// MIT license see full LICENSE text at end of file #include "ClusterFit.h" #include "nvmath/Vector.inl" #include // FLT_MAX using namespace nv; static Vector3 computeCentroid(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric) { Vector3 centroid(0.0f); float total = 0.0f; for (int i = 0; i < n; i++) { total += weights[i]; centroid += weights[i] * points[i]; } centroid *= (1.0f / total); return centroid; } static Vector3 computeCovariance(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric, float *__restrict covariance) { // compute the centroid Vector3 centroid = computeCentroid(n, points, weights, metric); // compute covariance matrix for (int i = 0; i < 6; i++) { covariance[i] = 0.0f; } for (int i = 0; i < n; i++) { Vector3 a = (points[i] - centroid) * metric; // @@ I think weight should be squared, but that seems to increase the error slightly. Vector3 b = weights[i] * a; covariance[0] += a.x * b.x; covariance[1] += a.x * b.y; covariance[2] += a.x * b.z; covariance[3] += a.y * b.y; covariance[4] += a.y * b.z; covariance[5] += a.z * b.z; } return centroid; } // @@ We should be able to do something cheaper... static Vector3 estimatePrincipalComponent(const float * __restrict matrix) { const Vector3 row0(matrix[0], matrix[1], matrix[2]); const Vector3 row1(matrix[1], matrix[3], matrix[4]); const Vector3 row2(matrix[2], matrix[4], matrix[5]); float r0 = lengthSquared(row0); float r1 = lengthSquared(row1); float r2 = lengthSquared(row2); if (r0 > r1 && r0 > r2) return row0; if (r1 > r2) return row1; return row2; } static inline Vector3 firstEigenVector_PowerMethod(const float *__restrict matrix) { if (matrix[0] == 0 && matrix[3] == 0 && matrix[5] == 0) { return Vector3(0.0f); } Vector3 v = estimatePrincipalComponent(matrix); const int NUM = 8; for (int i = 0; i < NUM; i++) { float x = v.x * matrix[0] + v.y * matrix[1] + v.z * matrix[2]; float y = v.x * matrix[1] + v.y * matrix[3] + v.z * matrix[4]; float z = v.x * matrix[2] + v.y * matrix[4] + v.z * matrix[5]; float norm = max(max(x, y), z); v = Vector3(x, y, z) * (1.0f / norm); } return v; } static Vector3 computePrincipalComponent_PowerMethod(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric) { float matrix[6]; computeCovariance(n, points, weights, metric, matrix); return firstEigenVector_PowerMethod(matrix); } void ClusterFit::setColorSet(const Vector3 * colors, const float * weights, int count) { // initialise the best error #if NVTT_USE_SIMD m_besterror = SimdVector( FLT_MAX ); Vector3 metric = m_metric.toVector3(); #else m_besterror = FLT_MAX; Vector3 metric = m_metric; #endif m_count = count; // I've tried using a lower quality approximation of the principal direction, but the best fit line seems to produce best results. Vector3 principal = computePrincipalComponent_PowerMethod(count, colors, weights, metric); // build the list of values int order[16]; float dps[16]; for (uint i = 0; i < m_count; ++i) { dps[i] = dot(colors[i], principal); order[i] = i; } // stable sort for (uint i = 0; i < m_count; ++i) { for (uint j = i; j > 0 && dps[j] < dps[j - 1]; --j) { swap(dps[j], dps[j - 1]); swap(order[j], order[j - 1]); } } // weight all the points #if NVTT_USE_SIMD m_xxsum = SimdVector( 0.0f ); m_xsum = SimdVector( 0.0f ); #else m_xxsum = Vector3(0.0f); m_xsum = Vector3(0.0f); m_wsum = 0.0f; #endif for (uint i = 0; i < m_count; ++i) { int p = order[i]; #if NVTT_USE_SIMD NV_ALIGN_16 Vector4 tmp(colors[p], 1); m_weighted[i] = SimdVector(tmp.component) * SimdVector(weights[p]); m_xxsum += m_weighted[i] * m_weighted[i]; m_xsum += m_weighted[i]; #else m_weighted[i] = colors[p] * weights[p]; m_xxsum += m_weighted[i] * m_weighted[i]; m_xsum += m_weighted[i]; m_weights[i] = weights[p]; m_wsum += m_weights[i]; #endif } } void ClusterFit::setColorWeights(Vector4::Arg w) { #if NVTT_USE_SIMD NV_ALIGN_16 Vector4 tmp(w.xyz(), 1); m_metric = SimdVector(tmp.component); #else m_metric = w.xyz(); #endif m_metricSqr = m_metric * m_metric; } float