You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvcore/Radix.cpp

430 lines
18 KiB
C++

///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Contains source code from the article "Radix Sort Revisited".
* \file Radix.cpp
* \author Pierre Terdiman
* \date April, 4, 2000
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Revisited Radix Sort.
* This is my new radix routine:
* - it uses indices and doesn't recopy the values anymore, hence wasting less ram
* - it creates all the histograms in one run instead of four
* - it sorts words faster than dwords and bytes faster than words
* - it correctly sorts negative floating-point values by patching the offsets
* - it automatically takes advantage of temporal coherence
* - multiple keys support is a side effect of temporal coherence
* - it may be worth recoding in asm... (mainly to use FCOMI, FCMOV, etc) [it's probably memory-bound anyway]
*
* History:
* - 08.15.98: very first version
* - 04.04.00: recoded for the radix article
* - 12.xx.00: code lifting
* - 09.18.01: faster CHECK_PASS_VALIDITY thanks to Mark D. Shattuck (who provided other tips, not included here)
* - 10.11.01: added local ram support
* - 01.20.02: bugfix! In very particular cases the last pass was skipped in the float code-path, leading to incorrect sorting......
*
* \class RadixSort
* \author Pierre Terdiman
* \version 1.3
* \date August, 15, 1998
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
To do:
- add an offset parameter between two input values (avoid some data recopy sometimes)
- unroll ? asm ?
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Header
#include <nvcore/Radix.h>
#include <string.h> // memset
//using namespace IceCore;
#define DELETEARRAY(a) { delete [] a; a = NULL; }
#define CHECKALLOC(a)
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
RadixSort::RadixSort() : mCurrentSize(0), mPreviousSize(0), mIndices(NULL), mIndices2(NULL), mTotalCalls(0), mNbHits(0)
{
#ifndef RADIX_LOCAL_RAM
// Allocate input-independent ram
mHistogram = new uint32[256*4];
mOffset = new uint32[256];
#endif
// Initialize indices
resetIndices();
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Destructor.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
RadixSort::~RadixSort()
{
// Release everything
#ifndef RADIX_LOCAL_RAM
DELETEARRAY(mOffset);
DELETEARRAY(mHistogram);
#endif
DELETEARRAY(mIndices2);
DELETEARRAY(mIndices);
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Resizes the inner lists.
* \param nb [in] new size (number of dwords)
* \return true if success
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
bool RadixSort::resize(uint32 nb)
{
// Free previously used ram
DELETEARRAY(mIndices2);
DELETEARRAY(mIndices);
// Get some fresh one
mIndices = new uint32[nb]; CHECKALLOC(mIndices);
mIndices2 = new uint32[nb]; CHECKALLOC(mIndices2);
mCurrentSize = nb;
// Initialize indices so that the input buffer is read in sequential order
resetIndices();
return true;
}
#define CHECK_RESIZE(n) \
if(n!=mPreviousSize) \
{ \
if(n>mCurrentSize) resize(n); \
else resetIndices(); \
mPreviousSize = n; \
}
#define CREATE_HISTOGRAMS(type, buffer) \
/* Clear counters */ \
memset(mHistogram, 0, 256*4*sizeof(uint32)); \
\
/* Prepare for temporal coherence */ \
type PrevVal = (type)buffer[mIndices[0]]; \
bool AlreadySorted = true; /* Optimism... */ \
uint32* Indices = mIndices; \
\
/* Prepare to count */ \
uint8* p = (uint8*)input; \
uint8* pe = &p[nb*4]; \
uint32* h0= &mHistogram[0]; /* Histogram for first pass (LSB) */ \
uint32* h1= &mHistogram[256]; /* Histogram for second pass */ \
uint32* h2= &mHistogram[512]; /* Histogram for third pass */ \
uint32* h3= &mHistogram[768]; /* Histogram for last pass (MSB) */ \
\
while(p!=pe) \
{ \
/* Read input buffer in previous sorted order */ \
type Val = (type)buffer[*Indices++]; \
/* Check whether already sorted or not */ \
if(Val<PrevVal) { AlreadySorted = false; break; } /* Early out */ \
/* Update for next iteration */ \
PrevVal = Val; \
\
/* Create histograms */ \
h0[*p++]++; h1[*p++]++; h2[*p++]++; h3[*p++]++; \
} \
\
/* If all input values are already sorted, we just have to return and leave the */ \
/* previous list unchanged. That way the routine may take advantage of temporal */ \
/* coherence, for example when used to sort transparent faces. */ \
if(AlreadySorted) { mNbHits++; return *this; } \
\
/* Else there has been an early out and we must finish computing the histograms */ \
while(p!=pe) \
{ \
/* Create histograms without the previous overhead */ \
h0[*p++]++; h1[*p++]++; h2[*p++]++; h3[*p++]++; \
}
#define CHECK_PASS_VALIDITY(pass) \
/* Shortcut to current counters */ \
uint32* CurCount = &mHistogram[pass<<8]; \
\
/* Reset flag. The sorting pass is supposed to be performed. (default) */ \
bool PerformPass = true; \
\
/* Check pass validity */ \
\
/* If all values have the same byte, sorting is useless. */ \
/* It may happen when sorting bytes or words instead of dwords. */ \
/* This routine actually sorts words faster than dwords, and bytes */ \
/* faster than words. Standard running time (O(4*n))is reduced to O(2*n) */ \
/* for words and O(n) for bytes. Running time for floats depends on actual values... */ \
\
/* Get first byte */ \
uint8 UniqueVal = *(((uint8*)input)+pass); \
\
/* Check that byte's counter */ \
if(CurCount[UniqueVal]==nb) PerformPass=false;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Main sort routine.
