You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvmath/Eigen.cpp

534 lines
13 KiB
C++

// This code is in the public domain -- castanyo@yahoo.es
#include "Eigen.h"
using namespace nv;
static const float EPS = 0.00001f;
static const int MAX_ITER = 100;
static void semi_definite_symmetric_eigen(const float *mat, int n, float *eigen_vec, float *eigen_val);
// Use power method to find the first eigenvector.
// http://www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-eigenvalues-eigenvectors.html
Vector3 nv::firstEigenVector(float matrix[6])
{
// Number of iterations. @@ Use a variable number of iterations.
const int NUM = 8;
Vector3 v(1, 1, 1);
for(int i = 0; i < NUM; i++) {
float x = v.x() * matrix[0] + v.y() * matrix[1] + v.z() * matrix[2];
float y = v.x() * matrix[1] + v.y() * matrix[3] + v.z() * matrix[4];
float z = v.x() * matrix[2] + v.y() * matrix[4] + v.z() * matrix[5];
float norm = max(max(x, y), z);
float iv = 1.0f / norm;
if (norm == 0.0f) {
return Vector3(zero);
}
v.set(x*iv, y*iv, z*iv);
}
return v;
}
/// Solve eigen system.
void Eigen::solve() {
semi_definite_symmetric_eigen(matrix, N, eigen_vec, eigen_val);
}
/// Solve eigen system.
void Eigen3::solve() {
// @@ Use lengyel code that seems to be more optimized.
#if 1
float v[3*3];
semi_definite_symmetric_eigen(matrix, 3, v, eigen_val);
eigen_vec[0].set(v[0], v[1], v[2]);
eigen_vec[1].set(v[3], v[4], v[5]);
eigen_vec[2].set(v[6], v[7], v[8]);
#else
const int maxSweeps = 32;
const float epsilon = 1.0e-10f;
float m11 = matrix[0]; // m(0,0);
float m12 = matrix[1]; // m(0,1);
float m13 = matrix[2]; // m(0,2);
float m22 = matrix[3]; // m(1,1);
float m23 = matrix[4]; // m(1,2);
float m33 = matrix[5]; // m(2,2);
//r.SetIdentity();
eigen_vec[0].set(1, 0, 0);
eigen_vec[1].set(0, 1, 0);
eigen_vec[2].set(0, 0, 1);
for (int a = 0; a < maxSweeps; a++)
{
// Exit if off-diagonal entries small enough
if ((fabs(m12) < epsilon) && (fabs(m13) < epsilon) && (fabs(m23) < epsilon))
{
break;
}
// Annihilate (1,2) entry
if (m12 != 0.0f)
{
float u = (m22 - m11) * 0.5f / m12;
float u2 = u * u;
float u2p1 = u2 + 1.0f;
float t = (u2p1 != u2) ? ((u < 0.0f) ? -1.0f : 1.0f) * (sqrt(u2p1) - fabs(u)) : 0.5f / u;
float c = 1.0f / sqrt(t * t + 1.0f);
float s = c * t;
m11 -= t * m12;
m22 += t * m12;
m12 = 0.0f;
float temp = c * m13 - s * m23;
m23 = s * m13 + c * m23;
m13 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * eigen_vec[i].x - s * eigen_vec[i].y;
eigen_vec[i].y = s * eigen_vec[i].x + c * eigen_vec[i].y;
eigen_vec[i].x = temp;
}
}
// Annihilate (1,3) entry
if (m13 != 0.0f)
{
float u = (m33 - m11) * 0.5f / m13;
float u2 = u * u;
float u2p1 = u2 + 1.0f;
float t = (u2p1 != u2) ? ((u < 0.0f) ? -1.0f : 1.0f) * (sqrt(u2p1) - fabs(u)) : 0.5f / u;
float c = 1.0f / sqrt(t * t + 1.0f);
float s = c * t;
m11 -= t * m13;
m33 += t * m13;
m13 = 0.0f;
float temp = c * m12 - s * m23;
m23 = s * m12 + c * m23;
m12 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * eigen_vec[i].x - s * eigen_vec[i].z;
eigen_vec[i].z = s * eigen_vec[i].x + c * eigen_vec[i].z;
eigen_vec[i].x = temp;
}
}
// Annihilate (2,3) entry
if (m23 != 0.0f)
{
float u = (m33 - m22) * 0.5f / m23;
float u2 = u * u;
float u2p1 = u2 + 1.0f;
float t = (u2p1 != u2) ? ((u < 0.0f) ? -1.0f : 1.0f) * (sqrt(u2p1) - fabs(u)) : 0.5f / u;
float c = 1.0f / sqrt(t * t + 1.0f);
float s = c * t;
m22 -= t * m23;
m33 += t * m23;
m23 = 0.0f;
float temp = c * m12 - s * m13;
m13 = s * m12 + c * m13;
m12 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * eigen_vec[i].y - s * eigen_vec[i].z;
eigen_vec[i].z = s * eigen_vec[i].y + c * eigen_vec[i].z;
eigen_vec[i].y = temp;
}
}
}
eigen_val[0] = m11;
eigen_val[1] = m22;
eigen_val[2] = m33;
#endif
}
/*---------------------------------------------------------------------------
Functions
---------------------------------------------------------------------------*/
/** @@ I don't remember where did I get this function.
