You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvtt/cuda/CompressKernel.cu

1120 lines
30 KiB
Plaintext

// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "CudaMath.h"
#include "../SingleColorLookup.h"
#define NUM_THREADS 64 // Number of threads per block.
#if __DEVICE_EMULATION__
#define __debugsync() __syncthreads()
#else
#define __debugsync()
#endif
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned int uint;
template <class T>
__device__ inline void swap(T & a, T & b)
{
T tmp = a;
a = b;
b = tmp;
}
__constant__ float3 kColorMetric = { 1.0f, 1.0f, 1.0f };
__constant__ float3 kColorMetricSqr = { 1.0f, 1.0f, 1.0f };
////////////////////////////////////////////////////////////////////////////////
// Sort colors
////////////////////////////////////////////////////////////////////////////////
__device__ void sortColors(const float * values, int * cmp)
{
int tid = threadIdx.x;
#if 1
cmp[tid] = (values[0] < values[tid]);
cmp[tid] += (values[1] < values[tid]);
cmp[tid] += (values[2] < values[tid]);
cmp[tid] += (values[3] < values[tid]);
cmp[tid] += (values[4] < values[tid]);
cmp[tid] += (values[5] < values[tid]);
cmp[tid] += (values[6] < values[tid]);
cmp[tid] += (values[7] < values[tid]);
cmp[tid] += (values[8] < values[tid]);
cmp[tid] += (values[9] < values[tid]);
cmp[tid] += (values[10] < values[tid]);
cmp[tid] += (values[11] < values[tid]);
cmp[tid] += (values[12] < values[tid]);
cmp[tid] += (values[13] < values[tid]);
cmp[tid] += (values[14] < values[tid]);
cmp[tid] += (values[15] < values[tid]);
// Resolve elements with the same index.
if (tid > 0 && cmp[tid] == cmp[0]) ++cmp[tid];
if (tid > 1 && cmp[tid] == cmp[1]) ++cmp[tid];
if (tid > 2 && cmp[tid] == cmp[2]) ++cmp[tid];
if (tid > 3 && cmp[tid] == cmp[3]) ++cmp[tid];
if (tid > 4 && cmp[tid] == cmp[4]) ++cmp[tid];
if (tid > 5 && cmp[tid] == cmp[5]) ++cmp[tid];
if (tid > 6 && cmp[tid] == cmp[6]) ++cmp[tid];
if (tid > 7 && cmp[tid] == cmp[7]) ++cmp[tid];
if (tid > 8 && cmp[tid] == cmp[8]) ++cmp[tid];
if (tid > 9 && cmp[tid] == cmp[9]) ++cmp[tid];
if (tid > 10 && cmp[tid] == cmp[10]) ++cmp[tid];
if (tid > 11 && cmp[tid] == cmp[11]) ++cmp[tid];
if (tid > 12 && cmp[tid] == cmp[12]) ++cmp[tid];
if (tid > 13 && cmp[tid] == cmp[13]) ++cmp[tid];
if (tid > 14 && cmp[tid] == cmp[14]) ++cmp[tid];
#else
cmp[tid] = 0;
#pragma unroll
for (int i = 0; i < 16; i++)
{
cmp[tid] += (values[i] < values[tid]);
}
// Resolve elements with the same index.
#pragma unroll
for (int i = 0; i < 15; i++)
{
if (tid > 0 && cmp[tid] == cmp[i]) ++cmp[tid];
}
#endif
}
////////////////////////////////////////////////////////////////////////////////
// Load color block to shared mem
////////////////////////////////////////////////////////////////////////////////
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
__shared__ float dps[16];
if (idx < 16)
{
// Read color and copy to shared mem.
uint c = image[(bid) * 16 + idx];
colors[idx].z = ((c >> 0) & 0xFF) * (1.0f / 255.0f);
colors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f);
colors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
// No need to synchronize, 16 < warp size.
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
// Sort colors along the best fit line.
