You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvcore/Array.inl

439 lines
11 KiB
C++

// This code is in the public domain -- Ignacio Castaño <castano@gmail.com>
#pragma once
#ifndef NV_CORE_ARRAY_INL
#define NV_CORE_ARRAY_INL
#include "Array.h"
#include "Stream.h"
#include "Utils.h" // swap
#include <string.h> // memmove
#include <new> // for placement new
namespace nv
{
template <typename T>
NV_FORCEINLINE T & Array<T>::append()
{
uint old_size = m_size;
uint new_size = m_size + 1;
setArraySize(new_size);
construct_range(m_buffer, new_size, old_size);
return m_buffer[old_size]; // Return reference to last element.
}
// Push an element at the end of the vector.
template <typename T>
NV_FORCEINLINE void Array<T>::push_back( const T & val )
{
#if 1
nvDebugCheck(&val < m_buffer || &val >= m_buffer+m_size);
uint old_size = m_size;
uint new_size = m_size + 1;
setArraySize(new_size);
construct_range(m_buffer, new_size, old_size, val);
#else
uint new_size = m_size + 1;
if (new_size > m_capacity)
{
// @@ Is there any way to avoid this copy?
// @@ Can we create a copy without side effects? Ie. without calls to constructor/destructor. Use alloca + memcpy?
// @@ Assert instead of copy?
const T copy(val); // create a copy in case value is inside of this array.
setArraySize(new_size);
new (m_buffer+new_size-1) T(copy);
}
else
{
m_size = new_size;
new(m_buffer+new_size-1) T(val);
}
#endif // 0/1
}
template <typename T>
NV_FORCEINLINE void Array<T>::pushBack( const T & val )
{
push_back(val);
}
template <typename T>
NV_FORCEINLINE Array<T> & Array<T>::append( const T & val )
{
push_back(val);
return *this;
}
// Qt like push operator.
template <typename T>
NV_FORCEINLINE Array<T> & Array<T>::operator<< ( T & t )
{
push_back(t);
return *this;
}
// Pop the element at the end of the vector.
template <typename T>
NV_FORCEINLINE void Array<T>::pop_back()
{
nvDebugCheck( m_size > 0 );
resize( m_size - 1 );
}
template <typename T>
NV_FORCEINLINE void Array<T>::popBack(uint count)
{
nvDebugCheck(m_size >= count);
resize(m_size - count);
}
template <typename T>
NV_FORCEINLINE void Array<T>::popFront(uint count)
{
nvDebugCheck(m_size >= count);
//resize(m_size - count);
if (m_size == count) {
clear();
}
else {
destroy_range(m_buffer, 0, count);
memmove(m_buffer, m_buffer + count, sizeof(T) * (m_size - count));
m_size -= count;
}
}
// Get back element.
template <typename T>
NV_FORCEINLINE const T & Array<T>::back() const
{
nvDebugCheck( m_size > 0 );
return m_buffer[m_size-1];
}
// Get back element.
template <typename T>
NV_FORCEINLINE T & Array<T>::back()
{
nvDebugCheck( m_size > 0 );
return m_buffer[m_size-1];
}
// Get front element.
template <typename T>
NV_FORCEINLINE const T & Array<T>::front() const
{
nvDebugCheck( m_size > 0 );
return m_buffer[0];
}
// Get front element.
template <typename T>
NV_FORCEINLINE T & Array<T>::front()
{
nvDebugCheck( m_size > 0 );
return m_buffer[0];
}
// Check if the given element is contained in the array.
template <typename T>
NV_FORCEINLINE bool Array<T>::contains(const T & e) const
{
return find(e, NULL);
}
// Return true if element found.
template <typename T>
NV_FORCEINLINE bool Array<T>::find(const T & element, uint * indexPtr) const
{
return find(element, 0, m_size, indexPtr);
}
// Return true if element found within the given range.
template <typename T>
NV_FORCEINLINE bool Array<T>::find(const T & element, uint begin, uint end, uint * indexPtr) const
{
return ::nv::find(element, m_buffer, begin, end, indexPtr);
}
// Remove the element at the given index. This is an expensive operation!
template <typename T>
void Array<T>::removeAt(uint index)
{
nvDebugCheck(index >= 0 && index < m_size);
if (m_size == 1) {
clear();
}
else {
m_buffer[index].~T();
memmove(m_buffer+index, m_buffer+index+1, sizeof(T) * (m_size - 1 - index));
m_size--;
}
}
// Remove the first instance of the given element.
template <typename T>
bool Array<T>::remove(const T & element)
{
uint index;
if (find(element, &index)) {
removeAt(index);
return true;
}
return false;
}
// Insert the given element at the given index shifting all the elements up.
template <typename T>
void Array<T>::insertAt(uint index, const T & val/*=T()*/)
{
nvDebugCheck( index >= 0 && index <= m_size );
setArraySize(m_size + 1);
if (index < m_size - 1) {
memmove(m_buffer+index+1, m_buffer+index, sizeof(T) * (m_size - 1 - index));
}
// Copy-construct into the newly opened slot.
