// This code is in the public domain -- castanyo@yahoo.es #include "ColorBlock.h" #include "Image.h" #include "FloatImage.h" #include "nvmath/Box.h" #include "nvmath/Vector.inl" #include "nvcore/Utils.h" // swap #include // memcpy using namespace nv; namespace { // Get approximate luminance. inline static uint colorLuminance(Color32 c) { return c.r + c.g + c.b; } // Get the euclidean distance between the given colors. inline static uint colorDistance(Color32 c0, Color32 c1) { return (c0.r - c1.r) * (c0.r - c1.r) + (c0.g - c1.g) * (c0.g - c1.g) + (c0.b - c1.b) * (c0.b - c1.b); } } // namespace` /// Default constructor. ColorBlock::ColorBlock() { } /// Init the color block from an array of colors. ColorBlock::ColorBlock(const uint * linearImage) { for(uint i = 0; i < 16; i++) { color(i) = Color32(linearImage[i]); } } /// Init the color block with the contents of the given block. ColorBlock::ColorBlock(const ColorBlock & block) { for(uint i = 0; i < 16; i++) { color(i) = block.color(i); } } /// Initialize this color block. ColorBlock::ColorBlock(const Image * img, uint x, uint y) { init(img, x, y); } void ColorBlock::init(const Image * img, uint x, uint y) { init(img->width(), img->height(), (const uint *)img->pixels(), x, y); } void ColorBlock::init(uint w, uint h, const uint * data, uint x, uint y) { nvDebugCheck(data != NULL); const uint bw = min(w - x, 4U); const uint bh = min(h - y, 4U); nvDebugCheck(bw != 0 && bh != 0); // Blocks that are smaller than 4x4 are handled by repeating the pixels. // @@ Thats only correct when block size is 1, 2 or 4, but not with 3. :( // @@ Ideally we should zero the weights of the pixels out of range. for (uint i = 0; i < 4; i++) { const int by = i % bh; for (uint e = 0; e < 4; e++) { const int bx = e % bw; const uint idx = (y + by) * w + x + bx; color(e, i).u = data[idx]; } } } void ColorBlock::init(uint w, uint h, const float * data, uint x, uint y) { nvDebugCheck(data != NULL); const uint bw = min(w - x, 4U); const uint bh = min(h - y, 4U); nvDebugCheck(bw != 0 && bh != 0); // Blocks that are smaller than 4x4 are handled by repeating the pixels. // @@ Thats only correct when block size is 1, 2 or 4, but not with 3. :( // @@ Ideally we should zero the weights of the pixels out of range. uint srcPlane = w * h; for (uint i = 0; i < 4; i++) { const uint by = i % bh; for (uint e = 0; e < 4; e++) { const uint bx = e % bw; const uint idx = ((y + by) * w + x + bx); Color32 & c = color(e, i); c.r = uint8(255 * clamp(data[idx + 0 * srcPlane], 0.0f, 1.0f)); // @@ Is this the right way to quantize floats to bytes? c.g = uint8(255 * clamp(data[idx + 1 * srcPlane], 0.0f, 1.0f)); c.b = uint8(255 * clamp(data[idx + 2 * srcPlane], 0.0f, 1.0f)); c.a = uint8(255 * clamp(data[idx + 3 * srcPlane], 0.0f, 1.0f)); } } } static inline uint8 component(Color32 c, uint i) { if (i == 0) return c.r; if (i == 1) return c.g; if (i == 2) return c.b; if (i == 3) return c.a; if (i == 4) return 0xFF; return 0; } void ColorBlock::swizzle(uint x, uint y, uint z, uint w) { for (int i = 0; i < 16; i++) { Color32 c = m_color[i]; m_color[i].r = component(c, x); m_color[i].g = component(c, y); m_color[i].b = component(c, z); m_color[i].a = component(c, w); } } /// Returns true if the block has a single color. bool ColorBlock::isSingleColor(Color32 