|
||||
};
|
||||
|
||||
|
@ -207,6 +207,7 @@ NVTT_API void nvttDestroyCompressionOptions(NvttCompressionOptions * compression
|
||||
NVTT_API void nvttSetCompressionOptionsFormat(NvttCompressionOptions * compressionOptions, NvttFormat format);
|
||||
NVTT_API void nvttSetCompressionOptionsQuality(NvttCompressionOptions * compressionOptions, NvttQuality quality);
|
||||
NVTT_API void nvttSetCompressionOptionsColorWeights(NvttCompressionOptions * compressionOptions, float red, float green, float blue, float alpha);
|
||||
NVTT_API void nvttEnableCompressionOptionsCudaCompression(NvttCompressionOptions * compressionOptions, NvttBoolean enable);
|
||||
NVTT_API void nvttSetCompressionOptionsPixelFormat(NvttCompressionOptions * compressionOptions, unsigned int bitcount, unsigned int rmask, unsigned int gmask, unsigned int bmask, unsigned int amask);
|
||||
NVTT_API void nvttSetCompressionOptionsQuantization(NvttCompressionOptions * compressionOptions, NvttBoolean colorDithering, NvttBoolean alphaDithering, NvttBoolean binaryAlpha, int alphaThreshold);
|
||||
|
||||
|
@ -29,8 +29,6 @@
|
||||
#include "colourblock.h"
|
||||
#include <cfloat>
|
||||
|
||||
#include "fastclusterlookup.inl"
|
||||
|
||||
namespace squish {
|
||||
|
||||
FastClusterFit::FastClusterFit()
|
||||
@ -99,6 +97,91 @@ void FastClusterFit::SetColourSet( ColourSet const* colours, int flags )
|
||||
}
|
||||
|
||||
|
||||
struct Precomp {
|
||||
float alpha2_sum;
|
||||
float beta2_sum;
|
||||
float alphabeta_sum;
|
||||
float factor;
|
||||
};
|
||||
|
||||
static SQUISH_ALIGN_16 Precomp s_threeElement[153];
|
||||
static SQUISH_ALIGN_16 Precomp s_fourElement[969];
|
||||
|
||||
void FastClusterFit::DoPrecomputation()
|
||||
{
|
||||
int i = 0;
|
||||
|
||||
// Three element clusters:
|
||||
for( int c0 = 0; c0 <= 16; c0++) // At least two clusters.
|
||||
{
|
||||
for( int c1 = 0; c1 <= 16-c0; c1++)
|
||||
{
|
||||
int c2 = 16 - c0 - c1;
|
||||
|
||||
/*if (c2 == 16) {
|
||||
// a = b = x2 / 16
|
||||
s_threeElement[i].alpha2_sum = 0;
|
||||
s_threeElement[i].beta2_sum = 16;
|
||||
s_threeElement[i].alphabeta_sum = -16;
|
||||
s_threeElement[i].factor = 1.0f / 256.0f;
|
||||
}
|
||||
else if (c0 == 16) {
|
||||
// a = b = x0 / 16
|
||||
s_threeElement[i].alpha2_sum = 16;
|
||||
s_threeElement[i].beta2_sum = 0;
|
||||
s_threeElement[i].alphabeta_sum = -16;
|
||||
s_threeElement[i].factor = 1.0f / 256.0f;
|
||||
}
|
||||
else*/ {
|
||||
s_threeElement[i].alpha2_sum = c0 + c1 * 0.25f;
|
||||
s_threeElement[i].beta2_sum = c2 + c1 * 0.25f;
|
||||
s_threeElement[i].alphabeta_sum = c1 * 0.25f;
|
||||
s_threeElement[i].factor = 1.0f / (s_threeElement[i].alpha2_sum * s_threeElement[i].beta2_sum - s_threeElement[i].alphabeta_sum * s_threeElement[i].alphabeta_sum);
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
}
|
||||
//printf("%d three cluster elements\n", i);
|
||||
|
||||
// Four element clusters:
|
||||
i = 0;
|
||||
for( int c0 = 0; c0 <= 16; c0++)
|
||||
{
|
||||
for( int c1 = 0; c1 <= 16-c0; c1++)
|
||||
{
|
||||
for( int c2 = 0; c2 <= 16-c0-c1; c2++)
|
||||
{
|
||||
int c3 = 16 - c0 - c1 - c2;
|
||||
|
||||
/*if (c3 == 16) {