* This one is for integer values. After the call, mIndices contains a list of indices in sorted order, i.e. in the order you may process your data.
* \param input [in] a list of integer values to sort
* \param nb [in] number of values to sort
* \param signedvalues [in] true to handle negative values, false if you know your input buffer only contains positive values
* \return Self-Reference
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
RadixSort& RadixSort::sort(const uint32* input, uint32 nb, bool signedvalues)
{
uint32 i, j;
// Checkings
if(!input || !nb) return *this;
// Stats
mTotalCalls++;
// Resize lists if needed
CHECK_RESIZE(nb);
#ifdef RADIX_LOCAL_RAM
// Allocate histograms & offsets on the stack
uint32 mHistogram[256*4];
uint32 mOffset[256];
#endif
// Create histograms (counters). Counters for all passes are created in one run.
// Pros: read input buffer once instead of four times
// Cons: mHistogram is 4Kb instead of 1Kb
// We must take care of signed/unsigned values for temporal coherence.... I just
// have 2 code paths even if just a single opcode changes. Self-modifying code, someone?
if(!signedvalues) { CREATE_HISTOGRAMS(uint32, input); }
else { CREATE_HISTOGRAMS(int32, input); }
// Compute #negative values involved if needed
uint32 NbNegativeValues = 0;
if(signedvalues)
{
// An efficient way to compute the number of negatives values we'll have to deal with is simply to sum the 128
// last values of the last histogram. Last histogram because that's the one for the Most Significant Byte,
// responsible for the sign. 128 last values because the 128 first ones are related to positive numbers.
uint32* h3= &mHistogram[768];
for( i=128;i<256;i++) NbNegativeValues += h3[i]; // 768 for last histogram, 128 for negative part
}
// Radix sort, j is the pass number (0=LSB, 3=MSB)
for( j=0;j<4;j++)
{
CHECK_PASS_VALIDITY(j);
// Sometimes the fourth (negative) pass is skipped because all numbers are negative and the MSB is 0xFF (for example). This is
// not a problem, numbers are correctly sorted anyway.
if(PerformPass)
{
// Should we care about negative values?
if(j!=3 || !signedvalues)
{
// Here we deal with positive values only
// Create offsets
mOffset[0] = 0;
for(i=1;i<256;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1];
}
else
{
// This is a special case to correctly handle negative integers. They're sorted in the right order but at the wrong place.
// Create biased offsets, in order for negative numbers to be sorted as well
mOffset[0] = NbNegativeValues; // First positive number takes place after the negative ones
for(i=1;i<128;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1]; // 1 to 128 for positive numbers
// Fixing the wrong place for negative values
mOffset[128] = 0;
for(i=129;i<256;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1];
}
// Perform Radix Sort
uint8* InputBytes = (uint8*)input;
uint32* Indices = mIndices;
uint32* IndicesEnd = &mIndices[nb];
InputBytes += j;
while(Indices!=IndicesEnd)
{
uint32 id = *Indices++;
mIndices2[mOffset[InputBytes[id<<2]]++] = id;
}
// Swap pointers for next pass. Valid indices - the most recent ones - are in mIndices after the swap.
uint32* Tmp = mIndices; mIndices = mIndices2; mIndices2 = Tmp;
}
}
return *this;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Main sort routine.
* This one is for floating-point values. After the call, mIndices contains a list of indices in sorted order, i.e. in the order you may process your data.
* \param input [in] a list of floating-point values to sort
* \param nb [in] number of values to sort
* \return Self-Reference
* \warning only sorts IEEE floating-point values
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
RadixSort& RadixSort::sort(const float* input2, uint32 nb)
{
uint32 i, j;
// Checkings
if(!input2 || !nb) return *this;
// Stats
mTotalCalls++;
uint32* input = (uint32*)input2;
// Resize lists if needed
CHECK_RESIZE(nb);
#ifdef RADIX_LOCAL_RAM
// Allocate histograms & offsets on the stack
uint32 mHistogram[256*4];
uint32 mOffset[256];
#endif
// Create histograms (counters). Counters for all passes are created in one run.
