// This code is in the public domain -- Ignacio Castaņo #pragma once #ifndef NV_CORE_ARRAY_H #define NV_CORE_ARRAY_H /* This array class requires the elements to be relocable; it uses memmove and realloc. Ideally I should be using swap, but I honestly don't care. The only thing that you should be aware of is that internal pointers are not supported. The foreach macros that I use are very non-standard and somewhat confusing. It would be nice to have standard foreach as in Qt. */ #include "nvcore.h" #include "Memory.h" #include "Debug.h" #include "Stream.h" #include "Utils.h" // swap #include "ForEach.h" // swap #include // memmove #include // for placement new namespace nv { // @@ Move this to utils? /// Delete all the elements of a container. template void deleteAll(T & container) { for (typename T::PseudoIndex i = container.start(); !container.isDone(i); container.advance(i)) { delete container[i]; } } template void construct(T * restrict ptr, uint new_size, uint old_size) { for (uint i = old_size; i < new_size; i++) { new(ptr+i) T; // placement new } } template void construct(T * restrict ptr, uint new_size, uint old_size, const T & elem) { for (uint i = old_size; i < new_size; i++) { new(ptr+i) T(elem); // placement new } } template void destroy(T * restrict ptr, uint new_size, uint old_size) { for (uint i = new_size; i < old_size; i++) { (ptr+i)->~T(); // Explicit call to the destructor } } template void fill(T * restrict dst, uint count, const T & value) { for (uint i = 0; i < count; i++) { dst[i] = value; } } template void copy(T * restrict dst, const T * restrict src, uint count) { for (uint i = 0; i < count; i++) { dst[i] = src[i]; } } template bool find(const T & element, const T * restrict ptr, uint count, uint * index) { for (uint i = 0; i < count; i++) { if (ptr[i] == element) { if (index != NULL) *index = i; return true; } } return false; } class Buffer { NV_FORBID_COPY(Buffer) public: // Ctor. Buffer() : m_buffer(NULL), m_buffer_size(0), m_size(0) { } // Dtor. ~Buffer() { allocate(0, 0); } // Get vector size. NV_FORCEINLINE uint size() const { return m_size; } // Get vector size. NV_FORCEINLINE uint count() const { return m_size; } // Is a null vector. NV_FORCEINLINE bool isNull() const { return m_buffer == NULL; } // Swap the members of this vector and the given vector. friend void swap(Buffer & a, Buffer & b) { swap(a.m_buffer, b.m_buffer); swap(a.m_buffer_size, b.m_buffer_size); swap(a.m_size, b.m_size); } protected: // Release ownership of allocated memory and returns pointer to it. NV_NOINLINE void * release() { void * tmp = m_buffer; m_buffer = NULL; m_buffer_size = 0; m_size = 0; return tmp; } NV_NOINLINE void resize(uint new_size, uint element_size) { m_size = new_size; if (new_size > m_buffer_size) { uint new_buffer_size; if (m_buffer_size == 0) { // first allocation new_buffer_size = new_size; } else { // growing new_buffer_size = new_size + (new_size >> 2); } allocate( new_buffer_size, element_size ); } } /// Change buffer size. NV_NOINLINE void allocate(uint count, uint element_size) { if (count == 0) { // free the buffer. if (m_buffer != NULL) { ::free(m_buffer); m_buffer = NULL; } } else { // realloc the buffer m_buffer = ::realloc(m_buffer, count * element_size); } m_buffer_size = count; } protected: void * m_buffer; uint m_buffer_size; uint m_size; }; /** * Replacement for std::vector that is easier to debug and provides * some nice foreach enumerators. */ template class NVCORE_CLASS Array : public Buffer { public: // Default constructor. NV_FORCEINLINE Array() : Buffer() {} // Copy constructor. NV_FORCEINLINE Array(const Array & a) : Buffer() { copy(a.buffer(), a.m_size); } // Constructor that initializes the vector with the given elements. NV_FORCEINLINE Array(const T * ptr, int num) : Buffer() { copy(ptr, num); } // Allocate array. NV_FORCEINLINE explicit Array(uint capacity) : Buffer() { allocate(capacity); } // Destructor. NV_FORCEINLINE ~Array() { clear(); } /// Const element access. NV_FORCEINLINE const T & operator[]( uint index ) const { nvDebugCheck(index < m_size); return buffer()[index]; } NV_FORCEINLINE const T & at( uint index ) const { nvDebugCheck(index < m_size); return buffer()[index]; } /// Element access. NV_FORCEINLINE T & operator[] ( uint index ) { nvDebugCheck(index < m_size); return buffer()[index]; } NV_FORCEINLINE T & at( uint index ) { nvDebugCheck(index < m_size); return buffer()[index]; } /// Get vector size. NV_FORCEINLINE uint size() const { return m_size; } /// Get vector size. NV_FORCEINLINE uint count() const { return m_size; } /// Get const vector pointer. NV_FORCEINLINE const T * buffer() const { return (const T *)m_buffer; } /// Get vector pointer. NV_FORCEINLINE T * buffer() { return (T *)m_buffer; } /// Is vector empty. NV_FORCEINLINE bool isEmpty() const { return m_size == 0; } /// Is a null vector. NV_FORCEINLINE bool isNull() const { return m_buffer == NULL; } /// Push an element at the end of the vector. void push_back( const T & val ) { uint new_size = m_size + 1; if (new_size > m_buffer_size) { const T copy(val); // create a copy in case value is inside of this array. // @@ Create a copy without side effects. Do not call constructor/destructor