You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvimage/Filter.cpp

630 lines
16 KiB
C++

// This code is in the public domain -- castanyo@yahoo.es
/** @file Filter.cpp
* @brief Image filters.
*
* Jonathan Blow articles:
* http://number-none.com/product/Mipmapping, Part 1/index.html
* http://number-none.com/product/Mipmapping, Part 2/index.html
*
* References from Thacher Ulrich:
* See _Graphics Gems III_ "General Filtered Image Rescaling", Dale A. Schumacher
* http://tog.acm.org/GraphicsGems/gemsiii/filter.c
*
* References from Paul Heckbert:
* A.V. Oppenheim, R.W. Schafer, Digital Signal Processing, Prentice-Hall, 1975
*
* R.W. Hamming, Digital Filters, Prentice-Hall, Englewood Cliffs, NJ, 1983
*
* W.K. Pratt, Digital Image Processing, John Wiley and Sons, 1978
*
* H.S. Hou, H.C. Andrews, "Cubic Splines for Image Interpolation and
* Digital Filtering", IEEE Trans. Acoustics, Speech, and Signal Proc.,
* vol. ASSP-26, no. 6, Dec. 1978, pp. 508-517
*
* Paul Heckbert's zoom library.
* http://www.xmission.com/~legalize/zoom.html
*
* Reconstruction Filters in Computer Graphics
* http://www.mentallandscape.com/Papers_siggraph88.pdf
*
* More references:
* http://www.worldserver.com/turk/computergraphics/ResamplingFilters.pdf
* http://www.dspguide.com/ch16.htm
*/
#include "Filter.h"
#include "nvmath/nvmath.h"
#include "nvmath/Vector.h" // Vector4
#include "nvcore/Utils.h" // swap
#include <string.h> // memset
using namespace nv;
namespace
{
// Sinc function.
inline static float sincf(const float x)
{
if (fabs(x) < NV_EPSILON) {
//return 1.0;
return 1.0f + x*x*(-1.0f/6.0f + x*x*1.0f/120.0f);
}
else {
return sinf(x) / x;
}
}
// Bessel function of the first kind from Jon Blow's article.
// http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
// http://en.wikipedia.org/wiki/Bessel_function
inline static float bessel0(float x)
{
const float EPSILON_RATIO = 1e-6f;
float xh, sum, pow, ds;
int k;
xh = 0.5f * x;
sum = 1.0f;
pow = 1.0f;
k = 0;
ds = 1.0;
while (ds > sum * EPSILON_RATIO) {
++k;
pow = pow * (xh / k);
ds = pow * pow;
sum = sum + ds;
}
return sum;
}
/*// Alternative bessel function from Paul Heckbert.
static float _bessel0(float x)
{
const float EPSILON_RATIO = 1E-6;
float sum = 1.0f;
float y = x * x / 4.0f;
float t = y;
for(int i = 2; t > EPSILON_RATIO; i++) {
sum += t;
t *= y / float(i * i);
}
return sum;
}*/
} // namespace
Filter::Filter(float width) : m_width(width)
{
}
/*virtual*/ Filter::~Filter()
{
}
float Filter::sampleDelta(float x, float scale) const
{
return evaluate((x + 0.5f)* scale);
}
float Filter::sampleBox(float x, float scale, int samples) const
{
double sum = 0;
float isamples = 1.0f / float(samples);
for(int s = 0; s < samples; s++)
{
float p = (x + (float(s) + 0.5f) * isamples) * scale;
float value = evaluate(p);
//printf("%f: %.8f (%X)\n", p, value, *(uint32 *)&value);
sum += value;
}
return float(sum * isamples);
}
float Filter::sampleTriangle(float x, float scale, int samples) const
{
double sum = 0;
float isamples = 1.0f / float(samples);
for(int s = 0; s < samples; s++)
{
float offset = (2 * float(s) + 1.0f) * isamples;
float p = (x + offset - 0.5f) * scale;
float value = evaluate(p);
float weight = offset;
if (weight > 1.0f) weight = 2.0f - weight;
sum += value * weight;
}
return float(2 * sum * isamples);
}
BoxFilter::BoxFilter() : Filter(0.5f) {}
