You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvimage/ColorBlock.cpp

405 lines
9.0 KiB
C++

// This code is in the public domain -- castanyo@yahoo.es
#include <nvmath/Box.h>
#include <nvimage/ColorBlock.h>
#include <nvimage/Image.h>
using namespace nv;
namespace {
// Get approximate luminance.
inline static uint colorLuminance(Color32 c)
{
return c.r + c.g + c.b;
}
// Get the euclidean distance between the given colors.
inline static uint colorDistance(Color32 c0, Color32 c1)
{
return (c0.r - c1.r) * (c0.r - c1.r) + (c0.g - c1.g) * (c0.g - c1.g) + (c0.b - c1.b) * (c0.b - c1.b);
}
} // namespace`
/// Default constructor.
ColorBlock::ColorBlock()
{
}
/// Init the color block from an array of colors.
ColorBlock::ColorBlock(const uint * linearImage)
{
for(uint i = 0; i < 16; i++) {
color(i) = Color32(linearImage[i]);
}
}
/// Init the color block with the contents of the given block.
ColorBlock::ColorBlock(const ColorBlock & block)
{
for(uint i = 0; i < 16; i++) {
color(i) = block.color(i);
}
}
/// Initialize this color block.
ColorBlock::ColorBlock(const Image * img, uint x, uint y)
{
init(img, x, y);
}
void ColorBlock::init(const Image * img, uint x, uint y)
{
nvDebugCheck(img != NULL);
const uint bw = min(img->width() - x, 4U);
const uint bh = min(img->height() - y, 4U);
nvDebugCheck(bw != 0);
nvDebugCheck(bh != 0);
static int remainder[] = {
0, 0, 0, 0,
0, 1, 0, 1,
0, 1, 2, 0,
0, 1, 2, 3,
};
// Blocks that are smaller than 4x4 are handled by repeating the pixels.
// @@ Thats only correct when block size is 1, 2 or 4, but not with 3. :(
for(uint i = 0; i < 4; i++) {
//const int by = i % bh;
const int by = remainder[(bh - 1) * 4 + i];
for(uint e = 0; e < 4; e++) {
//const int bx = e % bw;
const int bx = remainder[(bw - 1) * 4 + e];
color(e, i) = img->pixel(x + bx, y + by);
}
}
}
void ColorBlock::swizzleDXT5n()
{
for(int i = 0; i < 16; i++)
{
Color32 c = m_color[i];
m_color[i] = Color32(0xFF, c.g, 0, c.r);
}
}
void ColorBlock::splatX()
{
for(int i = 0; i < 16; i++)
{
uint8 x = m_color[i].r;
m_color[i] = Color32(x, x, x, x);
}
}
void ColorBlock::splatY()
{
for(int i = 0; i < 16; i++)
{
uint8 y = m_color[i].g;
m_color[i] = Color32(y, y, y, y);
}
}
/// Returns true if the block has a single color.
bool ColorBlock::isSingleColor() const
{
Color32 mask(0xFF, 0xFF, 0xFF, 0x00);
uint u = m_color[0].u & mask.u;
for (int i = 1; i < 16; i++)
{
if (u != (m_color[i].u & mask.u))
{
return false;
}
}
return true;
}
/// Count number of unique colors in this color block.
uint ColorBlock::countUniqueColors() const
{
uint count = 0;
// @@ This does not have to be o(n^2)
for(int i = 0; i < 16; i++)
{
bool unique = true;
for(int j = 0; j < i; j++) {
if( m_color[i] != m_color[j] ) {
unique = false;
}
}
if( unique ) {
count++;
}
}
return count;
}
/// Get average color of the block.