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
dps[idx] = dot(colors[idx], axis);
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
sortColors(dps, xrefs);
float3 tmp = colors[idx];
colors[xrefs[idx]] = tmp;
}
}
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
__shared__ float3 rawColors[16];
__shared__ float dps[16];
if (idx < 16)
{
// Read color and copy to shared mem.
uint c = image[(bid) * 16 + idx];
rawColors[idx].z = ((c >> 0) & 0xFF) * (1.0f / 255.0f);
rawColors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f);
rawColors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
weights[idx] = (((c >> 24) & 0xFF) + 1) * (1.0f / 256.0f);
colors[idx] = rawColors[idx] * weights[idx];
// No need to synchronize, 16 < warp size.
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
// Sort colors along the best fit line.
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
dps[idx] = dot(rawColors[idx], axis);
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
sortColors(dps, xrefs);
float3 tmp = colors[idx];
colors[xrefs[idx]] = tmp;
float w = weights[idx];
weights[xrefs[idx]] = w;
}
}
////////////////////////////////////////////////////////////////////////////////
// Round color to RGB565 and expand
////////////////////////////////////////////////////////////////////////////////
inline __device__ float3 roundAndExpand565(float3 v, ushort * w)
{
v.x = rintf(__saturatef(v.x) * 31.0f);
v.y = rintf(__saturatef(v.y) * 63.0f);
v.z = rintf(__saturatef(v.z) * 31.0f);
*w = ((ushort)v.x << 11) | ((ushort)v.y << 5) | (ushort)v.z;
v.x *= 0.03227752766457f; // approximate integer bit expansion.
v.y *= 0.01583151765563f;
v.z *= 0.03227752766457f;
return v;
}
////////////////////////////////////////////////////////////////////////////////
// Evaluate permutations
////////////////////////////////////////////////////////////////////////////////
__device__ float evalPermutation4(const float3 * colors, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float alpha2_sum = 0.0f;
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
float3 betax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
float beta = (bits & 1);
if (bits & 2) beta = (1 + beta) / 3.0f;
float alpha = 1.0f - beta;
alpha2_sum += alpha * alpha;
beta2_sum += beta * beta;
alphabeta_sum += alpha * beta;
alphax_sum += alpha * colors[i];
betax_sum += beta * colors[i];
}
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return dot(e, kColorMetricSqr);
}
__device__ float evalPermutation3(const float3 * colors, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float alpha2_sum = 0.0f;
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
float3 betax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
float beta = (bits & 1);
if (bits & 2) beta = 0.5f;
float alpha = 1.0f - beta;
alpha2_sum += alpha * alpha;
beta2_sum += beta * beta;
alphabeta_sum += alpha * beta;
alphax_sum += alpha * colors[i];
betax_sum += beta * colors[i];
}
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return dot(e, kColorMetricSqr);
}
__constant__ const float alphaTable4[4] = { 9.0f, 0.0f, 6.0f, 3.0f };
__constant__ const float alphaTable3[4] = { 4.0f, 0.0f, 2.0f, 2.0f };
__constant__ const uint prods4[4] = { 0x090000,0x000900,0x040102,0x010402 };
__constant__ const uint prods3[4] = { 0x040000,0x000400,0x040101,0x010401 };
__device__ float evalPermutation4(const float3 * colors, float3 color_sum, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
uint akku = 0;
// Compute alpha & beta for this permutation.
#pragma unroll
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
alphax_sum += alphaTable4[bits & 3] * colors[i];
akku += prods4[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float(akku & 0xff);
float3 betax_sum = 9.0f * color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (1.0f / 9.0f) * dot(e, kColorMetricSqr);
}
__device__ float evalPermutation3(const float3 * colors, float3 color_sum, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
uint akku = 0;
// Compute alpha & beta for this permutation.