new(m_buffer+index) T(val);
}
// Append the given data to our vector.
template <typename T>
NV_FORCEINLINE void Array<T>::append(const Array<T> & other)
{
append(other.m_buffer, other.m_size);
}
// Append the given data to our vector.
template <typename T>
void Array<T>::append(const T other[], uint count)
{
if (count > 0) {
const uint old_size = m_size;
setArraySize(m_size + count);
for (uint i = 0; i < count; i++ ) {
new(m_buffer + old_size + i) T(other[i]);
}
}
}
// Remove the given element by replacing it with the last one.
template <typename T>
void Array<T>::replaceWithLast(uint index)
{
nvDebugCheck( index < m_size );
nv::swap(m_buffer[index], back()); // @@ Is this OK when index == size-1?
(m_buffer+m_size-1)->~T();
m_size--;
}
// Resize the vector preserving existing elements.
template <typename T>
void Array<T>::resize(uint new_size)
{
uint old_size = m_size;
// Destruct old elements (if we're shrinking).
destroy_range(m_buffer, new_size, old_size);
setArraySize(new_size);
// Call default constructors
construct_range(m_buffer, new_size, old_size);
}
// Resize the vector preserving existing elements and initializing the
// new ones with the given value.
template <typename T>
void Array<T>::resize(uint new_size, const T & elem)
{
nvDebugCheck(&elem < m_buffer || &elem > m_buffer+m_size);
uint old_size = m_size;
// Destruct old elements (if we're shrinking).
destroy_range(m_buffer, new_size, old_size);
setArraySize(new_size);
// Call copy constructors
construct_range(m_buffer, new_size, old_size, elem);
}
// Fill array with the given value.
template <typename T>
void Array<T>::fill(const T & elem)
{
fill(m_buffer, m_size, elem);
}
// Clear the buffer.
template <typename T>
NV_FORCEINLINE void Array<T>::clear()
{
nvDebugCheck(isValidPtr(m_buffer));
// Destruct old elements
destroy_range(m_buffer, 0, m_size);
m_size = 0;
}
// Shrink the allocated vector.
template <typename T>
NV_FORCEINLINE void Array<T>::shrink()
{
if (m_size < m_capacity) {
setArrayCapacity(m_size);
}
}
// Preallocate space.
template <typename T>
NV_FORCEINLINE void Array<T>::reserve(uint desired_size)
{
if (desired_size > m_capacity) {
setArrayCapacity(desired_size);
}
}
// Copy elements to this array. Resizes it if needed.
template <typename T>
NV_FORCEINLINE void Array<T>::copy(const T * data, uint count)
{
#if 1 // More simple, but maybe not be as efficient?
destroy_range(m_buffer, 0, m_size);
setArraySize(count);
construct_range(m_buffer, count, 0, data);
#else
const uint old_size = m_size;
destroy_range(m_buffer, count, old_size);
setArraySize(count);
copy_range(m_buffer, data, old_size);
construct_range(m_buffer, count, old_size, data);
#endif
}
// Assignment operator.
template <typename T>
NV_FORCEINLINE Array<T> & Array<T>::operator=( const Array<T> & a )
{
copy(a.m_buffer, a.m_size);
return *this;
}
// Release ownership of allocated memory and returns pointer to it.
template <typename T>
T * Array<T>::release() {
T * tmp = m_buffer;
m_buffer = NULL;
m_capacity = 0;
m_size = 0;
return tmp;
}
// Change array size.
template <typename T>
inline void Array<T>::setArraySize(uint new_size) {
m_size = new_size;
if (new_size > m_capacity) {
uint new_buffer_size;
if (m_capacity == 0) {
// first allocation is exact
new_buffer_size = new_size;
}
else {
// following allocations grow array by 25%
new_buffer_size = new_size + (new_size >> 2);
}
setArrayCapacity( new_buffer_size );
}
}
// Change array capacity.
template <typename T>
inline void Array<T>::setArrayCapacity(uint new_capacity) {
nvDebugCheck(new_capacity >= m_size);
if (new_capacity == 0) {
// free the buffer.
if (m_buffer != NULL) {
free<T>(m_buffer);
m_buffer = NULL;
}
}
else {
// realloc the buffer
m_buffer = realloc<T>(m_buffer, new_capacity);
}
m_capacity = new_capacity;
}
// Array serialization.
template <typename Typ>
inline Stream & operator<< ( Stream & s, Array<Typ> & p )
{
if (s.isLoading()) {
uint size;
s << size;
p.resize( size );
}
else {
s << p.m_size;
}
for (uint i = 0; i < p.m_size; i++) {
s << p.m_buffer[i];
}
return s;
}
// Swap the members of the two given vectors.
template <typename Typ>
inline void swap(Array<Typ> & a, Array<Typ> & b)
{
nv::swap(a.m_buffer, b.m_buffer);
nv::swap(a.m_capacity, b.m_capacity);
nv::swap(a.m_size, b.m_size);
}
} // nv namespace
#endif // NV_CORE_ARRAY_INL