mask/*= Color32(0xFF, 0xFF, 0xFF, 0x00)*/) const { uint u = m_color[0].u & mask.u; for (int i = 1; i < 16; i++) { if (u != (m_color[i].u & mask.u)) { return false; } } return true; } /* /// Returns true if the block has a single color, ignoring transparent pixels. bool ColorBlock::isSingleColorNoAlpha() const { Color32 c; int i; for(i = 0; i < 16; i++) { if (m_color[i].a != 0) c = m_color[i]; } Color32 mask(0xFF, 0xFF, 0xFF, 0x00); uint u = c.u & mask.u; for(; i < 16; i++) { if (u != (m_color[i].u & mask.u)) { return false; } } return true; } */ /// Count number of unique colors in this color block. /*uint ColorBlock::countUniqueColors() const { uint count = 0; // @@ This does not have to be o(n^2) for(int i = 0; i < 16; i++) { bool unique = true; for(int j = 0; j < i; j++) { if( m_color[i] != m_color[j] ) { unique = false; } } if( unique ) { count++; } } return count; }*/ /*/// Get average color of the block. Color32 ColorBlock::averageColor() const { uint r, g, b, a; r = g = b = a = 0; for(uint i = 0; i < 16; i++) { r += m_color[i].r; g += m_color[i].g; b += m_color[i].b; a += m_color[i].a; } return Color32(uint8(r / 16), uint8(g / 16), uint8(b / 16), uint8(a / 16)); }*/ /// Return true if the block is not fully opaque. bool ColorBlock::hasAlpha() const { for (uint i = 0; i < 16; i++) { if (m_color[i].a != 255) return true; } return false; } #if 0 /// Get diameter color range. void ColorBlock::diameterRange(Color32 * start, Color32 * end) const { nvDebugCheck(start != NULL); nvDebugCheck(end != NULL); Color32 c0, c1; uint best_dist = 0; for(int i = 0; i < 16; i++) { for (int j = i+1; j < 16; j++) { uint dist = colorDistance(m_color[i], m_color[j]); if( dist > best_dist ) { best_dist = dist; c0 = m_color[i]; c1 = m_color[j]; } } } *start = c0; *end = c1; } /// Get luminance color range. void ColorBlock::luminanceRange(Color32 * start, Color32 * end) const { nvDebugCheck(start != NULL); nvDebugCheck(end != NULL); Color32 minColor, maxColor; uint minLuminance, maxLuminance; maxLuminance = minLuminance = colorLuminance(m_color[0]); for(uint i = 1; i < 16; i++) { uint luminance = colorLuminance(m_color[i]); if (luminance > maxLuminance) { maxLuminance = luminance; maxColor = m_color[i]; } else if (luminance < minLuminance) { minLuminance = luminance; minColor = m_color[i]; } } *start = minColor; *end = maxColor; } /// Get color range based on the bounding box. void ColorBlock::boundsRange(Color32 * start, Color32 * end) const { nvDebugCheck(start != NULL); nvDebugCheck(end != NULL); Color32 minColor(255, 255, 255); Color32 maxColor(0, 0, 0); for(uint i = 0; i < 16; i++) { if (m_color[i].r < minColor.r) { minColor.r = m_color[i].r; } if (m_color[i].g < minColor.g) { minColor.g = m_color[i].g; } if (m_color[i].b < minColor.b) { minColor.b = m_color[i].b; } if (m_color[i].r > maxColor.r) { maxColor.r = m_color[i].r; } if (m_color[i].g > maxColor.g) { maxColor.g = m_color[i].g; } if (m_color[i].b > maxColor.b) { maxColor.b = m_color[i].b; } } // Offset range by 1/16 of the extents Color32 inset; inset.r = (maxColor.r - minColor.r) >> 4; inset.g = (maxColor.g - minColor.g) >> 4; inset.b = (maxColor.b - minColor.b) >> 4; minColor.r = (minColor.r + inset.r <= 255) ? minColor.r + inset.r : 255; minColor.g = (minColor.g + inset.g <= 255) ? minColor.g + inset.g : 255; minColor.b = (minColor.b + inset.b <= 255) ? minColor.b + inset.b : 255; maxColor.r = (maxColor.r >= inset.r) ? maxColor.r - inset.r : 0; maxColor.g = (maxColor.g >= inset.g) ? maxColor.g - inset.g : 0; maxColor.b = (maxColor.b >= inset.b) ? maxColor.b - inset.b : 0; *start = minColor; *end = maxColor; } /// Get color range based on the bounding box. void ColorBlock::boundsRangeAlpha(Color32 * start, Color32 * end) const { nvDebugCheck(start != NULL); nvDebugCheck(end != NULL); Color32 minColor(255, 255, 255, 255); Color32 maxColor(0, 0, 0, 0); for(uint i = 0; i < 16; i++) { if (m_color[i].r < minColor.r) { minColor.r = m_color[i].r; } if (m_color[i].g < minColor.g) { minColor.g = m_color[i].g; } if (m_color[i].b < minColor.b) { minColor.b = m_color[i].b; } if (m_color[i].a < minColor.a) { minColor.a = m_color[i].a; } if (m_color[i].r > maxColor.r) { maxColor.r = m_color[i].r; } if (m_color[i].g > maxColor.g) { maxColor.g = m_color[i].g; } if (m_color[i].b > maxColor.b) { maxColor.b = m_color[i].b; } if (m_color[i].a > maxColor.a) { maxColor.a = m_color[i].a; } } // Offset range by 1/16 of the extents Color32 inset; inset.r = (maxColor.r - minColor.r) >> 4; inset.g = (maxColor.g - minColor.g) >> 4; inset.b = (maxColor.b - minColor.b) >> 4; inset.a = (maxColor.a - minColor.a) >> 4; minColor.r = (minColor.r + inset.r <= 255) ? minColor.r + inset.r : 255; minColor.g = (minColor.g + inset.g <= 255) ? minColor.g + inset.g : 255; minColor.b = (minColor.b + inset.b <= 255) ? minColor.b + inset.b : 255; minColor.a = (minColor.a + inset.a <= 255) ? minColor.a + inset.a : 255; maxColor.r = (maxColor.r >= inset.r) ? maxColor.r - inset.r : 0; maxColor.g = (maxColor.g >= inset.g) ? maxColor.g - inset.g : 0; maxColor.b = (maxColor.b >= inset.b) ? maxColor.b - inset.b : 0; maxColor.a = (maxColor.a >= inset.a) ? maxColor.a - inset.a : 0; *start = minColor; *end = maxColor; } #endif /*/// Sort colors by abosolute value in their 16 bit representation. void ColorBlock::sortColorsByAbsoluteValue() { // Dummy selection sort. for( uint a = 0; a < 16; a++ ) { uint max = a; Color16 cmax(m_color[a]); for( uint b = a+1; b < 16; b++ ) { Color16 cb(m_color[b]); if( cb.u > cmax.u ) { max = b; cmax = cb; } } swap( m_color[a], m_color[max] ); } }*/ /*/// Find extreme colors in the given axis. void ColorBlock::computeRange(Vector3::Arg axis, Color32 * start, Color32 * end) const { nvDebugCheck(start != NULL); nvDebugCheck(end != NULL); int mini, maxi; mini = maxi = 0; float min, max; min = max = dot(Vector3(m_color[0].r, m_color[0].g, m_color[0].b), axis); for(uint i = 1; i < 16; i++) { const Vector3 vec(m_color[i].r, m_color[i].g, m_color[i].b); float val = dot(vec, axis); if( val < min ) { mini = i; min = val; } else if( val > max ) { maxi = i; max = val; } } *start = m_color[mini]; *end = m_color[maxi]; }*/ /*/// Sort colors in the given axis. void ColorBlock::sortColors(const Vector3 & axis) { float luma_array[16]; for(uint i = 0; i < 16; i++) { const Vector3 vec(m_color[i].r, m_color[i].g, m_color[i].b); luma_array[i] = dot(vec, axis); } // Dummy selection sort. for( uint a = 0; a < 16; a++ ) { uint min = a; for( uint b = a+1; b < 16; b++ ) { if( luma_array[b] < luma_array[min] ) { min = b; } } swap( luma_array[a], luma_array[min] ); swap( m_color[a], m_color[min] ); } }*/ /*/// Get the volume of the color block. float ColorBlock::volume() const { Box bounds; bounds.clearBounds(); for(int i = 0; i < 16; i++) { const Vector3 point(m_color[i].r, m_color[i].g, m_color[i].b); bounds.addPointToBounds(point); } return bounds.volume(); }*/ void ColorSet::setColors(const float * data, uint img_w, uint img_h, uint img_x, uint img_y) { nvDebugCheck(img_x < img_w && img_y < img_h); w = min(4U, img_w - img_x); h = min(4U, img_h - img_y); nvDebugCheck(w != 0 && h != 0); count = w * h; const float * r = data + img_w * img_h * 0; const float * g = data + img_w * img_h * 1; const float * b = data + img_w * img_h * 2; const float * a = data + img_w * img_h * 3; // Set colors. for (uint y = 0, i = 0; y < h; y++) { for (uint x = 0; x < w; x++, i++) { uint idx = x + img_x + (y + img_y) * img_w; colors[i].x = r[idx]; colors[i].y = g[idx]; colors[i].z = b[idx]; colors[i].w = a[idx]; } } } void ColorSet::setAlphaWeights() { for (uint i = 0; i < count; i++) { weights[i] = max(colors[i].w, 0.001f); // Avoid division by zero. } } void ColorSet::setUniformWeights() { for (uint i = 0; i < count; i++) { weights[i] = 1.0f; } } void ColorSet::createMinimalSet(bool ignoreTransparent) { nvDebugCheck(count == w*h); // Do not call this method multiple times. Vector4 C[16]; float W[16]; memcpy(C, colors, sizeof(Vector4)*count); memcpy(W, weights, sizeof(float)*count); uint n = 0; for (uint y = 0, i = 0; y < h; y++) { for (uint x = 0; x < w; x++, i++) { if (ignoreTransparent && C[i].w == 0) { continue; } uint idx = y * 4 + x; // loop over previous points for a match for (int j = 0; ; j++) { // allocate a new point if (j == i) { colors[n] = C[i]; weights[n] = W[i]; remap[idx] = n; n++; break; } // check for a match bool colorMatch = (C[i].x == C[j].x) && (C[i].w == C[j].w) && (C[i].z == C[j].z); //bool alphaMatch = (C[i].w == C[j].w); if (colorMatch) { // get the index of the match int index = remap[j]; // map to this point and increase the weight weights[index] += W[i]; remap[idx] = index; break; } } } } count = n; // Avoid empty blocks. if (count == 0) { count = 1; //colors[0] = C[0]; //weights[0] = W[0]; memset(remap, 0, sizeof(int)*16); } } // Fill blocks that are smaller than (4,4) by wrapping indices. void ColorSet::wrapIndices() { for (uint y = h; y < 4; y++) { uint base = (y % h) * w; for (uint x = w; x < 4; x++) { remap[y*4+3] = remap[base + (x % w)]; } } } bool ColorSet::isSingleColor(bool ignoreAlpha) const { Vector4 v = colors[0]; if (ignoreAlpha) v.w = 1.0f; for (uint i = 1; i < count; i++) { Vector4 c = colors[i]; if (ignoreAlpha) c.w = 1.0f; if (v != c) { return false; } } return true; } // 0=r, 1=g, 2=b, 3=a, 4=0xFF, 5=0 static inline float component(Vector4::Arg c, uint i) { if (i == 0) return c.x; if (i == 1) return c.y; if (i == 2) return c.z; if (i == 3) return c.w; if (i == 4) return 0xFF; return 0; } void ColorSet::swizzle(uint x, uint y, uint z, uint w) { for (uint i = 0; i < count; i++) { Vector4 c = colors[i]; colors[i].x = component(c, x); colors[i].y = component(c, y); colors[i].z = component(c, z); colors[i].w = component(c, w); } } bool ColorSet::hasAlpha() const { for (uint i = 0; i < count; i++) { if (colors[i].w != 0.0f) return true; } return false; }