ClusterFit::bestError() const { #if NVTT_USE_SIMD SimdVector x = m_xxsum * m_metricSqr; SimdVector error = m_besterror + x.splatX() + x.splatY() + x.splatZ(); return error.toFloat(); #else return m_besterror + dot(m_xxsum, m_metricSqr); #endif } #if NVTT_USE_SIMD bool ClusterFit::compress3( Vector3 * start, Vector3 * end ) { const int count = m_count; const SimdVector one = SimdVector(1.0f); const SimdVector zero = SimdVector(0.0f); const SimdVector half(0.5f, 0.5f, 0.5f, 0.25f); const SimdVector two = SimdVector(2.0); const SimdVector grid( 31.0f, 63.0f, 31.0f, 0.0f ); const SimdVector gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); // declare variables SimdVector beststart = SimdVector( 0.0f ); SimdVector bestend = SimdVector( 0.0f ); SimdVector besterror = SimdVector( FLT_MAX ); SimdVector x0 = zero; // check all possible clusters for this total order for (int c0 = 0; c0 <= count; c0++) { SimdVector x1 = zero; for (int c1 = 0; c1 <= count-c0; c1++) { const SimdVector x2 = m_xsum - x1 - x0; //Vector3 alphax_sum = x0 + x1 * 0.5f; //float alpha2_sum = w0 + w1 * 0.25f; const SimdVector alphax_sum = multiplyAdd(x1, half, x0); // alphax_sum, alpha2_sum const SimdVector alpha2_sum = alphax_sum.splatW(); //const Vector3 betax_sum = x2 + x1 * 0.5f; //const float beta2_sum = w2 + w1 * 0.25f; const SimdVector betax_sum = multiplyAdd(x1, half, x2); // betax_sum, beta2_sum const SimdVector beta2_sum = betax_sum.splatW(); //const float alphabeta_sum = w1 * 0.25f; const SimdVector alphabeta_sum = (x1 * half).splatW(); // alphabeta_sum // const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); const SimdVector factor = reciprocal( negativeMultiplySubtract(alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum) ); SimdVector a = negativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor; SimdVector b = negativeMultiplySubtract(alphax_sum, alphabeta_sum, betax_sum*alpha2_sum) * factor; // clamp to the grid a = min( one, max( zero, a ) ); b = min( one, max( zero, b ) ); a = truncate( multiplyAdd( grid, a, half ) ) * gridrcp; b = truncate( multiplyAdd( grid, b, half ) ) * gridrcp; // compute the error (we skip the constant xxsum) SimdVector e1 = multiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); SimdVector e2 = negativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); SimdVector e3 = negativeMultiplySubtract( b, betax_sum, e2 ); SimdVector e4 = multiplyAdd( two, e3, e1 ); // apply the metric to the error term SimdVector e5 = e4 * m_metricSqr; SimdVector error = e5.splatX() + e5.splatY() + e5.splatZ(); // keep the solution if it wins if (compareAnyLessThan(error, besterror)) { besterror = error; beststart = a; bestend = b; } x1 += m_weighted[c0+c1]; } x0 += m_weighted[c0]; } // save the block if necessary if (compareAnyLessThan(besterror, m_besterror)) { *start = beststart.toVector3(); *end = bestend.toVector3(); // save the error m_besterror = besterror; return true; } return false; } bool ClusterFit::compress4( Vector3 * start, Vector3 * end ) { const int count = m_count; const SimdVector one = SimdVector(1.0f); const SimdVector zero = SimdVector(0.0f); const SimdVector half = SimdVector(0.5f); const SimdVector two = SimdVector(2.0); const SimdVector onethird( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f ); const SimdVector twothirds( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f ); const SimdVector twonineths = SimdVector( 2.0f/9.0f ); const SimdVector grid( 31.0f, 63.0f, 31.0f, 0.0f ); const SimdVector gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f ); // declare variables SimdVector beststart = SimdVector( 0.0f ); SimdVector bestend = SimdVector( 0.0f ); SimdVector besterror = SimdVector( FLT_MAX ); SimdVector x0 = zero; // check all possible clusters for this total order for (int c0 = 0; c0 <= count; c0++) { SimdVector x1 = zero; for (int c1 = 0; c1 <= count-c0; c1++) { SimdVector x2 = zero; for (int c2 = 0; c2 <= count-c0-c1; c2++) { const