Color32 ColorBlock::averageColor() const
{
uint r, g, b, a;
r = g = b = a = 0;
for(uint i = 0; i < 16; i++) {
r += m_color[i].r;
g += m_color[i].g;
b += m_color[i].b;
a += m_color[i].a;
}
return Color32(uint8(r / 16), uint8(g / 16), uint8(b / 16), uint8(a / 16));
}
/// Return true if the block is not fully opaque.
bool ColorBlock::hasAlpha() const
{
for (uint i = 0; i < 16; i++)
{
if (m_color[i].a != 255) return true;
}
return false;
}
/// Get diameter color range.
void ColorBlock::diameterRange(Color32 * start, Color32 * end) const
{
nvDebugCheck(start != NULL);
nvDebugCheck(end != NULL);
Color32 c0, c1;
uint best_dist = 0;
for(int i = 0; i < 16; i++) {
for (int j = i+1; j < 16; j++) {
uint dist = colorDistance(m_color[i], m_color[j]);
if( dist > best_dist ) {
best_dist = dist;
c0 = m_color[i];
c1 = m_color[j];
}
}
}
*start = c0;
*end = c1;
}
/// Get luminance color range.
void ColorBlock::luminanceRange(Color32 * start, Color32 * end) const
{
nvDebugCheck(start != NULL);
nvDebugCheck(end != NULL);
Color32 minColor, maxColor;
uint minLuminance, maxLuminance;
maxLuminance = minLuminance = colorLuminance(m_color[0]);
for(uint i = 1; i < 16; i++)
{
uint luminance = colorLuminance(m_color[i]);
if (luminance > maxLuminance) {
maxLuminance = luminance;
maxColor = m_color[i];
}
else if (luminance < minLuminance) {
minLuminance = luminance;
minColor = m_color[i];
}
}
*start = minColor;
*end = maxColor;
}
/// Get color range based on the bounding box.
void ColorBlock::boundsRange(Color32 * start, Color32 * end) const
{
nvDebugCheck(start != NULL);
nvDebugCheck(end != NULL);
Color32 minColor(255, 255, 255);
Color32 maxColor(0, 0, 0);
for(uint i = 0; i < 16; i++)
{
if (m_color[i].r < minColor.r) { minColor.r = m_color[i].r; }
if (m_color[i].g < minColor.g) { minColor.g = m_color[i].g; }
if (m_color[i].b < minColor.b) { minColor.b = m_color[i].b; }
if (m_color[i].r > maxColor.r) { maxColor.r = m_color[i].r; }
if (m_color[i].g > maxColor.g) { maxColor.g = m_color[i].g; }
if (m_color[i].b > maxColor.b) { maxColor.b = m_color[i].b; }
}
// Offset range by 1/16 of the extents
Color32 inset;
inset.r = (maxColor.r - minColor.r) >> 4;
inset.g = (maxColor.g - minColor.g) >> 4;
inset.b = (maxColor.b - minColor.b) >> 4;
minColor.r = (minColor.r + inset.r <= 255) ? minColor.r + inset.r : 255;
minColor.g = (minColor.g + inset.g <= 255) ? minColor.g + inset.g : 255;
minColor.b = (minColor.b + inset.b <= 255) ? minColor.b + inset.b : 255;
maxColor.r = (maxColor.r >= inset.r) ? maxColor.r - inset.r : 0;
maxColor.g = (maxColor.g >= inset.g) ? maxColor.g - inset.g : 0;
maxColor.b = (maxColor.b >= inset.b) ? maxColor.b - inset.b : 0;
*start = minColor;
*end = maxColor;
}
/// Get color range based on the bounding box.
