// Copyright NVIDIA Corporation 2007 -- Ignacio Castano // // Permission is hereby granted, free of charge, to any person // obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without // restriction, including without limitation the rights to use, // copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following // conditions: // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES // OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT // HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, // WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. #include #include #include #include #include "CudaMath.h" #include "../SingleColorLookup.h" #define NUM_THREADS 64 // Number of threads per block. #if __DEVICE_EMULATION__ #define __debugsync() __syncthreads() #else #define __debugsync() #endif typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned int uint; template __device__ inline void swap(T & a, T & b) { T tmp = a; a = b; b = tmp; } __constant__ float3 kColorMetric = { 1.0f, 1.0f, 1.0f }; __constant__ float3 kColorMetricSqr = { 1.0f, 1.0f, 1.0f }; //////////////////////////////////////////////////////////////////////////////// // Sort colors //////////////////////////////////////////////////////////////////////////////// __device__ void sortColors(const float * values, int * cmp) { int tid = threadIdx.x; #if 1 cmp[tid] = (values[0] < values[tid]); cmp[tid] += (values[1] < values[tid]); cmp[tid] += (values[2] < values[tid]); cmp[tid] += (values[3] < values[tid]); cmp[tid] += (values[4] < values[tid]); cmp[tid] += (values[5] < values[tid]); cmp[tid] += (values[6] < values[tid]); cmp[tid] += (values[7] < values[tid]); cmp[tid] += (values[8] < values[tid]); cmp[tid] += (values[9] < values[tid]); cmp[tid] += (values[10] < values[tid]); cmp[tid] += (values[11] < values[tid]); cmp[tid] += (values[12] < values[tid]); cmp[tid] += (values[13] < values[tid]); cmp[tid] += (values[14] < values[tid]); cmp[tid] += (values[15] < values[tid]); // Resolve elements with the same index. if (tid > 0 && cmp[tid] == cmp[0]) ++cmp[tid]; if (tid > 1 && cmp[tid] == cmp[1]) ++cmp[tid]; if (tid > 2 && cmp[tid] == cmp[2]) ++cmp[tid]; if (tid > 3 && cmp[tid] == cmp[3]) ++cmp[tid]; if (tid > 4 && cmp[tid] == cmp[4]) ++cmp[tid]; if (tid > 5 && cmp[tid] == cmp[5]) ++cmp[tid]; if (tid > 6 && cmp[tid] == cmp[6]) ++cmp[tid]; if (tid > 7 && cmp[tid] == cmp[7]) ++cmp[tid]; if (tid > 8 && cmp[tid] == cmp[8]) ++cmp[tid]; if (tid > 9 && cmp[tid] == cmp[9]) ++cmp[tid]; if (tid > 10 && cmp[tid] == cmp[10]) ++cmp[tid]; if (tid > 11 && cmp[tid] == cmp[11]) ++cmp[tid]; if (tid > 12 && cmp[tid] == cmp[12]) ++cmp[tid]; if (tid > 13 && cmp[tid] == cmp[13]) ++cmp[tid]; if (tid > 14 && cmp[tid] == cmp[14]) ++cmp[tid]; #else cmp[tid] = 0; #pragma unroll for (int i = 0; i < 16; i++) { cmp[tid] += (values[i] < values[tid]); } // Resolve elements with the same index. #pragma unroll for (int i = 0; i < 15; i++) { if (tid > 0 && cmp[tid] == cmp[i]) ++cmp[tid]; } #endif } //////////////////////////////////////////////////////////////////////////////// // Load color block to shared mem //////////////////////////////////////////////////////////////////////////////// __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor) { const int bid = blockIdx.x; const int idx = threadIdx.x; __shared__ float dps[16]; if (idx < 16) { // Read color and copy to shared mem. uint c = image[(bid) * 16 + idx]; colors[idx].z = ((c >> 0) & 0xFF) * (1.0f / 255.0f); colors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f); colors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f); // No need to synchronize, 16 < warp size. #if __DEVICE_EMULATION__ } __debugsync(); if (idx < 16) { #endif // Sort colors along the best fit line. colorSums(colors, sums); float3 axis = bestFitLine(colors, sums[0], kColorMetric); *sameColor = (axis == make_float3(0, 0, 0)); dps[idx] = dot(colors[idx], axis); #if __DEVICE_EMULATION__ } __debugsync(); if (idx < 16) { #endif sortColors(dps, xrefs); float3 tmp = colors[idx]; colors[xrefs[idx]] = tmp; } } __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor) { const int bid = blockIdx.x; const int idx = threadIdx.x; __shared__ float3 rawColors[16]; __shared__ float dps[16]; if (idx < 16) { // Read color and copy to shared mem. uint c = image[(bid) * 16 + idx]; rawColors[idx].z = ((c >> 0) & 0xFF) * (1.0f / 