SimdVector x3 = m_xsum - x2 - x1 - x0; //const Vector3 alphax_sum = x0 + x1 * (2.0f / 3.0f) + x2 * (1.0f / 3.0f); //const float alpha2_sum = w0 + w1 * (4.0f/9.0f) + w2 * (1.0f/9.0f); const SimdVector alphax_sum = multiplyAdd(x2, onethird, multiplyAdd(x1, twothirds, x0)); // alphax_sum, alpha2_sum const SimdVector alpha2_sum = alphax_sum.splatW(); //const Vector3 betax_sum = x3 + x2 * (2.0f / 3.0f) + x1 * (1.0f / 3.0f); //const float beta2_sum = w3 + w2 * (4.0f/9.0f) + w1 * (1.0f/9.0f); const SimdVector betax_sum = multiplyAdd(x2, twothirds, multiplyAdd(x1, onethird, x3)); // betax_sum, beta2_sum const SimdVector beta2_sum = betax_sum.splatW(); //const float alphabeta_sum = (w1 + w2) * (2.0f/9.0f); const SimdVector alphabeta_sum = twonineths*( x1 + x2 ).splatW(); // alphabeta_sum //const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); const SimdVector factor = reciprocal( negativeMultiplySubtract(alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum) ); SimdVector a = negativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor; SimdVector b = negativeMultiplySubtract(alphax_sum, alphabeta_sum, betax_sum*alpha2_sum) * factor; // clamp to the grid a = min( one, max( zero, a ) ); b = min( one, max( zero, b ) ); a = truncate( multiplyAdd( grid, a, half ) ) * gridrcp; b = truncate( multiplyAdd( grid, b, half ) ) * gridrcp; // compute the error (we skip the constant xxsum) // error = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum ); SimdVector e1 = multiplyAdd( a*a, alpha2_sum, b*b*beta2_sum ); SimdVector e2 = negativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum ); SimdVector e3 = negativeMultiplySubtract( b, betax_sum, e2 ); SimdVector e4 = multiplyAdd( two, e3, e1 ); // apply the metric to the error term SimdVector e5 = e4 * m_metricSqr; SimdVector error = e5.splatX() + e5.splatY() + e5.splatZ(); // keep the solution if it wins if (compareAnyLessThan(error, besterror)) { besterror = error; beststart = a; bestend = b; } x2 += m_weighted[c0+c1+c2]; } x1 += m_weighted[c0+c1]; } x0 += m_weighted[c0]; } // save the block if necessary if (compareAnyLessThan(besterror, m_besterror)) { *start = beststart.toVector3(); *end = bestend.toVector3(); // save the error m_besterror = besterror; return true; } return false; } #else static const float midpoints5[32] = { 0.015686f, 0.047059f, 0.078431f, 0.111765f, 0.145098f, 0.176471f, 0.207843f, 0.241176f, 0.274510f, 0.305882f, 0.337255f, 0.370588f, 0.403922f, 0.435294f, 0.466667f, 0.5f, 0.533333f, 0.564706f, 0.596078f, 0.629412f, 0.662745f, 0.694118f, 0.725490f, 0.758824f, 0.792157f, 0.823529f, 0.854902f, 0.888235f, 0.921569f, 0.952941f, 0.984314f, 1.0f }; static const float midpoints6[64] = { 0.007843f, 0.023529f, 0.039216f, 0.054902f, 0.070588f, 0.086275f, 0.101961f, 0.117647f, 0.133333f, 0.149020f, 0.164706f, 0.180392f, 0.196078f, 0.211765f, 0.227451f, 0.245098f, 0.262745f, 0.278431f, 0.294118f, 0.309804f, 0.325490f, 0.341176f, 0.356863f, 0.372549f, 0.388235f, 0.403922f, 0.419608f, 0.435294f, 0.450980f, 0.466667f, 0.482353f, 0.500000f, 0.517647f, 0.533333f, 0.549020f, 0.564706f, 0.580392f, 0.596078f, 0.611765f, 0.627451f, 0.643137f, 0.658824f, 0.674510f, 0.690196f, 0.705882f, 0.721569f, 0.737255f, 0.754902f, 0.772549f, 0.788235f, 0.803922f, 0.819608f, 0.835294f, 0.850980f, 0.866667f, 0.882353f, 0.898039f, 0.913725f, 0.929412f, 0.945098f, 0.960784f, 0.976471f, 0.992157f, 1.0f }; // This is the ideal way to round, but it's too expensive to do this in the inner loop. inline Vector3 round565(const Vector3 & v) { const Vector3 grid(31.0f, 63.0f, 31.0f); const Vector3 gridrcp(1.0f / 31.0f, 1.0f / 63.0f, 1.0f / 31.0f); Vector3 q = floor(grid * v); q.x += (v.x > midpoints5[int(q.x)]); q.y += (v.y > midpoints6[int(q.y)]); q.z += (v.z > midpoints5[int(q.z)]); q *= gridrcp; return q; } bool ClusterFit::compress3(Vector3 * start, Vector3 * end) { const uint count = m_count; const Vector3 grid( 31.0f, 63.0f, 31.0f ); const Vector3 gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f ); // declare variables Vector3 beststart( 0.0f ); Vector3 bestend( 0.0f ); float besterror = FLT_MAX; Vector3 x0(0.0f); float w0 = 0.0f; int b0 = 0, b1 = 0; // check all possible clusters for this total order for (uint c0 = 0; c0 <= count; c0++) { Vector3 x1(0.0f); float w1 = 0.0f; for (uint c1 = 0; c1 <= count-c0; c1++) { float w2 = m_wsum - w0 - w1; // These factors could be entirely precomputed. float const alpha2_sum = w0 + w1 * 0.25f; float const beta2_sum = w2 + w1 * 0.25f; float const alphabeta_sum = w1 * 0.25f; float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); Vector3 const alphax_sum = x0 + x1 * 0.5f; Vector3 const betax_sum = m_xsum - alphax_sum; Vector3 a = (alphax_sum*beta2_sum - betax_sum*alphabeta_sum) * factor; Vector3 b = (betax_sum*alpha2_sum - alphax_sum*alphabeta_sum) * factor; // clamp to the grid a = clamp(a, 0, 1); b = clamp(b, 0, 1); #if 1 a = floor(grid * a + 0.5f) * gridrcp; b = floor(grid * b + 0.5f) * gridrcp; #else a = round565(a); b = round565(b); #endif // compute the error Vector3 e1 = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum ); // apply the metric to the error term float error = dot(e1, m_metricSqr); // keep the solution if it wins if (error < besterror) { besterror = error; beststart = a; bestend = b; b0 = c0; b1 = c1; } x1 += m_weighted[c0+c1]; w1 += m_weights[c0+c1]; } x0 += m_weighted[c0]; w0 += m_weights[c0]; } // save the block if necessary if (besterror < m_besterror) { *start = beststart; *end = bestend; // save the error m_besterror = besterror; return true; } return false; } bool ClusterFit::compress4(Vector3 * start, Vector3 * end) { const uint count = m_count; const Vector3 grid( 31.0f, 63.0f, 31.0f ); const Vector3 gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f ); // declare variables Vector3 beststart( 0.0f ); Vector3 bestend( 0.0f ); float besterror = FLT_MAX; Vector3 x0(0.0f); float w0 = 0.0f; int b0 = 0, b1 = 0, b2 = 0; // check all possible clusters for this total order for (uint c0 = 0; c0 <= count; c0++) { Vector3 x1(0.0f); float w1 = 0.0f; for (uint c1 = 0; c1 <= count-c0; c1++) { Vector3 x2(0.0f); float w2 = 0.0f; for (uint c2 = 0; c2 <= count-c0-c1; c2++) { float w3 = m_wsum - w0 - w1 - w2; float const alpha2_sum = w0 + w1 * (4.0f/9.0f) + w2 * (1.0f/9.0f); float const beta2_sum = w3 + w2 * (4.0f/9.0f) + w1 * (1.0f/9.0f); float const alphabeta_sum = (w1 + w2) * (2.0f/9.0f); float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum); Vector3 const alphax_sum = x0 + x1 * (2.0f / 3.0f) + x2 * (1.0f / 3.0f); Vector3 const betax_sum = m_xsum - alphax_sum; Vector3 a = ( alphax_sum*beta2_sum - betax_sum*alphabeta_sum )*factor; Vector3 b = ( betax_sum*alpha2_sum - alphax_sum*alphabeta_sum )*factor; // clamp to the grid a = clamp(a, 0, 1); b = clamp(b, 0, 1); #if 1 a = floor(a * grid + 0.5f) * gridrcp; b = floor(b * grid + 0.5f) * gridrcp; #else a = round565(a); b = round565(b); #endif // @@ It would be much more accurate to evaluate the error exactly. // compute the error Vector3 e1 = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum ); // apply the metric to the error term float error = dot( e1, m_metricSqr ); // keep the solution if it wins if (error < besterror) { besterror = error; beststart = a; bestend = b; b0 = c0; b1 = c1; b2 = c2; } x2 += m_weighted[c0+c1+c2]; w2 += m_weights[c0+c1+c2]; } x1 += m_weighted[c0+c1]; w1 += m_weights[c0+c1]; } x0 += m_weighted[c0]; w0 += m_weights[c0]; } // save the block if necessary if (besterror < m_besterror) { *start = beststart; *end = bestend; // save the error m_besterror = besterror; return true; } return false; } #endif // NVTT_USE_SIMD // Copyright (c) 2006-2020 Ignacio Castano icastano@nvidia.com // Copyright (c) 2006 Simon Brown si@sjbrown.co.uk // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY // CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE // SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.