BoxFilter::BoxFilter(float width) : Filter(width) {}
float BoxFilter::evaluate(float x) const
{
if (fabsf(x) <= m_width) return 1.0f;
else return 0.0f;
}
TriangleFilter::TriangleFilter() : Filter(1.0f) {}
TriangleFilter::TriangleFilter(float width) : Filter(width) {}
float TriangleFilter::evaluate(float x) const
{
x = fabsf(x);
if( x < m_width ) return m_width - x;
return 0.0f;
}
QuadraticFilter::QuadraticFilter() : Filter(1.5f) {}
float QuadraticFilter::evaluate(float x) const
{
x = fabsf(x);
if( x < 0.5f ) return 0.75f - x * x;
if( x < 1.5f ) {
float t = x - 1.5f;
return 0.5f * t * t;
}
return 0.0f;
}
CubicFilter::CubicFilter() : Filter(1.0f) {}
float CubicFilter::evaluate(float x) const
{
// f(t) = 2|t|^3 - 3|t|^2 + 1, -1 <= t <= 1
x = fabsf(x);
if( x < 1.0f ) return((2.0f * x - 3.0f) * x * x + 1.0f);
return 0.0f;
}
BSplineFilter::BSplineFilter() : Filter(2.0f) {}
float BSplineFilter::evaluate(float x) const
{
x = fabsf(x);
if( x < 1.0f ) return (4.0f + x * x * (-6.0f + x * 3.0f)) / 6.0f;
if( x < 2.0f ) {
float t = 2.0f - x;
return t * t * t / 6.0f;
}
return 0.0f;
}
MitchellFilter::MitchellFilter() : Filter(2.0f) { setParameters(1.0f/3.0f, 1.0f/3.0f); }
float MitchellFilter::evaluate(float x) const
{
x = fabsf(x);
if( x < 1.0f ) return p0 + x * x * (p2 + x * p3);
if( x < 2.0f ) return q0 + x * (q1 + x * (q2 + x * q3));
return 0.0f;
}
void MitchellFilter::setParameters(float b, float c)
{
p0 = (6.0f - 2.0f * b) / 6.0f;
p2 = (-18.0f + 12.0f * b + 6.0f * c) / 6.0f;
p3 = (12.0f - 9.0f * b - 6.0f * c) / 6.0f;
q0 = (8.0f * b + 24.0f * c) / 6.0f;
q1 = (-12.0f * b - 48.0f * c) / 6.0f;
q2 = (6.0f * b + 30.0f * c) / 6.0f;
q3 = (-b - 6.0f * c) / 6.0f;
}
LanczosFilter::LanczosFilter() : Filter(3.0f) {}
float LanczosFilter::evaluate(float x) const
{
x = fabsf(x);
if( x < 3.0f ) return sincf(PI * x) * sincf(PI * x / 3.0f);
return 0.0f;
}
SincFilter::SincFilter(float w) : Filter(w) {}
float SincFilter::evaluate(float x) const
{
return sincf(PI * x);
}
KaiserFilter::KaiserFilter(float w) : Filter(w) { setParameters(/*alpha=*/4.0f, /*stretch=*/1.0f); }
float KaiserFilter::evaluate(float x) const
{
const float sinc_value = sincf(PI * x * stretch);
const float t = x / m_width;
if ((1 - t * t) >= 0) return sinc_value * bessel0(alpha * sqrtf(1 - t * t)) / bessel0(alpha);
else return 0;
}
void KaiserFilter::setParameters(float alpha, float stretch)
{
this->alpha = alpha;
this->stretch = stretch;
}
GaussianFilter::GaussianFilter(float w) : Filter(w) { setParameters(1); }
float GaussianFilter::evaluate(float x) const
{
// variance = sigma^2
return (1.0f / sqrtf(2 * PI * variance)) * expf(-x*x / (2 * variance));
}
void GaussianFilter::setParameters(float variance)
{
this->variance = variance;
}
Kernel1::Kernel1(const Filter & f, int iscale, int samples/*= 32*/)
{
nvDebugCheck(iscale > 1);
nvDebugCheck(samples > 0);
const float scale = 1.0f / iscale;
m_width = f.width() * iscale;
m_windowSize = (int)ceilf(2 * m_width);
m_data = new float[m_windowSize];
const float offset = float(m_windowSize) / 2;
float total = 0.0f;
for (int i = 0; i < m_windowSize; i++)
{
const float sample = f.sampleBox(i - offset, scale, samples);
m_data[i] = sample;
total += sample;
}
const float inv = 1.0f / total;
for (int i = 0; i < m_windowSize; i++)
{
m_data[i] *= inv;
}
}
Kernel1::~Kernel1()
{
delete [] m_data;
}
// Print the kernel for debugging purposes.