|
||||
// a = b = x3 / 16
|
||||
s_fourElement[i].alpha2_sum = 16.0f;
|
||||
s_fourElement[i].beta2_sum = 0.0f;
|
||||
s_fourElement[i].alphabeta_sum = -16.0f;
|
||||
s_fourElement[i].factor = 1.0f / 256.0f;
|
||||
}
|
||||
else if (c0 == 16) {
|
||||
// a = b = x0 / 16
|
||||
s_fourElement[i].alpha2_sum = 0.0f;
|
||||
s_fourElement[i].beta2_sum = 16.0f;
|
||||
s_fourElement[i].alphabeta_sum = -16.0f;
|
||||
s_fourElement[i].factor = 1.0f / 256.0f;
|
||||
}
|
||||
else*/ {
|
||||
s_fourElement[i].alpha2_sum = c0 + c1 * (4.0f/9.0f) + c2 * (1.0f/9.0f);
|
||||
s_fourElement[i].beta2_sum = c3 + c2 * (4.0f/9.0f) + c1 * (1.0f/9.0f);
|
||||
s_fourElement[i].alphabeta_sum = (c1 + c2) * (2.0f/9.0f);
|
||||
s_fourElement[i].factor = 1.0f / (s_fourElement[i].alpha2_sum * s_fourElement[i].beta2_sum - s_fourElement[i].alphabeta_sum * s_fourElement[i].alphabeta_sum);
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
//printf("%d four cluster elements\n", i);
|
||||
}
|
||||
|
||||
void FastClusterFit::SetMetric(float r, float g, float b)
|
||||
{
|
||||
#if SQUISH_USE_SIMD
|
||||
|
@ -44,6 +44,8 @@ public:
|
||||
void SetMetric(float r, float g, float b);
|
||||
float GetBestError() const;
|
||||
|
||||
static void DoPrecomputation();
|
||||
|
||||
// Make them public
|
||||
virtual void Compress3( void* block );
|
||||
virtual void Compress4( void* block );
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -42,11 +42,11 @@ struct MyOutputHandler : public nvtt::OutputHandler
|
||||
MyOutputHandler(const char * name) : total(0), progress(0), percentage(0), stream(new nv::StdOutputStream(name)) {}
|
||||
virtual ~MyOutputHandler() { delete stream; }
|
||||
|
||||
void setTotal(int64 t)
|
||||
virtual void setTotal(int64 t)
|
||||
{
|
||||
total = t + 128;
|
||||
}
|
||||
void setDisplayProgress(bool b)
|
||||
virtual void setDisplayProgress(bool b)
|
||||
{
|
||||
verbose = b;
|
||||
}
|
||||
@ -373,6 +373,7 @@ int main(int argc, char *argv[])
|
||||
inputOptions.setMipmapGeneration(false);
|
||||
}
|
||||
|
||||
|
||||
nvtt::CompressionOptions compressionOptions;
|
||||
compressionOptions.setFormat(format);
|
||||
if (fast)
|
||||
@ -396,21 +397,6 @@ int main(int argc, char *argv[])
|
||||
compressionOptions.setExternalCompressor(externalCompressor);
|
||||
}
|
||||
|
||||
if (format == nvtt::Format_RGB)
|
||||
{
|
||||
compressionOptions.setQuantization(true, false, false);
|
||||
//compressionOptions.setPixelFormat(16, 0xF000, 0x0F00, 0x00F0, 0x000F);
|
||||
compressionOptions.setPixelFormat(16,
|
||||
0x0F00,
|
||||
0x00F0,
|
||||
0x000F,
|
||||
0xF000);
|
||||
// 0x003F0000,
|
||||
// 0x00003F00,
|
||||
// 0x0000003F,
|
||||
// 0x3F000000);
|
||||
}
|
||||
|
||||
|
||||
MyErrorHandler errorHandler;
|
||||
MyOutputHandler outputHandler(output);
|
||||
|
@ -73,12 +73,10 @@ int main(int argc, char *argv[])
|
||||
|
||||
float scale = 0.5f;
|
||||
float gamma = 2.2f;
|
||||
nv::AutoPtr<nv::Filter> filter;
|
||||
nv::Filter * filter = NULL;
|
||||
nv::Path input;
|
||||
nv::Path output;
|
||||
|
||||
nv::FloatImage::WrapMode wrapMode = nv::FloatImage::WrapMode_Mirror;
|
||||
|
||||
// Parse arguments.