* computes the eigen values and eigen vectors
* of a semi definite symmetric matrix
*
* - matrix is stored in column symmetric storage, i.e.
* matrix = { m11, m12, m22, m13, m23, m33, m14, m24, m34, m44 ... }
* size = n(n+1)/2
*
* - eigen_vectors (return) = { v1, v2, v3, ..., vn } where vk = vk0, vk1, ..., vkn
* size = n^2, must be allocated by caller
*
* - eigen_values (return) are in decreasing order
* size = n, must be allocated by caller
*/
void semi_definite_symmetric_eigen(
const float *mat, int n, float *eigen_vec, float *eigen_val
) {
float *a,*v;
float a_norm,a_normEPS,thr,thr_nn;
int nb_iter = 0;
int jj;
int i,j,k,ij,ik,l,m,lm,mq,lq,ll,mm,imv,im,iq,ilv,il,nn;
int *index;
float a_ij,a_lm,a_ll,a_mm,a_im,a_il;
float a_lm_2;
float v_ilv,v_imv;
float x;
float sinx,sinx_2,cosx,cosx_2,sincos;
float delta;
// Number of entries in mat
nn = (n*(n+1))/2;
// Step 1: Copy mat to a
a = new float[nn];
for( ij=0; ij<nn; ij++ ) {
a[ij] = mat[ij];
}
// Ugly Fortran-porting trick: indices for a are between 1 and n
a--;
// Step 2 : Init diagonalization matrix as the unit matrix
v = new float[n*n];
ij = 0;
for( i=0; i<n; i++ ) {
for( j=0; j<n; j++ ) {
if( i==j ) {
v[ij++] = 1.0;
} else {
v[ij++] = 0.0;
}
}
}
// Ugly Fortran-porting trick: indices for v are between 1 and n
v--;
// Step 3 : compute the weight of the non diagonal terms
ij = 1 ;
a_norm = 0.0;
for( i=1; i<=n; i++ ) {
for( j=1; j<=i; j++ ) {
if( i!=j ) {
a_ij = a[ij];
a_norm += a_ij*a_ij;
}
ij++;
}
}
if( a_norm != 0.0 ) {
a_normEPS = a_norm*EPS;
thr = a_norm ;
// Step 4 : rotations
while( thr > a_normEPS && nb_iter < MAX_ITER ) {
nb_iter++;
thr_nn = thr / nn;
for( l=1 ; l< n; l++ ) {
for( m=l+1; m<=n; m++ ) {
// compute sinx and cosx
lq = (l*l-l)/2;
mq = (m*m-m)/2;
lm = l+mq;
a_lm = a[lm];
a_lm_2 = a_lm*a_lm;
if( a_lm_2 < thr_nn ) {
continue ;
}
ll = l+lq;
mm = m+mq;
a_ll = a[ll];
a_mm = a[mm];
delta = a_ll - a_mm;
if( delta == 0.0f ) {
x = - PI/4 ;
} else {
x = - atanf( (a_lm+a_lm) / delta ) / 2.0f ;
}
sinx = sinf(x);
cosx = cosf(x);
sinx_2 = sinx*sinx;
cosx_2 = cosx*cosx;
sincos = sinx*cosx;
// rotate L and M columns
ilv = n*(l-1);
imv = n*(m-1);
for( i=1; i<=n;i++ ) {
if( (i!=l) && (i!=m) ) {
iq = (i*i-i)/2;
if( i<m ) {
im = i + mq;
} else {
im = m + iq;
}
a_im = a[im];
if( i<l ) {
il = i + lq;
} else {
il = l + iq;
}
a_il = a[il];
a[il] = a_il*cosx - a_im*sinx;
a[im] = a_il*sinx + a_im*cosx;
}
ilv++;
imv++;
v_ilv = v[ilv];
v_imv = v[imv];
v[ilv] = cosx*v_ilv - sinx*v_imv;
v[imv] = sinx*v_ilv + cosx*v_imv;
}
x = a_lm*sincos; x+=x;
a[ll] = a_ll*cosx_2 + a_mm*sinx_2 - x;
a[mm] = a_ll*sinx_2 + a_mm*cosx_2 + x;
a[lm] = 0.0;
thr = fabs( thr - a_lm_2 );
}
}
}
}
// Step 5: index conversion and copy eigen values
// back from Fortran to C++
a++;
for( i=0; i<n; i++ ) {
k = i + (i*(i+1))/2;
eigen_val[i] = a[k];
}
delete[] a;
// Step 6: sort the eigen values and eigen vectors
index = new int[n];