void Kernel1::debugPrint()
{
for (int i = 0; i < m_windowSize; i++) {
nvDebug("%d: %f\n", i, m_data[i]);
}
}
Kernel2::Kernel2(uint ws) : m_windowSize(ws)
{
m_data = new float[m_windowSize * m_windowSize];
}
Kernel2::Kernel2(uint ws, const float * data) : m_windowSize(ws)
{
m_data = new float[m_windowSize * m_windowSize];
memcpy(m_data, data, sizeof(float) * m_windowSize * m_windowSize);
}
Kernel2::Kernel2(const Kernel2 & k) : m_windowSize(k.m_windowSize)
{
m_data = new float[m_windowSize * m_windowSize];
for (uint i = 0; i < m_windowSize * m_windowSize; i++) {
m_data[i] = k.m_data[i];
}
}
Kernel2::~Kernel2()
{
delete [] m_data;
}
// Normalize the filter.
void Kernel2::normalize()
{
float total = 0.0f;
for(uint i = 0; i < m_windowSize*m_windowSize; i++) {
total += fabsf(m_data[i]);
}
float inv = 1.0f / total;
for(uint i = 0; i < m_windowSize*m_windowSize; i++) {
m_data[i] *= inv;
}
}
// Transpose the kernel.
void Kernel2::transpose()
{
for(uint i = 0; i < m_windowSize; i++) {
for(uint j = i+1; j < m_windowSize; j++) {
swap(m_data[i*m_windowSize + j], m_data[j*m_windowSize + i]);
}
}
}
// Init laplacian filter, usually used for sharpening.
void Kernel2::initLaplacian()
{
nvDebugCheck(m_windowSize == 3);
// m_data[0] = -1; m_data[1] = -1; m_data[2] = -1;
// m_data[3] = -1; m_data[4] = +8; m_data[5] = -1;
// m_data[6] = -1; m_data[7] = -1; m_data[8] = -1;
m_data[0] = +0; m_data[1] = -1; m_data[2] = +0;
m_data[3] = -1; m_data[4] = +4; m_data[5] = -1;
m_data[6] = +0; m_data[7] = -1; m_data[8] = +0;
// m_data[0] = +1; m_data[1] = -2; m_data[2] = +1;
// m_data[3] = -2; m_data[4] = +4; m_data[5] = -2;
// m_data[6] = +1; m_data[7] = -2; m_data[8] = +1;
}
// Init simple edge detection filter.
void Kernel2::initEdgeDetection()
{
nvCheck(m_windowSize == 3);
m_data[0] = 0; m_data[1] = 0; m_data[2] = 0;
m_data[3] =-1; m_data[4] = 0; m_data[5] = 1;
m_data[6] = 0; m_data[7] = 0; m_data[8] = 0;
}
// Init sobel filter.
void Kernel2::initSobel()
{
if (m_windowSize == 3)
{
m_data[0] = -1; m_data[1] = 0; m_data[2] = 1;
m_data[3] = -2; m_data[4] = 0; m_data[5] = 2;
m_data[6] = -1; m_data[7] = 0; m_data[8] = 1;
}
else if (m_windowSize == 5)
{
float elements[] = {
-1, -2, 0, 2, 1,
-2, -3, 0, 3, 2,
-3, -4, 0, 4, 3,
-2, -3, 0, 3, 2,
-1, -2, 0, 2, 1
};
for (int i = 0; i < 5*5; i++) {
m_data[i] = elements[i];
}
}
else if (m_windowSize == 7)
{
float elements[] = {
-1, -2, -3, 0, 3, 2, 1,
-2, -3, -4, 0, 4, 3, 2,
-3, -4, -5, 0, 5, 4, 3,
-4, -5, -6, 0, 6, 5, 4,
-3, -4, -5, 0, 5, 4, 3,
-2, -3, -4, 0, 4, 3, 2,
-1, -2, -3, 0, 3, 2, 1
};
for (int i = 0; i < 7*7; i++) {
m_data[i] = elements[i];
}
}
else if (m_windowSize == 9)
{
float elements[] = {
-1, -2, -3, -4, 0, 4, 3, 2, 1,
-2, -3, -4, -5, 0, 5, 4, 3, 2,
-3, -4, -5, -6, 0, 6, 5, 4, 3,
-4, -5, -6, -7, 0, 7, 6, 5, 4,
-5, -6, -7, -8, 0, 8, 7, 6, 5,
-4, -5, -6, -7, 0, 7, 6, 5, 4,
-3, -4, -5, -6, 0, 6, 5, 4, 3,
-2, -3, -4, -5, 0, 5, 4, 3, 2,
-1, -2, -3, -4, 0, 4, 3, 2, 1
};
for (int i = 0; i < 9*9; i++) {
m_data[i] = elements[i];
}
}
}
// Init prewitt filter.