|
||||
for (int i = 1; i < argc; i++)
|
||||
{
|
||||
@ -110,18 +108,9 @@ int main(int argc, char *argv[])
|
||||
else if (strcmp("lanczos", argv[i]) == 0) filter = new nv::LanczosFilter();
|
||||
else if (strcmp("kaiser", argv[i]) == 0) {
|
||||
filter = new nv::KaiserFilter(3);
|
||||
((nv::KaiserFilter *)filter.ptr())->setParameters(4.0f, 1.0f);
|
||||
((nv::KaiserFilter *)filter)->setParameters(4.0f, 1.0f);
|
||||
}
|
||||
}
|
||||
else if (strcmp("-f", argv[i]) == 0)
|
||||
{
|
||||
if (i+1 == argc) break;
|
||||
i++;
|
||||
|
||||
if (strcmp("mirror", argv[i]) == 0) wrapMode = nv::FloatImage::WrapMode_Mirror;
|
||||
else if (strcmp("repeat", argv[i]) == 0) wrapMode = nv::FloatImage::WrapMode_Repeat;
|
||||
else if (strcmp("clamp", argv[i]) == 0) wrapMode = nv::FloatImage::WrapMode_Clamp;
|
||||
}
|
||||
else if (argv[i][0] != '-')
|
||||
{
|
||||
input = argv[i];
|
||||
@ -151,10 +140,6 @@ int main(int argc, char *argv[])
|
||||
printf(" * mitchell\n");
|
||||
printf(" * lanczos\n");
|
||||
printf(" * kaiser\n");
|
||||
printf(" -w mode One of the following: (default = 'mirror')\n");
|
||||
printf(" * mirror\n");
|
||||
printf(" * repeat\n");
|
||||
printf(" * clamp\n");
|
||||
|
||||
return 1;
|
||||
}
|
||||
@ -170,14 +155,15 @@ int main(int argc, char *argv[])
|
||||
nv::FloatImage fimage(&image);
|
||||
fimage.toLinear(0, 3, gamma);
|
||||
|
||||
nv::AutoPtr<nv::FloatImage> fresult(fimage.resize(*filter, uint(image.width() * scale), uint(image.height() * scale), wrapMode));
|
||||
nv::AutoPtr<nv::FloatImage> fresult(fimage.downSample(*filter, uint(image.width() * scale), uint(image.height() * scale), nv::FloatImage::WrapMode_Mirror));
|
||||
|
||||
nv::AutoPtr<nv::Image> result(fresult->createImageGammaCorrect(gamma));
|
||||
result->setFormat(nv::Image::Format_ARGB);
|
||||
|
||||
nv::StdOutputStream stream(output);
|
||||
nv::ImageIO::saveTGA(stream, result.ptr()); // @@ Add generic save function. Add support for png too.
|
||||
|
||||
delete filter;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user