// This code is in the public domain -- Ignacio Castaņo #pragma once #ifndef NV_CORE_ARRAY_H #define NV_CORE_ARRAY_H /* This array class requires the elements to be relocable; it uses memmove and realloc. Ideally I should be using swap, but I honestly don't care. The only thing that you should be aware of is that internal pointers are not supported. The foreach macros that I use are very non-standard and somewhat confusing. It would be nice to have standard foreach as in Qt. */ #include "nvcore.h" #include "Memory.h" #include "Debug.h" #include "Stream.h" #include "Utils.h" // swap #include "ForEach.h" // swap #include // memmove #include // for placement new namespace nv { // @@ Move this to utils? /// Delete all the elements of a container. template void deleteAll(T & container) { for (typename T::PseudoIndex i = container.start(); !container.isDone(i); container.advance(i)) { delete container[i]; } } // @@ Move these templates to Utils.h // @@ Specialize these methods for numeric, pointer, and pod types. template void construct_range(T * restrict ptr, uint new_size, uint old_size) { for (uint i = old_size; i < new_size; i++) { new(ptr+i) T; // placement new } } template void construct_range(T * restrict ptr, uint new_size, uint old_size, const T & elem) { for (uint i = old_size; i < new_size; i++) { new(ptr+i) T(elem); // placement new } } template void destroy_range(T * restrict ptr, uint new_size, uint old_size) { for (uint i = new_size; i < old_size; i++) { (ptr+i)->~T(); // Explicit call to the destructor } } template void fill(T * restrict dst, uint count, const T & value) { for (uint i = 0; i < count; i++) { dst[i] = value; } } template void copy(T * restrict dst, const T * restrict src, uint count) { for (uint i = 0; i < count; i++) { dst[i] = src[i]; } } template bool find(const T & element, const T * restrict ptr, uint begin, uint end, uint * index) { for (uint i = begin; i < end; i++) { if (ptr[i] == element) { if (index != NULL) *index = i; return true; } } return false; } /** * Replacement for std::vector that is easier to debug and provides * some nice foreach enumerators. */ template class NVCORE_CLASS Array { public: // Default constructor. NV_FORCEINLINE Array() : m_buffer(NULL), m_capacity(0), m_size(0) {} // Copy constructor. NV_FORCEINLINE Array(const Array & a) : m_buffer(NULL), m_capacity(0), m_size(0) { copy(a.m_buffer, a.m_size); } // Constructor that initializes the vector with the given elements. NV_FORCEINLINE Array(const T * ptr, int num) : m_buffer(NULL), m_capacity(0), m_size(0) { copy(ptr, num); } // Allocate array. NV_FORCEINLINE explicit Array(uint capacity) : m_buffer(NULL), m_capacity(0), m_size(0) { setArrayCapacity(capacity); } // Destructor. NV_FORCEINLINE ~Array() { clear(); free(m_buffer); } /// Const element access. NV_FORCEINLINE const T & operator[]( uint index ) const { nvDebugCheck(index < m_size); return m_buffer[index]; } NV_FORCEINLINE const T & at( uint index ) const { nvDebugCheck(index < m_size); return m_buffer[index]; } /// Element access. NV_FORCEINLINE T & operator[] ( uint index ) { nvDebugCheck(index < m_size); return m_buffer[index]; } NV_FORCEINLINE T & at( uint index ) { nvDebugCheck(index < m_size); return m_buffer[index]; } /// Get vector size. NV_FORCEINLINE uint size() const { return m_size; } /// Get vector size. NV_FORCEINLINE uint count() const { return m_size; } /// Get const vector pointer. NV_FORCEINLINE const T * buffer() const { return m_buffer; } /// Get vector pointer. NV_FORCEINLINE T * buffer() { return m_buffer; } /// Is vector empty. NV_FORCEINLINE bool isEmpty() const { return m_size == 0; } /// Is a null vector. NV_FORCEINLINE bool isNull() const { return m_buffer == NULL; } /// Push an element at the end of the vector. NV_FORCEINLINE void push_back( const T & val ) { #if 1 nvDebugCheck(&val < m_buffer || &val > m_buffer+m_size); setArraySize(m_size+1); new(m_buffer+m_size-1) T(val); #else uint new_size = m_size + 1; if (new_size > m_capacity) { // @@ Is there any way to avoid this copy? // @@ Can we create a copy without side effects? Ie. without calls to constructor/destructor. Use alloca + memcpy? // @@ Assert instead of copy? const T copy(val); // create a copy in case value is inside of this array. setArraySize(new_size); new (m_buffer+new_size-1) T(copy); } else { m_size = new_size; new(m_buffer+new_size-1) T(val); } #endif // 0/1 } NV_FORCEINLINE void pushBack( const T & val ) { push_back(val); } NV_FORCEINLINE void append( const T & val ) { push_back(val); } /// Qt like push operator. NV_FORCEINLINE Array & operator<< ( T & t ) { push_back(t); return *this; } /// Pop the element at the end of the vector. NV_FORCEINLINE void pop_back() { nvDebugCheck( m_size > 0 ); resize( m_size - 1 ); } NV_FORCEINLINE void popBack() { pop_back(); } /// Get back element. NV_FORCEINLINE const T & back() const { nvDebugCheck( m_size > 0 ); return m_buffer[m_size-1]; } /// Get back element. NV_FORCEINLINE T & back() { nvDebugCheck( m_size > 0 ); return m_buffer[m_size-1]; } /// Get front element. NV_FORCEINLINE const T & front() const { nvDebugCheck( m_size > 0 ); return m_buffer[0]; } /// Get front element. NV_FORCEINLINE T & front() { nvDebugCheck( m_size > 0 ); return m_buffer[0]; } /// Check if the given element is contained in the array. NV_FORCEINLINE bool contains(const T & e) const { return find(e, NULL); } /// Return true if element found. NV_FORCEINLINE bool find(const T & element, uint * indexPtr) const { return find(element, 0, m_size, indexPtr); } /// Return true if element found within the given range. NV_FORCEINLINE bool find(const T & element, uint begin, uint end, uint * indexPtr) const { return ::nv::find(element, m_buffer, begin, end, indexPtr); } /// Remove the element at the given index. This is an expensive operation! void removeAt(uint index) { nvDebugCheck(index >= 0 && index < m_size); if (m_size == 1) { clear(); } else { m_buffer[index].