for( i=0; i<n; i++ ) {
index[i] = i;
}
for( i=0; i<(n-1); i++ ) {
x = eigen_val[i];
k = i;
for( j=i+1; j<n; j++ ) {
if( x < eigen_val[j] ) {
k = j;
x = eigen_val[j];
}
}
eigen_val[k] = eigen_val[i];
eigen_val[i] = x;
jj = index[k];
index[k] = index[i];
index[i] = jj;
}
// Step 7: save the eigen vectors
v++; // back from Fortran to to C++
ij = 0;
for( k=0; k<n; k++ ) {
ik = index[k]*n;
for( i=0; i<n; i++ ) {
eigen_vec[ij++] = v[ik++];
}
}
delete[] v ;
delete[] index;
return;
}
//_________________________________________________________
// Eric Lengyel code:
// http://www.terathon.com/code/linear.html
#if 0
const float epsilon = 1.0e-10F;
const int maxSweeps = 32;
struct Matrix3D
{
float n[3][3];
float& operator()(int i, int j)
{
return (n[j][i]);
}
const float& operator()(int i, int j) const
{
return (n[j][i]);
}
void SetIdentity(void)
{
n[0][0] = n[1][1] = n[2][2] = 1.0F;
n[0][1] = n[0][2] = n[1][0] = n[1][2] = n[2][0] = n[2][1] = 0.0F;
}
};
void CalculateEigensystem(const Matrix3D& m, float *lambda, Matrix3D& r)
{
float m11 = m(0,0);
float m12 = m(0,1);
float m13 = m(0,2);
float m22 = m(1,1);
float m23 = m(1,2);
float m33 = m(2,2);
r.SetIdentity();
for (int a = 0; a < maxSweeps; a++)
{
// Exit if off-diagonal entries small enough
if ((Fabs(m12) < epsilon) && (Fabs(m13) < epsilon) &&
(Fabs(m23) < epsilon)) break;
// Annihilate (1,2) entry
if (m12 != 0.0F)
{
float u = (m22 - m11) * 0.5F / m12;
float u2 = u * u;
float u2p1 = u2 + 1.0F;
float t = (u2p1 != u2) ?
((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) : 0.5F / u;
float c = 1.0F / sqrt(t * t + 1.0F);
float s = c * t;
m11 -= t * m12;
m22 += t * m12;
m12 = 0.0F;
float temp = c * m13 - s * m23;
m23 = s * m13 + c * m23;
m13 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * r(i,0) - s * r(i,1);
r(i,1) = s * r(i,0) + c * r(i,1);
r(i,0) = temp;
}
}
// Annihilate (1,3) entry
if (m13 != 0.0F)
{
float u = (m33 - m11) * 0.5F / m13;
float u2 = u * u;
float u2p1 = u2 + 1.0F;
float t = (u2p1 != u2) ?
((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) : 0.5F / u;
float c = 1.0F / sqrt(t * t + 1.0F);
float s = c * t;
m11 -= t * m13;
m33 += t * m13;
m13 = 0.0F;
float temp = c * m12 - s * m23;
m23 = s * m12 + c * m23;
m12 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * r(i,0) - s * r(i,2);
r(i,2) = s * r(i,0) + c * r(i,2);
r(i,0) = temp;
}
}
// Annihilate (2,3) entry
if (m23 != 0.0F)
{
float u = (m33 - m22) * 0.5F / m23;
float u2 = u * u;
float u2p1 = u2 + 1.0F;
float t = (u2p1 != u2) ?
((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) : 0.5F / u;
float c = 1.0F / sqrt(t * t + 1.0F);
float s = c * t;
m22 -= t * m23;
m33 += t * m23;
m23 = 0.0F;
float temp = c * m12 - s * m13;
m13 = s * m12 + c * m13;
m12 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * r(i,1) - s * r(i,2);
r(i,2) = s * r(i,1) + c * r(i,2);
r(i,1) = temp;
}
}
}
lambda[0] = m11;
lambda[1] = m22;
lambda[2] = m33;
}
#endif