You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvtt/ClusterFit.cpp

655 lines
21 KiB
C++

/* -----------------------------------------------------------------------------
Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
Copyright (c) 2006 Ignacio Castano icastano@nvidia.com
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-------------------------------------------------------------------------- */
#include "ClusterFit.h"
#include "nvmath/Fitting.h"
#include "nvmath/Vector.inl"
#include "nvmath/ftoi.h"
#include "nvimage/ColorBlock.h"
#include <float.h> // FLT_MAX
using namespace nv;
ClusterFit::ClusterFit()
{
}
// @@ Deprecate. Do not use color set directly.
void ClusterFit::setColorSet(const ColorSet * set)
{
// initialise the best error
#if NVTT_USE_SIMD
m_besterror = SimdVector( FLT_MAX );
Vector3 metric = m_metric.toVector3();
#else
m_besterror = FLT_MAX;
Vector3 metric = m_metric;
#endif
// cache some values
m_count = set->colorCount;
Vector3 values[16];
for (uint i = 0; i < m_count; i++)
{
values[i] = set->colors[i].xyz();
}
Vector3 principal = Fit::computePrincipalComponent_PowerMethod(m_count, values, set->weights, metric);
//Vector3 principal = Fit::computePrincipalComponent_EigenSolver(m_count, values, set->weights, metric);
// build the list of values
int order[16];
float dps[16];
for (uint i = 0; i < m_count; ++i)
{
dps[i] = dot(values[i], principal);
order[i] = i;
}
// stable sort
for (uint i = 0; i < m_count; ++i)
{
for (uint j = i; j > 0 && dps[j] < dps[j - 1]; --j)
{
swap(dps[j], dps[j - 1]);
swap(order[j], order[j - 1]);
}
}
// weight all the points
#if NVTT_USE_SIMD
m_xxsum = SimdVector( 0.0f );
m_xsum = SimdVector( 0.0f );
#else
m_xxsum = Vector3(0.0f);
m_xsum = Vector3(0.0f);
m_wsum = 0.0f;
#endif
for (uint i = 0; i < m_count; ++i)
{
int p = order[i];
#if NVTT_USE_SIMD
NV_ALIGN_16 Vector4 tmp(values[p], 1);
m_weighted[i] = SimdVector(tmp.component) * SimdVector(set->weights[p]);
m_xxsum += m_weighted[i] * m_weighted[i];
m_xsum += m_weighted[i];
#else
m_weighted[i] = values[p] * set->weights[p];
m_xxsum += m_weighted[i] * m_weighted[i];
m_xsum += m_weighted[i];
m_weights[i] = set->weights[p];
m_wsum += m_weights[i];
#endif
}
}
void ClusterFit::setColorSet(const Vector3 * colors, const float * weights, int count)
{
// initialise the best error
#if NVTT_USE_SIMD
m_besterror = SimdVector( FLT_MAX );
Vector3 metric = m_metric.toVector3();
#else
m_besterror = FLT_MAX;
Vector3 metric = m_metric;
#endif
m_count = count;
Vector3 principal = Fit::computePrincipalComponent_PowerMethod(count, colors, weights, metric);
//Vector3 principal = Fit::computePrincipalComponent_EigenSolver(count, colors, weights, metric);
// build the list of values
int order[16];
float dps[16];
for (uint i = 0; i < m_count; ++i)
{
dps[i] = dot(colors[i], principal);
order[i] = i;
}
// stable sort
for (uint i = 0; i < m_count; ++i)
{
for (uint j = i; j > 0 && dps[j] < dps[j - 1]; --j)
{
swap(dps[j], dps[j - 1]);
swap(order[j], order[j - 1]);
}
}
// weight all the points
#if NVTT_USE_SIMD
m_xxsum = SimdVector( 0.0f );
m_xsum = SimdVector( 0.0f );
#else
m_xxsum = Vector3(0.0f);
m_xsum = Vector3(0.0f);
m_wsum = 0.0f;
#endif
for (uint i = 0; i < m_count; ++i)
{
int p = order[i];
#if NVTT_USE_SIMD
NV_ALIGN_16 Vector4 tmp(colors[p], 1);
m_weighted[i] = SimdVector(tmp.component) * SimdVector(weights[p]);
m_xxsum += m_weighted[i] * m_weighted[i];