255.0f); rawColors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f); rawColors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f); weights[idx] = (((c >> 24) & 0xFF) + 1) * (1.0f / 256.0f); colors[idx] = rawColors[idx] * weights[idx]; // No need to synchronize, 16 < warp size. #if __DEVICE_EMULATION__ } __debugsync(); if (idx < 16) { #endif // Sort colors along the best fit line. colorSums(colors, sums); float3 axis = bestFitLine(colors, sums[0], kColorMetric); *sameColor = (axis == make_float3(0, 0, 0)); // Single color compressor needs unweighted colors. if (*sameColor) colors[idx] = rawColors[idx]; dps[idx] = dot(rawColors[idx], axis); #if __DEVICE_EMULATION__ } __debugsync(); if (idx < 16) { #endif sortColors(dps, xrefs); float3 tmp = colors[idx]; colors[xrefs[idx]] = tmp; float w = weights[idx]; weights[xrefs[idx]] = w; } } //////////////////////////////////////////////////////////////////////////////// // Round color to RGB565 and expand //////////////////////////////////////////////////////////////////////////////// inline __device__ float3 roundAndExpand565(float3 v, ushort * w) { v.x = rintf(__saturatef(v.x) * 31.0f); v.y = rintf(__saturatef(v.y) * 63.0f); v.z = rintf(__saturatef(v.z) * 31.0f); *w = ((ushort)v.x << 11) | ((ushort)v.y << 5) | (ushort)v.z; v.x *= 0.03227752766457f; // approximate integer bit expansion. v.y *= 0.01583151765563f; v.z *= 0.03227752766457f; return v; } //////////////////////////////////////////////////////////////////////////////// // Evaluate permutations //////////////////////////////////////////////////////////////////////////////// __device__ float evalPermutation4(const float3 * colors, uint permutation, ushort * start, ushort * end) { // Compute endpoints using least squares. float alpha2_sum = 0.0f; float beta2_sum = 0.0f; float alphabeta_sum = 0.0f; float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f); float3 betax_sum = make_float3(0.0f, 0.0f, 0.0f); // Compute alpha & beta for this permutation. for (int i = 0; i < 16; i++) { const uint bits = permutation >> (2*i); float beta = (bits & 1); if (bits & 2) beta = (1 + beta) / 3.0f; float alpha = 1.0f - beta; alpha2_sum += alpha * alpha; beta2_sum += beta * beta; alphabeta_sum += alpha * beta; alphax_sum += alpha * colors[i]; betax_sum += beta * colors[i]; } const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor; float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor; // Round a, b to the closest 5-6-5 color and expand... a = roundAndExpand565(a, start); b = roundAndExpand565(b, end); // compute the error float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum); return dot(e, kColorMetricSqr); } __device__ float evalPermutation3(const float3 * colors, uint permutation, ushort * start, ushort * end) { // Compute endpoints using least squares. float alpha2_sum = 0.0f; float beta2_sum = 0.0f; float alphabeta_sum = 0.0f; float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f); float3 betax_sum = make_float3(0.0f, 0.0f, 0.0f); // Compute alpha & beta for this permutation. for (int i = 0; i < 16; i++) { const uint bits = permutation >> (2*i); float beta = (bits & 1); if (bits & 2) beta = 0.5f; float alpha = 1.0f - beta; alpha2_sum += alpha * alpha; beta2_sum += beta * beta; alphabeta_sum += alpha * beta; alphax_sum += alpha * colors[i]; betax_sum += beta * colors[i]; } const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor; float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor; // Round a, b to the closest 5-6-5 color and expand... a = roundAndExpand565(a, start); b = roundAndExpand565(b, end); // compute the error float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum); return dot(e, kColorMetricSqr); } __constant__ const float alphaTable4[4] = { 9.0f, 0.0f, 6.0f, 3.0f }; __constant__ const float alphaTable3[4] = { 4.0f, 0.0f, 2.0f, 2.0f }; __constant__ const uint prods4[4] = { 0x090000,0x000900,0x040102,0x010402 }; __constant__ const uint prods3[4] = { 0x040000,0x000400,0x040101,0x010401 }; __device__ float evalPermutation4(const float3 * colors, float3 color_sum, uint permutation, ushort * start, ushort * end) { // Compute endpoints using least squares. float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f); uint akku = 0; // Compute alpha & beta for this permutation. #pragma unroll for (int i = 0; i < 16; i++) { const uint bits = permutation >> (2*i); alphax_sum += alphaTable4[bits & 3] * colors[i]; akku += prods4[bits & 3]; } float alpha2_sum = float(akku >> 16); float beta2_sum = float((akku >> 8) & 0xff); float alphabeta_sum = float(akku & 0xff); float3 betax_sum = 9.0f * color_sum - alphax_sum; const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor; float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor; // Round a, b to the closest 5-6-5 color and expand... a = roundAndExpand565(a, start); b = roundAndExpand565(b, end); // compute the error float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum); return (1.0f / 9.0f) * dot(e, kColorMetricSqr); } __device__ float evalPermutation3(const float3 * colors, float3 color_sum, uint permutation, ushort * start, ushort * end) { // Compute endpoints using least squares. float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f); uint akku = 0; // Compute alpha & beta for this permutation. #pragma unroll for (int i = 0; i < 16; i++) { const uint bits = permutation >> (2*i); alphax_sum += alphaTable3[bits & 3] * colors[i]; akku += prods3[bits & 3]; } float alpha2_sum = float(akku >> 16); float beta2_sum = float((akku >> 8) & 0xff); float alphabeta_sum = float(akku & 0xff); float3 betax_sum = 4.0f * color_sum - alphax_sum; const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor; float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor; // Round a, b to the closest 5-6-5 color and expand... a = roundAndExpand565(a, start); b = roundAndExpand565(b, end); // compute the error float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum); return (1.0f / 4.0f) * dot(e, kColorMetricSqr); } __device__ float evalPermutation4(const float3 * colors, const float * weights, float3 color_sum, uint permutation, ushort * start, ushort * end) { // Compute endpoints using least squares. float alpha2_sum = 0.0f; float beta2_sum = 0.0f; float alphabeta_sum = 0.0f; float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f); // Compute alpha & beta for this permutation. for (int i = 0; i < 16; i++) { const uint bits = permutation >> (2*i); float beta = (bits & 1); if (bits & 2) beta = (1 + beta) / 3.0f; float alpha = 1.0f - beta; alpha2_sum += alpha * alpha * weights[i]; beta2_sum += beta * beta * weights[i]; alphabeta_sum += alpha * beta * weights[i]; alphax_sum += alpha * colors[i]; } float3 betax_sum = color_sum - alphax_sum; const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor; float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor; // Round a, b to the closest 5-6-5 color and expand... a = roundAndExpand565(a, start); b = roundAndExpand565(b, end); // compute the error float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum); return dot(e, kColorMetricSqr); } /* __device__ float evalPermutation3(const float3 * colors, const float * weights, uint permutation, ushort * start, ushort * end) { // Compute endpoints using least squares. float alpha2_sum = 0.0f; float beta2_sum = 0.0f; float alphabeta_sum = 0.0f; float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f); // Compute alpha & beta for this permutation. for (int i = 0; i < 16; i++) { const uint bits = permutation >> (2*i); float beta = (bits & 1); if (bits & 2) beta = 0.5f; float alpha = 1.0f - beta; alpha2_sum += alpha * alpha * weights[i]; beta2_sum += beta * beta * weights[i]; alphabeta_sum += alpha * beta * weights[i]; alphax_sum += alpha * colors[i]; } float3 betax_sum = color_sum - alphax_sum; const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor; float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor; // Round a, b to the closest 5-6-5 color and expand... a = roundAndExpand565(a, start); b = roundAndExpand565(b, end); // compute the error float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum); return dot(e, kColorMetricSqr); } */ //////////////////////////////////////////////////////////////////////////////// // Evaluate all permutations //////////////////////////////////////////////////////////////////////////////// __device__ void evalAllPermutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors) { const int idx = threadIdx.x; float bestError = FLT_MAX; __shared__ uint s_permutations[160]; for(int i = 0; i < 16; i++) { int pidx = idx + NUM_THREADS * i; if (pidx >= 992) break; ushort start, end; uint permutation = permutations[pidx]; if (pidx < 160) s_permutations[pidx] = permutation; float error = evalPermutation4(colors, colorSum, permutation, &start, &end); if (error < bestError) { bestError = error; bestPermutation = permutation; bestStart = start; bestEnd = end; } } if (bestStart < bestEnd) { swap(bestEnd, bestStart); bestPermutation ^= 0x55555555; // Flip indices. } for(int i = 0; i < 3; i++) { int pidx = idx + NUM_THREADS * i; if (pidx >= 160) break; ushort start, end; uint permutation = s_permutations[pidx]; float error = evalPermutation3(colors, colorSum, permutation, &start, &end); if (error < bestError) { bestError = error; bestPermutation = permutation; bestStart = start; bestEnd = end; if (bestStart > bestEnd) { swap(bestEnd, bestStart); bestPermutation ^= (~bestPermutation >> 1) & 0x55555555; // Flip indices. } } } errors[idx] = bestError; } /* __device__ void evalAllPermutations(const float3 * colors, const float * weights, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors) { const int idx = threadIdx.x; float bestError = FLT_MAX; __shared__ uint s_permutations[160]; for(int i = 0; i < 16; i++) { int pidx = idx + NUM_THREADS * i; if (pidx >= 992) break; ushort start, end; uint permutation = permutations[pidx]; if (pidx < 160) s_permutations[pidx] = permutation; float error = evalPermutation4(colors, weights, permutation, &start, &end); if (error < bestError) { bestError = error; bestPermutation = permutation; bestStart = start; bestEnd = end; } } if (bestStart < bestEnd) { swap(bestEnd, bestStart); bestPermutation ^= 0x55555555; // Flip indices. } for(int i = 0; i < 3; i++) { int pidx = idx + NUM_THREADS * i; if (pidx >= 160) break; ushort start, end; uint permutation = s_permutations[pidx]; float error = evalPermutation3(colors, weights, permutation, &start, &end); if (error < bestError) { bestError = error; bestPermutation = permutation; bestStart = start; bestEnd = end; if (bestStart > bestEnd) { swap(bestEnd, bestStart); bestPermutation ^= (~bestPermutation >> 1) & 0x55555555; // Flip indices. } } } errors[idx] = bestError; } */ __device__ void evalLevel4Permutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors) { const int idx = threadIdx.x; float bestError = FLT_MAX; for(int i = 0; i < 16; i++) { int pidx = idx + NUM_THREADS * i; if (pidx >= 992) break; ushort start, end; uint permutation = permutations[pidx]; float error = evalPermutation4(colors, colorSum, permutation, &start, &end); if (error < bestError) { bestError = error; bestPermutation = permutation; bestStart = start; bestEnd = end; } } if (bestStart < bestEnd) { swap(bestEnd, bestStart); bestPermutation ^= 0x55555555; // Flip indices. } errors[idx] = bestError; } __device__ void evalLevel4Permutations(const float3 * colors, const float * weights, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors) { const int idx = threadIdx.x; float bestError = FLT_MAX; for(int i = 0; i < 16; i++) { int pidx = idx + NUM_THREADS * i; if (pidx >= 992) break; ushort start, end; uint permutation = permutations[pidx]; float error = evalPermutation4(colors, weights, colorSum, permutation, &start, &end); if (error < bestError) { bestError = error; bestPermutation = permutation; bestStart = start; bestEnd = end; } } if (bestStart < bestEnd) { swap(bestEnd, bestStart); bestPermutation ^= 0x55555555; // Flip indices. } errors[idx] = bestError; } //////////////////////////////////////////////////////////////////////////////// // Find index with minimum error //////////////////////////////////////////////////////////////////////////////// __device__ int findMinError(float * errors) { const int idx = threadIdx.x; __shared__ int indices[NUM_THREADS]; indices[idx] = idx; #if __DEVICE_EMULATION__ for(int d = NUM_THREADS/2; d > 0; d >>= 1) { __syncthreads(); if (idx < d) { float err0 = errors[idx]; float err1 = errors[idx + d]; if (err1 < err0) { errors[idx] = err1; indices[idx] = indices[idx + d]; } } } #else for(int d = NUM_THREADS/2; d > 32; d >>= 1) { __syncthreads(); if (idx < d) { float err0 = errors[idx]; float err1 = errors[idx + d]; if (err1 < err0) { errors[idx] = err1; indices[idx] = indices[idx + d]; } } } __syncthreads(); // unroll last 6 iterations if (idx < 32) { if (errors[idx + 32] < errors[idx]) { errors[idx] = errors[idx + 32]; indices[idx] = indices[idx + 32]; } if (errors[idx + 16] < errors[idx]) { errors[idx] = errors[idx + 16]; indices[idx] = indices[idx + 16]; } if (errors[idx + 8] < errors[idx]) { errors[idx] = errors[idx + 8]; indices[idx] = indices[idx + 8]; } if (errors[idx + 4] < errors[idx]) { errors[idx] = errors[idx + 4]; indices[idx] = indices[idx + 4]; } if (errors[idx + 2] < errors[idx]) { errors[idx] = errors[idx + 2]; indices[idx] = indices[idx + 2]; } if (errors[idx + 1] < errors[idx]) { errors[idx] = errors[idx + 1]; indices[idx] = indices[idx + 1]; } } #endif __syncthreads(); return indices[0]; } //////////////////////////////////////////////////////////////////////////////// // Save DXT block //////////////////////////////////////////////////////////////////////////////// __device__ void saveBlockDXT1(ushort start, ushort end, uint permutation, int xrefs[16], uint2 * result) { const int bid = blockIdx.x; if (start == end) { permutation = 0; } // Reorder permutation. uint indices = 0; for(int i = 0; i < 16; i++) { int ref = xrefs[i]; indices |= ((permutation >> (2 * ref)) & 3) << (2 * i); } // Write endpoints. result[bid].x = (end << 16) | start; // Write palette indices. result[bid].y = indices; } __device__ void saveSingleColorBlockDXT1(float3 color, uint2 * result) { const int bid = blockIdx.x; int r = color.x * 255; int g = color.y * 255; int b = color.z * 255; ushort color0 = (OMatch5[r][0] << 11) | (OMatch6[g][0] << 5) | OMatch5[b][0]; ushort color1 = (OMatch5[r][1] << 11) | (OMatch6[g][1] << 5) | OMatch5[b][1]; if (color0 < color1) { result[bid].x = (color0 << 16) | color1; result[bid].y = 0xffffffff; } else { result[bid].x = (color1 << 16) | color0; result[bid].y = 0xaaaaaaaa; } } //////////////////////////////////////////////////////////////////////////////// // Compress color block //////////////////////////////////////////////////////////////////////////////// __global__ void compressDXT1(const uint * permutations, const uint * image, uint2 * result) { __shared__ float3 colors[16]; __shared__ float3 sums[16]; __shared__ int xrefs[16]; __shared__ int sameColor; loadColorBlock(image, colors, sums, xrefs, &sameColor); __syncthreads(); if (sameColor) { if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result); return; } ushort bestStart, bestEnd; uint bestPermutation; __shared__ float errors[NUM_THREADS]; evalAllPermutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors); // Use a parallel reduction to find minimum error. const int minIdx = findMinError(errors); // Only write the result of the winner thread. if (threadIdx.x == minIdx) { saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result); } } __global__ void compressLevel4DXT1(const uint * permutations, const uint * image, uint2 * result) { __shared__ float3 colors[16]; __shared__ float3 sums[16]; __shared__ int xrefs[16]; __shared__ int sameColor; loadColorBlock(image, colors, sums, xrefs, &sameColor); __syncthreads(); if (sameColor) { if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result); return; } ushort bestStart, bestEnd; uint bestPermutation; __shared__ float errors[NUM_THREADS]; evalLevel4Permutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors); // Use a parallel reduction to find minimum error. const int minIdx = findMinError(errors); // Only write the result of the winner thread. if (threadIdx.x == minIdx) { saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result); } } __global__ void compressWeightedDXT1(const uint * permutations, const uint * image, uint2 * result) { __shared__ float3 colors[16]; __shared__ float3 sums[16]; __shared__ float weights[16]; __shared__ int xrefs[16]; __shared__ int sameColor; loadColorBlock(image, colors, sums, weights, xrefs, &sameColor); __syncthreads(); if (sameColor) { if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result); return; } ushort bestStart, bestEnd; uint bestPermutation; __shared__ float errors[NUM_THREADS]; evalLevel4Permutations(colors, weights, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors); // Use a parallel reduction to find minimum error. int minIdx = findMinError(errors); // Only write the result of the winner thread. if (threadIdx.x == minIdx) { saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result); } } /* __device__ float computeError(const float weights[16], uchar a0, uchar a1) { float palette[6]; palette[0] = (6.0f/7.0f * a0 + 1.0f/7.0f * a1); palette[1] = (5.0f/7.0f * a0 + 2.0f/7.0f * a1); palette[2] = (4.0f/7.0f * a0 + 3.0f/7.0f * a1); palette[3] = (3.0f/7.0f * a0 + 4.0f/7.0f * a1); palette[4] = (2.0f/7.0f * a0 + 5.0f/7.0f * a1); palette[5] = (1.0f/7.0f * a0 + 6.0f/7.0f * a1); float total = 0.0f; for (uint i = 0; i < 16; i++) { float alpha = weights[i]; float error = a0 - alpha; error = min(error, palette[0] - alpha); error = min(error, palette[1] - alpha); error = min(error, palette[2] - alpha); error = min(error, palette[3] - alpha); error = min(error, palette[4] - alpha); error = min(error, palette[5] - alpha); error = min(error, a1 - alpha); total += error; } return total; } inline __device__ uchar roundAndExpand(float a) { return rintf(__saturatef(a) * 255.0f); } */ /* __device__ void optimizeAlpha8(const float alphas[16], uchar & a0, uchar & a1) { float alpha2_sum = 0; float beta2_sum = 0; float alphabeta_sum = 0; float alphax_sum = 0; float betax_sum = 0; for (int i = 0; i < 16; i++) { uint idx = index[i]; float alpha; if (idx < 2) alpha = 1.0f - idx; else alpha = (8.0f - idx) / 7.0f; float beta = 1 - alpha; alpha2_sum += alpha * alpha; beta2_sum += beta * beta; alphabeta_sum += alpha * beta; alphax_sum += alpha * alphas[i]; betax_sum += beta * alphas[i]; } const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); float a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor; float b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor; a0 = roundAndExpand8(a); a1 = roundAndExpand8(b); } */ /* __device__ void compressAlpha(const float alphas[16], uint4 * result) { const int tid = threadIdx.x; // Compress alpha block! // Brute force approach: // Try all color pairs: 256*256/2 = 32768, 32768/64 = 512 iterations? // Determine min & max alphas float A0, A1; if (tid < 16) { __shared__ uint s_alphas[16]; s_alphas[tid] = alphas[tid]; s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^8]); s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^4]); s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^2]); s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^1]); A0 = s_alphas[tid]; s_alphas[tid] = alphas[tid]; s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^8]); s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^4]); s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^2]); s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^1]); A1 = s_alphas[tid]; } __syncthreads(); int minIdx = 0; if (A1 - A0 > 8) { float bestError = FLT_MAX; // 64 threads -> 8x8 // divide [A1-A0] in partitions. // test endpoints for (int i = 0; i < 128; i++) { uint idx = (i * NUM_THREADS + tid) * 4; uchar a0 = idx & 255; uchar a1 = idx >> 8; float error = computeError(alphas, a0, a1); if (error < bestError) { bestError = error; A0 = a0; A1 = a1; } } __shared__ float errors[NUM_THREADS]; errors[tid] = bestError; // Minimize error. minIdx = findMinError(errors); } if (minIdx == tid) { // @@ Compute indices. // @@ Write alpha block. } } __global__ void compressDXT5(const uint * permutations, const uint * image, uint4 * result) { __shared__ float3 colors[16]; __shared__ float3 sums[16]; __shared__ float weights[16]; __shared__ int xrefs[16]; loadColorBlock(image, colors, sums, weights, xrefs); __syncthreads(); compressAlpha(weights, result); ushort bestStart, bestEnd; uint bestPermutation; __shared__ float errors[NUM_THREADS]; evalLevel4Permutations(colors, weights, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors); // Use a parallel reduction to find minimum error. int minIdx = findMinError(errors); // Only write the result of the winner thread. if (threadIdx.x == minIdx) { saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, (uint2 *)result); } } */ //////////////////////////////////////////////////////////////////////////////// // Setup kernel //////////////////////////////////////////////////////////////////////////////// extern "C" void setupCompressKernel(const float weights[3]) { // Set constants. cudaMemcpyToSymbol(kColorMetric, weights, sizeof(float) * 3, 0); float weightsSqr[3]; weightsSqr[0] = weights[0] * weights[0]; weightsSqr[1] = weights[1] * weights[1]; weightsSqr[2] = weights[2] * weights[2]; cudaMemcpyToSymbol(kColorMetricSqr, weightsSqr, sizeof(float) * 3, 0); } //////////////////////////////////////////////////////////////////////////////// // Launch kernel //////////////////////////////////////////////////////////////////////////////// extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps) { compressDXT1<<>>(d_bitmaps, d_data, (uint2 *)d_result); } extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps) { compressLevel4DXT1<<>>(d_bitmaps, d_data, (uint2 *)d_result); } extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps) { compressWeightedDXT1<<>>(d_bitmaps, d_data, (uint2 *)d_result); }