#pragma unroll
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
alphax_sum += alphaTable3[bits & 3] * colors[i];
akku += prods3[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float(akku & 0xff);
float3 betax_sum = 4.0f * color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (1.0f / 4.0f) * dot(e, kColorMetricSqr);
}
__device__ float evalPermutation4(const float3 * colors, const float * weights, float3 color_sum, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float alpha2_sum = 0.0f;
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
float beta = (bits & 1);
if (bits & 2) beta = (1 + beta) / 3.0f;
float alpha = 1.0f - beta;
alpha2_sum += alpha * alpha * weights[i];
beta2_sum += beta * beta * weights[i];
alphabeta_sum += alpha * beta * weights[i];
alphax_sum += alpha * colors[i];
}
float3 betax_sum = color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return dot(e, kColorMetricSqr);
}
/*
__device__ float evalPermutation3(const float3 * colors, const float * weights, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float alpha2_sum = 0.0f;
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
float beta = (bits & 1);
if (bits & 2) beta = 0.5f;
float alpha = 1.0f - beta;
alpha2_sum += alpha * alpha * weights[i];
beta2_sum += beta * beta * weights[i];
alphabeta_sum += alpha * beta * weights[i];
alphax_sum += alpha * colors[i];
}
float3 betax_sum = color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return dot(e, kColorMetricSqr);
}
*/
////////////////////////////////////////////////////////////////////////////////
// Evaluate all permutations
////////////////////////////////////////////////////////////////////////////////
__device__ void evalAllPermutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
float bestError = FLT_MAX;
__shared__ uint s_permutations[160];
for(int i = 0; i < 16; i++)
{
int pidx = idx + NUM_THREADS * i;
if (pidx >= 992) break;
ushort start, end;
uint permutation = permutations[pidx];
if (pidx < 160) s_permutations[pidx] = permutation;
float error = evalPermutation4(colors, colorSum, permutation, &start, &end);
if (error < bestError)
{
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
}
}
if (bestStart < bestEnd)
{
swap(bestEnd, bestStart);
bestPermutation ^= 0x55555555; // Flip indices.
}
for(int i = 0; i < 3; i++)
{
int pidx = idx + NUM_THREADS * i;
if (pidx >= 160) break;
ushort start, end;
uint permutation = s_permutations[pidx];
float error = evalPermutation3(colors, colorSum, permutation, &start, &end);
if (error < bestError)
{
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
if (bestStart > bestEnd)
{
swap(bestEnd, bestStart);
bestPermutation ^= (~bestPermutation >> 1) & 0x55555555; // Flip indices.
}
}
}
errors[idx] = bestError;
}
/*
__device__ void evalAllPermutations(const float3 * colors, const float * weights, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
float bestError = FLT_MAX;
__shared__ uint s_permutations[160];
for(int i = 0; i < 16; i++)
{
int pidx = idx + NUM_THREADS * i;
if (pidx >= 992) break;
ushort start, end;
uint permutation = permutations[pidx];
if (pidx < 160) s_permutations[pidx] = permutation;
float error = evalPermutation4(colors, weights, permutation, &start, &end);
if (error < bestError)
{
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
}
}
if (bestStart < bestEnd)
{
swap(bestEnd, bestStart);
bestPermutation ^= 0x55555555; // Flip indices.
}
for(int i = 0; i < 3; i++)
{
int pidx = idx + NUM_THREADS * i;
if (pidx >= 160) break;
ushort start, end;
uint permutation = s_permutations[pidx];
float error = evalPermutation3(colors, weights, permutation, &start, &end);
if (error < bestError)
{
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
if (bestStart > bestEnd)
{
swap(bestEnd, bestStart);
bestPermutation ^= (~bestPermutation >> 1) & 0x55555555; // Flip indices.
}
}
}
errors[idx] = bestError;
}
*/
__device__ void evalLevel4Permutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
float bestError = FLT_MAX;
for(int i = 0; i < 16; i++)
{
int pidx = idx + NUM_THREADS * i;
if (pidx >= 992) break;
ushort start, end;
uint permutation = permutations[pidx];
float error = evalPermutation4(colors, colorSum, permutation, &start, &end);
if (error < bestError)
{
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
}
}
if (bestStart < bestEnd)
{
swap(bestEnd, bestStart);
bestPermutation ^= 0x55555555; // Flip indices.
}
errors[idx] = bestError;
}
__device__ void evalLevel4Permutations(const float3 * colors, const float * weights, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
float bestError = FLT_MAX;
for(int i = 0; i < 16; i++)
{
int pidx = idx + NUM_THREADS * i;
if (pidx >= 992) break;
ushort start, end;
uint permutation = permutations[pidx];
float error = evalPermutation4(colors, weights, colorSum, permutation, &start, &end);
if (error < bestError)
{
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
}
}
if (bestStart < bestEnd)
{
swap(bestEnd, bestStart);
bestPermutation ^= 0x55555555; // Flip indices.