// Pros: read input buffer once instead of four times
// Cons: mHistogram is 4Kb instead of 1Kb
// Floating-point values are always supposed to be signed values, so there's only one code path there.
// Please note the floating point comparison needed for temporal coherence! Although the resulting asm code
// is dreadful, this is surprisingly not such a performance hit - well, I suppose that's a big one on first
// generation Pentiums....We can't make comparison on integer representations because, as Chris said, it just
// wouldn't work with mixed positive/negative values....
{ CREATE_HISTOGRAMS(float, input2); }
// Compute #negative values involved if needed
uint32 NbNegativeValues = 0;
// An efficient way to compute the number of negatives values we'll have to deal with is simply to sum the 128
// last values of the last histogram. Last histogram because that's the one for the Most Significant Byte,
// responsible for the sign. 128 last values because the 128 first ones are related to positive numbers.
uint32* h3= &mHistogram[768];
for( i=128;i<256;i++) NbNegativeValues += h3[i]; // 768 for last histogram, 128 for negative part
// Radix sort, j is the pass number (0=LSB, 3=MSB)
for( j=0;j<4;j++)
{
// Should we care about negative values?
if(j!=3)
{
// Here we deal with positive values only
CHECK_PASS_VALIDITY(j);
if(PerformPass)
{
// Create offsets
mOffset[0] = 0;
for( i=1;i<256;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1];
// Perform Radix Sort
uint8* InputBytes = (uint8*)input;
uint32* Indices = mIndices;
uint32* IndicesEnd = &mIndices[nb];
InputBytes += j;
while(Indices!=IndicesEnd)
{
uint32 id = *Indices++;
mIndices2[mOffset[InputBytes[id<<2]]++] = id;
}
// Swap pointers for next pass. Valid indices - the most recent ones - are in mIndices after the swap.
uint32* Tmp = mIndices; mIndices = mIndices2; mIndices2 = Tmp;
}
}
else
{
// This is a special case to correctly handle negative values
CHECK_PASS_VALIDITY(j);
if(PerformPass)
{
// Create biased offsets, in order for negative numbers to be sorted as well
mOffset[0] = NbNegativeValues; // First positive number takes place after the negative ones
for(i=1;i<128;i++) mOffset[i] = mOffset[i-1] + CurCount[i-1]; // 1 to 128 for positive numbers
// We must reverse the sorting order for negative numbers!
mOffset[255] = 0;
for(i=0;i<127;i++) mOffset[254-i] = mOffset[255-i] + CurCount[255-i]; // Fixing the wrong order for negative values
for(i=128;i<256;i++) mOffset[i] += CurCount[i]; // Fixing the wrong place for negative values
// Perform Radix Sort
for(i=0;i<nb;i++)
{
uint32 Radix = input[mIndices[i]]>>24; // Radix byte, same as above. AND is useless here (uint32).
// ### cmp to be killed. Not good. Later.
if(Radix<128) mIndices2[mOffset[Radix]++] = mIndices[i]; // Number is positive, same as above
else mIndices2[--mOffset[Radix]] = mIndices[i]; // Number is negative, flip the sorting order
}
// Swap pointers for next pass. Valid indices - the most recent ones - are in mIndices after the swap.
uint32* Tmp = mIndices; mIndices = mIndices2; mIndices2 = Tmp;
}
else
{
// The pass is useless, yet we still have to reverse the order of current list if all values are negative.
if(UniqueVal>=128)
{
for(i=0;i<nb;i++) mIndices2[i] = mIndices[nb-i-1];
// Swap pointers for next pass. Valid indices - the most recent ones - are in mIndices after the swap.
uint32* Tmp = mIndices; mIndices = mIndices2; mIndices2 = Tmp;
}
}
}
}
return *this;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Resets the inner indices. After the call, mIndices is reset.
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void RadixSort::resetIndices()
{
for(uint32 i=0;i<mCurrentSize;i++) mIndices[i] = i;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Gets the ram used.
* \return memory used in bytes
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
uint32 RadixSort::usedRam() const
{
uint32 UsedRam = sizeof(RadixSort);
#ifndef RADIX_LOCAL_RAM
UsedRam += 256*4*sizeof(uint32); // Histograms
UsedRam += 256*sizeof(uint32); // Offsets
#endif
UsedRam += 2*mCurrentSize*sizeof(uint32); // 2 lists of indices
return UsedRam;
}