You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvmath/Fitting.cpp

248 lines
5.8 KiB
C++

// This code is in the public domain -- icastano@gmail.com
#include "Fitting.h"
#include <nvcore/Algorithms.h> // max
#include <nvcore/Containers.h> // swap
#include <float.h> // FLT_MAX
using namespace nv;
// @@ Move to EigenSolver.h
static inline Vector3 firstEigenVector_PowerMethod(const float *__restrict matrix)
{
if (matrix[0] == 0 || matrix[3] == 0 || matrix[5] == 0)
{
return Vector3(zero);
}
const int NUM = 8;
Vector3 v(1, 1, 1);
for (int i = 0; i < NUM; i++)
{
float x = v.x() * matrix[0] + v.y() * matrix[1] + v.z() * matrix[2];
float y = v.x() * matrix[1] + v.y() * matrix[3] + v.z() * matrix[4];
float z = v.x() * matrix[2] + v.y() * matrix[4] + v.z() * matrix[5];
float norm = max(max(x, y), z);
v = Vector3(x, y, z) / norm;
}
return v;
}
Vector3 nv::Fit::computeCentroid(int n, const Vector3 *__restrict points)
{
Vector3 centroid(zero);
for (int i = 0; i < n; i++)
{
centroid += points[i];
}
centroid /= float(n);
return centroid;
}
Vector3 nv::Fit::computeCentroid(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric)
{
Vector3 centroid(zero);
float total = 0.0f;
for (int i = 0; i < n; i++)
{
total += weights[i];
centroid += weights[i]*points[i];
}
centroid /= total;
return centroid;
}
Vector3 nv::Fit::computeCovariance(int n, const Vector3 *__restrict points, float *__restrict covariance)
{
// compute the centroid
Vector3 centroid = computeCentroid(n, points);
// compute covariance matrix
for (int i = 0; i < 6; i++)
{
covariance[i] = 0.0f;
}
for (int i = 0; i < n; i++)
{
Vector3 v = points[i] - centroid;
covariance[0] += v.x() * v.x();
covariance[1] += v.x() * v.y();
covariance[2] += v.x() * v.z();
covariance[3] += v.y() * v.y();
covariance[4] += v.y() * v.z();
covariance[5] += v.z() * v.z();
}
return centroid;
}
Vector3 nv::Fit::computeCovariance(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric, float *__restrict covariance)
{
// compute the centroid
Vector3 centroid = computeCentroid(n, points, weights, metric);
// compute covariance matrix
for (int i = 0; i < 6; i++)
{
covariance[i] = 0.0f;
}
for (int i = 0; i < n; i++)
{
Vector3 a = (points[i] - centroid) * metric;
Vector3 b = weights[i]*a;
covariance[0] += a.x()*b.x();
covariance[1] += a.x()*b.y();
covariance[2] += a.x()*b.z();
covariance[3] += a.y()*b.y();
covariance[4] += a.y()*b.z();
covariance[5] += a.z()*b.z();
}
return centroid;
}
Vector3 nv::Fit::computePrincipalComponent(int n, const Vector3 *__restrict points)
{
float matrix[6];
computeCovariance(n, points, matrix);
return firstEigenVector_PowerMethod(matrix);
}
Vector3 nv::Fit::computePrincipalComponent(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric)
{
float matrix[6];
computeCovariance(n, points, weights, metric, matrix);
return firstEigenVector_PowerMethod(matrix);
}
Plane nv::Fit::bestPlane(int n, const Vector3 *__restrict points)
{
// compute the centroid and covariance
float matrix[6];
Vector3 centroid = computeCovariance(n, points, matrix);
if (matrix[0] == 0 || matrix[3] == 0 || matrix[5] == 0)
{
// If no plane defined, then return a horizontal plane.
return Plane(Vector3(0, 0, 1), centroid);
}
#pragma message(NV_FILE_LINE "TODO: need to write an eigensolver!")
// - Numerical Recipes in C is a good reference. Householder transforms followed by QL decomposition seems to be the best approach.
// - The one from magic-tools is now LGPL. For the 3D case it uses a cubic root solver, which is not very accurate.
// - Charles' Galaxy3 contains an implementation of the tridiagonalization method, but is under BPL.
//EigenSolver3 solver(matrix);
return Plane();
}
int nv::Fit::compute4Means(int n, const Vector3 *__restrict points, const float *__restrict weights, Vector3::Arg metric, Vector3 *__restrict cluster)
{
// Compute principal component.
float matrix[6];
Vector3 centroid = computeCovariance(n, points, weights, metric, matrix);
Vector3 principal = firstEigenVector_PowerMethod(matrix);
// Pick initial solution.
int mini, maxi;
mini = maxi = 0;
float mindps, maxdps;
mindps = maxdps = dot(points[0] - centroid, principal);
for (int i = 1; i < n; ++i)
{
float dps = dot(points[i] - centroid, principal);
if (dps < mindps) {
mindps = dps;
mini = i;
}
else {
maxdps = dps;
maxi = i;
}
}
cluster[0] = centroid + mindps * principal;
cluster[1] = centroid + maxdps * principal;
cluster[2] = (2 * cluster[0] + cluster[1]) / 3;
cluster[3] = (2 * cluster[1] + cluster[0]) / 3;
// Now we have to iteratively refine the clusters.
while (true)
{
Vector3 newCluster[4] = { Vector3(zero), Vector3(zero), Vector3(zero), Vector3(zero) };
float total[4] = {0, 0, 0, 0};
for (int i = 0; i < n; ++i)
{
// Find nearest cluster.
int nearest = 0;
float mindist = FLT_MAX;
for (int j = 0; j < 4; j++)
{
float dist = length_squared((cluster[j] - points[i]) * metric);
if (dist < mindist)
{
mindist = dist;
nearest = j;
}
}
newCluster[nearest] += weights[i] * points[i];
total[nearest] += weights[i];
}
for (int j = 0; j < 4; j++)
{
if (total[j] != 0)
newCluster[j] /= total[j];
}
if (equal(cluster[0], newCluster[0]) && equal(cluster[1], newCluster[1]) &&
equal(cluster[2], newCluster[2]) && equal(cluster[3], newCluster[3]))
{
return (total[0] != 0) + (total[1] != 0) + (total[2] != 0) + (total[3] != 0);
}
cluster[0] = newCluster[0];
cluster[1] = newCluster[1];
cluster[2] = newCluster[2];
cluster[3] = newCluster[3];
// Sort clusters by weight.
for (int i = 0; i < 4; i++)
{
for (int j = i; j > 0 && total[j] > total[j - 1]; j--)
{
swap( total[j], total[j - 1] );
swap( cluster[j], cluster[j - 1] );
}
}
}
}