}
errors[idx] = bestError;
}
////////////////////////////////////////////////////////////////////////////////
// Find index with minimum error
////////////////////////////////////////////////////////////////////////////////
__device__ int findMinError(float * errors)
{
const int idx = threadIdx.x;
__shared__ int indices[NUM_THREADS];
indices[idx] = idx;
#if __DEVICE_EMULATION__
for(int d = NUM_THREADS/2; d > 0; d >>= 1)
{
__syncthreads();
if (idx < d)
{
float err0 = errors[idx];
float err1 = errors[idx + d];
if (err1 < err0) {
errors[idx] = err1;
indices[idx] = indices[idx + d];
}
}
}
#else
for(int d = NUM_THREADS/2; d > 32; d >>= 1)
{
__syncthreads();
if (idx < d)
{
float err0 = errors[idx];
float err1 = errors[idx + d];
if (err1 < err0) {
errors[idx] = err1;
indices[idx] = indices[idx + d];
}
}
}
__syncthreads();
// unroll last 6 iterations
if (idx < 32)
{
if (errors[idx + 32] < errors[idx]) {
errors[idx] = errors[idx + 32];
indices[idx] = indices[idx + 32];
}
if (errors[idx + 16] < errors[idx]) {
errors[idx] = errors[idx + 16];
indices[idx] = indices[idx + 16];
}
if (errors[idx + 8] < errors[idx]) {
errors[idx] = errors[idx + 8];
indices[idx] = indices[idx + 8];
}
if (errors[idx + 4] < errors[idx]) {
errors[idx] = errors[idx + 4];
indices[idx] = indices[idx + 4];
}
if (errors[idx + 2] < errors[idx]) {
errors[idx] = errors[idx + 2];
indices[idx] = indices[idx + 2];
}
if (errors[idx + 1] < errors[idx]) {
errors[idx] = errors[idx + 1];
indices[idx] = indices[idx + 1];
}
}
#endif
__syncthreads();
return indices[0];
}
////////////////////////////////////////////////////////////////////////////////
// Save DXT block
////////////////////////////////////////////////////////////////////////////////
__device__ void saveBlockDXT1(ushort start, ushort end, uint permutation, int xrefs[16], uint2 * result)
{
const int bid = blockIdx.x;
if (start == end)
{
permutation = 0;
}
// Reorder permutation.
uint indices = 0;
for(int i = 0; i < 16; i++)
{
int ref = xrefs[i];
indices |= ((permutation >> (2 * ref)) & 3) << (2 * i);
}
// Write endpoints.
result[bid].x = (end << 16) | start;
// Write palette indices.
result[bid].y = indices;
}
__device__ void saveSingleColorBlockDXT1(float3 color, uint2 * result)
{
const int bid = blockIdx.x;
int r = color.x * 255;
int g = color.y * 255;
int b = color.z * 255;
ushort color0 = (OMatch5[r][0] << 11) | (OMatch6[g][0] << 5) | OMatch5[b][0];
ushort color1 = (OMatch5[r][1] << 11) | (OMatch6[g][1] << 5) | OMatch5[b][1];
if (color0 < color1)
{
result[bid].x = (color0 << 16) | color1;
result[bid].y = 0xffffffff;
}
else
{
result[bid].x = (color1 << 16) | color0;
result[bid].y = 0xaaaaaaaa;
}
}
////////////////////////////////////////////////////////////////////////////////
// Compress color block
////////////////////////////////////////////////////////////////////////////////
__global__ void compressDXT1(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, xrefs, &sameColor);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalAllPermutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
__global__ void compressLevel4DXT1(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, xrefs, &sameColor);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalLevel4Permutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
__global__ void compressWeightedDXT1(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ float weights[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, weights, xrefs, &sameColor);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalLevel4Permutations(colors, weights, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
/*
__device__ float computeError(const float weights[16], uchar a0, uchar a1)
{
float palette[6];
palette[0] = (6.0f/7.0f * a0 + 1.0f/7.0f * a1);
palette[1] = (5.0f/7.0f * a0 + 2.0f/7.0f * a1);
palette[2] = (4.0f/7.0f * a0 + 3.0f/7.0f * a1);
palette[3] = (3.0f/7.0f * a0 + 4.0f/7.0f * a1);