here. Buffer::resize(new_size, sizeof(T)); new (buffer()+new_size-1) T(copy); } else { m_size = new_size; new(buffer()+new_size-1) T(val); } } NV_FORCEINLINE void pushBack( const T & val ) { push_back(val); } NV_FORCEINLINE void append( const T & val ) { push_back(val); } /// Qt like push operator. NV_FORCEINLINE Array & operator<< ( T & t ) { push_back(t); return *this; } /// Pop the element at the end of the vector. NV_FORCEINLINE void pop_back() { nvDebugCheck( m_size > 0 ); resize( m_size - 1 ); } NV_FORCEINLINE void popBack() { pop_back(); } /// Get back element. NV_FORCEINLINE const T & back() const { nvDebugCheck( m_size > 0 ); return buffer()[m_size-1]; } /// Get back element. NV_FORCEINLINE T & back() { nvDebugCheck( m_size > 0 ); return buffer()[m_size-1]; } /// Get front element. NV_FORCEINLINE const T & front() const { nvDebugCheck( m_size > 0 ); return buffer()[0]; } /// Get front element. NV_FORCEINLINE T & front() { nvDebugCheck( m_size > 0 ); return buffer()[0]; } /// Check if the given element is contained in the array. NV_FORCEINLINE bool contains(const T & e) const { return find(e, NULL); } /// Return true if element found. NV_FORCEINLINE bool find(const T & element, uint * index) const { return find(element, 0, m_size, index); } /// Return true if element found within the given range. NV_FORCEINLINE bool find(const T & element, uint first, uint count, uint * index) const { return ::nv::find(element, buffer() + first, count, index); } /// Remove the element at the given index. This is an expensive operation! void removeAt(uint index) { nvCheck(index >= 0 && index < m_size); if (m_size == 1) { clear(); } else { buffer()[index].~T(); memmove(buffer()+index, buffer()+index+1, sizeof(T) * (m_size - 1 - index)); m_size--; } } /// Remove the first instance of the given element. bool remove(const T & element) { uint index; if (find(element, &index)) { removeAt(index); return true; } return false; } /// Insert the given element at the given index shifting all the elements up. void insertAt(uint index, const T & val = T()) { nvCheck( index >= 0 && index <= m_size ); resize( m_size + 1 ); if (index < m_size - 1) { memmove(buffer()+index+1, buffer()+index, sizeof(T) * (m_size - 1 - index)); } // Copy-construct into the newly opened slot. new(buffer()+index) T(val); } /// Append the given data to our vector. NV_FORCEINLINE void append(const Array & other) { append(other.buffer(), other.m_size); } /// Append the given data to our vector. void append(const T other[], uint count) { if (count > 0) { const uint old_size = m_size; resize(m_size + count); // Must use operator=() to copy elements, in case of side effects (e.g. ref-counting). for (uint i = 0; i < count; i++ ) { buffer()[old_size + i] = other[i]; } } } /// Remove the given element by replacing it with the last one. void replaceWithLast(uint index) { nvDebugCheck( index < m_size ); nv::swap(buffer()[index], back()); (buffer()+m_size-1)->~T(); m_size--; } /// Resize the vector preserving existing elements. void resize(uint new_size) { uint old_size = m_size; // Destruct old elements (if we're shrinking). destroy(buffer(), new_size, old_size); Buffer::resize(new_size, sizeof(T)); // Call default constructors construct(buffer(), new_size, old_size); } /// Resize the vector preserving existing elements and initializing the /// new ones with the given value. void resize( uint new_size, const T &elem ) { uint old_size = m_size; // Destruct old elements (if we're shrinking). destroy(buffer(), new_size, old_size); Buffer::resize(new_size, sizeof(T)); // Call copy constructors construct(buffer(), new_size, old_size, elem); } /// Clear the buffer. NV_FORCEINLINE void clear() { resize(0); } /// Shrink the allocated vector. NV_FORCEINLINE void shrink() { if (m_size < m_buffer_size) { allocate(m_size); } } /// Preallocate space. NV_FORCEINLINE void reserve(uint desired_size) { if (desired_size > m_buffer_size) { allocate(desired_size); } } /// Copy elements to this array. Resizes it if needed. NV_FORCEINLINE void copy(const T * ptr, uint num) { resize( num ); ::nv::copy(buffer(), ptr, num); } /// Assignment operator. NV_FORCEINLINE Array & operator=( const Array & a ) { copy(a.buffer(), a.m_size); return *this; } // Release ownership of allocated memory and returns pointer to it. T * release() { return (T *)Buffer::release(); } /// Array serialization. friend Stream & operator<< ( Stream & s, Array & p ) { if (s.isLoading()) { uint size; s << size; p.resize( size ); } else { s << p.m_size; } for (uint i = 0; i < p.m_size; i++) { s << p.buffer()[i]; } return s; } // Array enumerator. typedef uint PseudoIndex; NV_FORCEINLINE PseudoIndex start() const { return 0; } NV_FORCEINLINE bool isDone(const PseudoIndex & i) const { nvDebugCheck(i <= this->m_size); return i == this->m_size; } NV_FORCEINLINE void advance(PseudoIndex & i) const { nvDebugCheck(i <= this->m_size); i++; } #if NV_CC_MSVC NV_FORCEINLINE T & operator[]( const PseudoIndexWrapper & i ) { return at(i(this)); } NV_FORCEINLINE const T & operator[]( const PseudoIndexWrapper & i ) const { return at(i(this)); } #endif protected: NV_FORCEINLINE void allocate(uint count) { Buffer::allocate(count, sizeof(T)); } }; } // nv namespace #endif // NV_CORE_ARRAY_H