void ColorBlock::boundsRangeAlpha(Color32 * start, Color32 * end) const
{
nvDebugCheck(start != NULL);
nvDebugCheck(end != NULL);
Color32 minColor(255, 255, 255, 255);
Color32 maxColor(0, 0, 0, 0);
for(uint i = 0; i < 16; i++)
{
if (m_color[i].r < minColor.r) { minColor.r = m_color[i].r; }
if (m_color[i].g < minColor.g) { minColor.g = m_color[i].g; }
if (m_color[i].b < minColor.b) { minColor.b = m_color[i].b; }
if (m_color[i].a < minColor.a) { minColor.a = m_color[i].a; }
if (m_color[i].r > maxColor.r) { maxColor.r = m_color[i].r; }
if (m_color[i].g > maxColor.g) { maxColor.g = m_color[i].g; }
if (m_color[i].b > maxColor.b) { maxColor.b = m_color[i].b; }
if (m_color[i].a > maxColor.a) { maxColor.a = m_color[i].a; }
}
// Offset range by 1/16 of the extents
Color32 inset;
inset.r = (maxColor.r - minColor.r) >> 4;
inset.g = (maxColor.g - minColor.g) >> 4;
inset.b = (maxColor.b - minColor.b) >> 4;
inset.a = (maxColor.a - minColor.a) >> 4;
minColor.r = (minColor.r + inset.r <= 255) ? minColor.r + inset.r : 255;
minColor.g = (minColor.g + inset.g <= 255) ? minColor.g + inset.g : 255;
minColor.b = (minColor.b + inset.b <= 255) ? minColor.b + inset.b : 255;
minColor.a = (minColor.a + inset.a <= 255) ? minColor.a + inset.a : 255;
maxColor.r = (maxColor.r >= inset.r) ? maxColor.r - inset.r : 0;
maxColor.g = (maxColor.g >= inset.g) ? maxColor.g - inset.g : 0;
maxColor.b = (maxColor.b >= inset.b) ? maxColor.b - inset.b : 0;
maxColor.a = (maxColor.a >= inset.a) ? maxColor.a - inset.a : 0;
*start = minColor;
*end = maxColor;
}
/// Sort colors by abosolute value in their 16 bit representation.
void ColorBlock::sortColorsByAbsoluteValue()
{
// Dummy selection sort.
for( uint a = 0; a < 16; a++ ) {
uint max = a;
Color16 cmax(m_color[a]);
for( uint b = a+1; b < 16; b++ ) {
Color16 cb(m_color[b]);
if( cb.u > cmax.u ) {
max = b;
cmax = cb;
}
}
swap( m_color[a], m_color[max] );
}
}
/// Find extreme colors in the given axis.
void ColorBlock::computeRange(Vector3::Arg axis, Color32 * start, Color32 * end) const
{
nvDebugCheck(start != NULL);
nvDebugCheck(end != NULL);
int mini, maxi;
mini = maxi = 0;
float min, max;
min = max = dot(Vector3(m_color[0].r, m_color[0].g, m_color[0].b), axis);
for(uint i = 1; i < 16; i++)
{
const Vector3 vec(m_color[i].r, m_color[i].g, m_color[i].b);
float val = dot(vec, axis);
if( val < min ) {
mini = i;
min = val;
}
else if( val > max ) {
maxi = i;
max = val;
}
}
*start = m_color[mini];
*end = m_color[maxi];
}
/// Sort colors in the given axis.
void ColorBlock::sortColors(const Vector3 & axis)
{
float luma_array[16];
for(uint i = 0; i < 16; i++) {
const Vector3 vec(m_color[i].r, m_color[i].g, m_color[i].b);
luma_array[i] = dot(vec, axis);
}
// Dummy selection sort.
for( uint a = 0; a < 16; a++ ) {
uint min = a;
for( uint b = a+1; b < 16; b++ ) {
if( luma_array[b] < luma_array[min] ) {
min = b;
}
}
swap( luma_array[a], luma_array[min] );
swap( m_color[a], m_color[min] );
}
}
/// Get the volume of the color block.
float ColorBlock::volume() const
{
Box bounds;
bounds.clearBounds();
for(int i = 0; i < 16; i++) {
const Vector3 point(m_color[i].r, m_color[i].g, m_color[i].b);
bounds.addPointToBounds(point);
}
return bounds.volume();
}