palette[4] = (2.0f/7.0f * a0 + 5.0f/7.0f * a1);
palette[5] = (1.0f/7.0f * a0 + 6.0f/7.0f * a1);
float total = 0.0f;
for (uint i = 0; i < 16; i++)
{
float alpha = weights[i];
float error = a0 - alpha;
error = min(error, palette[0] - alpha);
error = min(error, palette[1] - alpha);
error = min(error, palette[2] - alpha);
error = min(error, palette[3] - alpha);
error = min(error, palette[4] - alpha);
error = min(error, palette[5] - alpha);
error = min(error, a1 - alpha);
total += error;
}
return total;
}
inline __device__ uchar roundAndExpand(float a)
{
return rintf(__saturatef(a) * 255.0f);
}
*/
/*
__device__ void optimizeAlpha8(const float alphas[16], uchar & a0, uchar & a1)
{
float alpha2_sum = 0;
float beta2_sum = 0;
float alphabeta_sum = 0;
float alphax_sum = 0;
float betax_sum = 0;
for (int i = 0; i < 16; i++)
{
uint idx = index[i];
float alpha;
if (idx < 2) alpha = 1.0f - idx;
else alpha = (8.0f - idx) / 7.0f;
float beta = 1 - alpha;
alpha2_sum += alpha * alpha;
beta2_sum += beta * beta;
alphabeta_sum += alpha * beta;
alphax_sum += alpha * alphas[i];
betax_sum += beta * alphas[i];
}
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
a0 = roundAndExpand8(a);
a1 = roundAndExpand8(b);
}
*/
/*
__device__ void compressAlpha(const float alphas[16], uint4 * result)
{
const int tid = threadIdx.x;
// Compress alpha block!
// Brute force approach:
// Try all color pairs: 256*256/2 = 32768, 32768/64 = 512 iterations?
// Determine min & max alphas
float A0, A1;
if (tid < 16)
{
__shared__ uint s_alphas[16];
s_alphas[tid] = alphas[tid];
s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^8]);
s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^4]);
s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^2]);
s_alphas[tid] = min(s_alphas[tid], s_alphas[tid^1]);
A0 = s_alphas[tid];
s_alphas[tid] = alphas[tid];
s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^8]);
s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^4]);
s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^2]);
s_alphas[tid] = max(s_alphas[tid], s_alphas[tid^1]);
A1 = s_alphas[tid];
}
__syncthreads();
int minIdx = 0;
if (A1 - A0 > 8)
{
float bestError = FLT_MAX;
// 64 threads -> 8x8
// divide [A1-A0] in partitions.
// test endpoints
for (int i = 0; i < 128; i++)
{
uint idx = (i * NUM_THREADS + tid) * 4;
uchar a0 = idx & 255;
uchar a1 = idx >> 8;
float error = computeError(alphas, a0, a1);
if (error < bestError)
{
bestError = error;
A0 = a0;
A1 = a1;
}
}
__shared__ float errors[NUM_THREADS];
errors[tid] = bestError;
// Minimize error.
minIdx = findMinError(errors);
}
if (minIdx == tid)
{
// @@ Compute indices.
// @@ Write alpha block.
}
}
__global__ void compressDXT5(const uint * permutations, const uint * image, uint4 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ float weights[16];
__shared__ int xrefs[16];
loadColorBlock(image, colors, sums, weights, xrefs);
__syncthreads();
compressAlpha(weights, result);
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalLevel4Permutations(colors, weights, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, (uint2 *)result);
}
}
*/
////////////////////////////////////////////////////////////////////////////////
// Setup kernel
////////////////////////////////////////////////////////////////////////////////
extern "C" void setupCompressKernel(const float weights[3])
{
// Set constants.
cudaMemcpyToSymbol(kColorMetric, weights, sizeof(float) * 3, 0);
float weightsSqr[3];
weightsSqr[0] = weights[0] * weights[0];
weightsSqr[1] = weights[1] * weights[1];
weightsSqr[2] = weights[2] * weights[2];
cudaMemcpyToSymbol(kColorMetricSqr, weightsSqr, sizeof(float) * 3, 0);
}
////////////////////////////////////////////////////////////////////////////////
// Launch kernel
////////////////////////////////////////////////////////////////////////////////
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressWeightedDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}