void Kernel2::initPrewitt()
{
if (m_windowSize == 3)
{
m_data[0] = -1; m_data[1] = 0; m_data[2] = -1;
m_data[3] = -1; m_data[4] = 0; m_data[5] = -1;
m_data[6] = -1; m_data[7] = 0; m_data[8] = -1;
}
else if (m_windowSize == 5)
{
// @@ Is this correct?
float elements[] = {
-2, -1, 0, 1, 2,
-2, -1, 0, 1, 2,
-2, -1, 0, 1, 2,
-2, -1, 0, 1, 2,
-2, -1, 0, 1, 2
};
for (int i = 0; i < 5*5; i++) {
m_data[i] = elements[i];
}
}
}
// Init blended sobel filter.
void Kernel2::initBlendedSobel(const Vector4 & scale)
{
nvCheck(m_windowSize == 9);
{
const float elements[] = {
-1, -2, -3, -4, 0, 4, 3, 2, 1,
-2, -3, -4, -5, 0, 5, 4, 3, 2,
-3, -4, -5, -6, 0, 6, 5, 4, 3,
-4, -5, -6, -7, 0, 7, 6, 5, 4,
-5, -6, -7, -8, 0, 8, 7, 6, 5,
-4, -5, -6, -7, 0, 7, 6, 5, 4,
-3, -4, -5, -6, 0, 6, 5, 4, 3,
-2, -3, -4, -5, 0, 5, 4, 3, 2,
-1, -2, -3, -4, 0, 4, 3, 2, 1
};
for (int i = 0; i < 9*9; i++) {
m_data[i] = elements[i] * scale.w;
}
}
{
const float elements[] = {
-1, -2, -3, 0, 3, 2, 1,
-2, -3, -4, 0, 4, 3, 2,
-3, -4, -5, 0, 5, 4, 3,
-4, -5, -6, 0, 6, 5, 4,
-3, -4, -5, 0, 5, 4, 3,
-2, -3, -4, 0, 4, 3, 2,
-1, -2, -3, 0, 3, 2, 1,
};
for (int i = 0; i < 7; i++) {
for (int e = 0; e < 7; e++) {
m_data[(i + 1) * 9 + e + 1] += elements[i * 7 + e] * scale.z;
}
}
}
{
const float elements[] = {
-1, -2, 0, 2, 1,
-2, -3, 0, 3, 2,
-3, -4, 0, 4, 3,
-2, -3, 0, 3, 2,
-1, -2, 0, 2, 1
};
for (int i = 0; i < 5; i++) {
for (int e = 0; e < 5; e++) {
m_data[(i + 2) * 9 + e + 2] += elements[i * 5 + e] * scale.y;
}
}
}
{
const float elements[] = {
-1, 0, 1,
-2, 0, 2,
-1, 0, 1,
};
for (int i = 0; i < 3; i++) {
for (int e = 0; e < 3; e++) {
m_data[(i + 3) * 9 + e + 3] += elements[i * 3 + e] * scale.x;
}
}
}
}
PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength, int samples/*= 32*/)
{
nvDebugCheck(samples > 0);
float scale = float(dstLength) / float(srcLength);
const float iscale = 1.0f / scale;
if (scale > 1) {
// Upsampling.
samples = 1;
scale = 1;
}
m_length = dstLength;
m_width = f.width() * iscale;
m_windowSize = (int)ceilf(m_width * 2) + 1;
m_data = new float[m_windowSize * m_length];
memset(m_data, 0, sizeof(float) * m_windowSize * m_length);
for (uint i = 0; i < m_length; i++)
{
const float center = (0.5f + i) * iscale;
const int left = (int)floorf(center - m_width);
const int right = (int)ceilf(center + m_width);
nvDebugCheck(right - left <= m_windowSize);
float total = 0.0f;
for (int j = 0; j < m_windowSize; j++)
{
const float sample = f.sampleBox(left + j - center, scale, samples);
//printf("%f %X\n", sample, *(uint32 *)&sample);
m_data[i * m_windowSize + j] = sample;
total += sample;
}
// normalize weights.
for (int j = 0; j < m_windowSize; j++)
{
m_data[i * m_windowSize + j] /= total;
}
}
}
PolyphaseKernel::~PolyphaseKernel()
{
delete [] m_data;
}
// Print the kernel for debugging purposes.
void PolyphaseKernel::debugPrint() const
{
for (uint i = 0; i < m_length; i++)
{
nvDebug("%d: ", i);
for (int j = 0; j < m_windowSize; j++)
{
nvDebug(" %6.4f", m_data[i * m_windowSize + j]);
}
nvDebug("\n");
}
}