~T(); memmove(m_buffer+index, m_buffer+index+1, sizeof(T) * (m_size - 1 - index)); m_size--; } } /// Remove the first instance of the given element. bool remove(const T & element) { uint index; if (find(element, &index)) { removeAt(index); return true; } return false; } /// Insert the given element at the given index shifting all the elements up. void insertAt(uint index, const T & val = T()) { nvDebugCheck( index >= 0 && index <= m_size ); setArraySize(m_size + 1); if (index < m_size - 1) { memmove(m_buffer+index+1, m_buffer+index, sizeof(T) * (m_size - 1 - index)); } // Copy-construct into the newly opened slot. new(m_buffer+index) T(val); } /// Append the given data to our vector. NV_FORCEINLINE void append(const Array & other) { append(other.m_buffer, other.m_size); } /// Append the given data to our vector. void append(const T other[], uint count) { if (count > 0) { const uint old_size = m_size; setArraySize(m_size + count); for (uint i = 0; i < count; i++ ) { new(m_buffer + old_size + i) T(other[i]); } } } /// Remove the given element by replacing it with the last one. void replaceWithLast(uint index) { nvDebugCheck( index < m_size ); nv::swap(m_buffer[index], back()); (m_buffer+m_size-1)->~T(); m_size--; } /// Resize the vector preserving existing elements. void resize(uint new_size) { uint old_size = m_size; // Destruct old elements (if we're shrinking). destroy_range(m_buffer, new_size, old_size); setArraySize(new_size); // Call default constructors construct_range(m_buffer, new_size, old_size); } /// Resize the vector preserving existing elements and initializing the /// new ones with the given value. void resize(uint new_size, const T & elem) { uint old_size = m_size; // Destruct old elements (if we're shrinking). destroy_range(m_buffer, new_size, old_size); setArraySize(new_size); // Call copy constructors construct_range(m_buffer, new_size, old_size, elem); } /// Clear the buffer. NV_FORCEINLINE void clear() { // Destruct old elements destroy_range(m_buffer, 0, m_size); m_size = 0; } /// Shrink the allocated vector. NV_FORCEINLINE void shrink() { if (m_size < m_capacity) { setArrayCapacity(m_size); } } /// Preallocate space. NV_FORCEINLINE void reserve(uint desired_size) { if (desired_size > m_capacity) { setArrayCapacity(desired_size); } } /// Copy elements to this array. Resizes it if needed. NV_FORCEINLINE void copy(const T * ptr, uint num) { resize( num ); // @@ call copy operator from 0 to min(num,m_size) and copy constructor from min(num,m_size) to num ::nv::copy(m_buffer, ptr, num); } /// Assignment operator. NV_FORCEINLINE Array & operator=( const Array & a ) { copy(a.m_buffer, a.m_size); return *this; } // Release ownership of allocated memory and returns pointer to it. T * release() { T * tmp = m_buffer; m_buffer = NULL; m_capacity = 0; m_size = 0; return tmp; } /// Array serialization. friend Stream & operator<< ( Stream & s, Array & p ) { if (s.isLoading()) { uint size; s << size; p.resize( size ); } else { s << p.m_size; } for (uint i = 0; i < p.m_size; i++) { s << p.m_buffer[i]; } return s; } // Array enumerator. typedef uint PseudoIndex; NV_FORCEINLINE PseudoIndex start() const { return 0; } NV_FORCEINLINE bool isDone(const PseudoIndex & i) const { nvDebugCheck(i <= this->m_size); return i == this->m_size; } NV_FORCEINLINE void advance(PseudoIndex & i) const { nvDebugCheck(i <= this->m_size); i++; } #if NV_CC_MSVC NV_FORCEINLINE T & operator[]( const PseudoIndexWrapper & i ) { return m_buffer[i(this)]; } NV_FORCEINLINE const T & operator[]( const PseudoIndexWrapper & i ) const { return m_buffer[i(this)]; } #endif // Swap the members of this vector and the given vector. friend void swap(Array & a, Array & b) { swap(a.m_buffer, b.m_buffer); swap(a.m_capacity, b.m_capacity); swap(a.m_size, b.m_size); } protected: // Change array size. void setArraySize(uint new_size) { m_size = new_size; if (new_size > m_capacity) { uint new_buffer_size; if (m_capacity == 0) { // first allocation is exact new_buffer_size = new_size; } else { // following allocations grow array by 25% new_buffer_size = new_size + (new_size >> 2); } setArrayCapacity( new_buffer_size ); } } // Change array capacity. void setArrayCapacity(uint new_capacity) { nvDebugCheck(new_capacity >= m_size); if (new_capacity == 0) { // free the buffer. if (m_buffer != NULL) { free(m_buffer); m_buffer = NULL; } } else { // realloc the buffer m_buffer = realloc(m_buffer, new_capacity); } m_capacity = new_capacity; } T * m_buffer; uint m_capacity; uint m_size; }; } // nv namespace #endif // NV_CORE_ARRAY_H