m_xsum += m_weighted[i];
#else
m_weighted[i] = colors[p] * weights[p];
m_xxsum += m_weighted[i] * m_weighted[i];
m_xsum += m_weighted[i];
m_weights[i] = weights[p];
m_wsum += m_weights[i];
#endif
}
}
void ClusterFit::setColorWeights(Vector4::Arg w)
{
#if NVTT_USE_SIMD
NV_ALIGN_16 Vector4 tmp(w.xyz(), 1);
m_metric = SimdVector(tmp.component);
#else
m_metric = w.xyz();
#endif
m_metricSqr = m_metric * m_metric;
}
float ClusterFit::bestError() const
{
#if NVTT_USE_SIMD
SimdVector x = m_xxsum * m_metricSqr;
SimdVector error = m_besterror + x.splatX() + x.splatY() + x.splatZ();
return error.toFloat();
#else
return m_besterror + dot(m_xxsum, m_metricSqr);
#endif
}
#if NVTT_USE_SIMD
bool ClusterFit::compress3( Vector3 * start, Vector3 * end )
{
const int count = m_count;
const SimdVector one = SimdVector(1.0f);
const SimdVector zero = SimdVector(0.0f);
const SimdVector half(0.5f, 0.5f, 0.5f, 0.25f);
const SimdVector two = SimdVector(2.0);
const SimdVector grid( 31.0f, 63.0f, 31.0f, 0.0f );
const SimdVector gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f );
// declare variables
SimdVector beststart = SimdVector( 0.0f );
SimdVector bestend = SimdVector( 0.0f );
SimdVector besterror = SimdVector( FLT_MAX );
SimdVector x0 = zero;
int b0 = 0, b1 = 0;
// check all possible clusters for this total order
for( int c0 = 0; c0 <= count; c0++)
{
SimdVector x1 = zero;
for( int c1 = 0; c1 <= count-c0; c1++)
{
const SimdVector x2 = m_xsum - x1 - x0;
//Vector3 alphax_sum = x0 + x1 * 0.5f;
//float alpha2_sum = w0 + w1 * 0.25f;
const SimdVector alphax_sum = multiplyAdd(x1, half, x0); // alphax_sum, alpha2_sum
const SimdVector alpha2_sum = alphax_sum.splatW();
//const Vector3 betax_sum = x2 + x1 * 0.5f;
//const float beta2_sum = w2 + w1 * 0.25f;
const SimdVector betax_sum = multiplyAdd(x1, half, x2); // betax_sum, beta2_sum
const SimdVector beta2_sum = betax_sum.splatW();
//const float alphabeta_sum = w1 * 0.25f;
const SimdVector alphabeta_sum = (x1 * half).splatW(); // alphabeta_sum
// const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
const SimdVector factor = reciprocal( negativeMultiplySubtract(alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum) );
SimdVector a = negativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor;
SimdVector b = negativeMultiplySubtract(alphax_sum, alphabeta_sum, betax_sum*alpha2_sum) * factor;
// clamp to the grid
a = min( one, max( zero, a ) );
b = min( one, max( zero, b ) );
a = truncate( multiplyAdd( grid, a, half ) ) * gridrcp;
b = truncate( multiplyAdd( grid, b, half ) ) * gridrcp;
// compute the error (we skip the constant xxsum)
SimdVector e1 = multiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
SimdVector e2 = negativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum );
SimdVector e3 = negativeMultiplySubtract( b, betax_sum, e2 );
SimdVector e4 = multiplyAdd( two, e3, e1 );
// apply the metric to the error term
SimdVector e5 = e4 * m_metricSqr;
SimdVector error = e5.splatX() + e5.splatY() + e5.splatZ();
// keep the solution if it wins
if( compareAnyLessThan( error, besterror ) )
{
besterror = error;
beststart = a;
bestend = b;
b0 = c0;
b1 = c1;
}
x1 += m_weighted[c0+c1];
}
x0 += m_weighted[c0];
}
// save the block if necessary
if( compareAnyLessThan( besterror, m_besterror ) )
{
*start = beststart.toVector3();
*end = bestend.toVector3();
// save the error
m_besterror = besterror;
return true;
}
return false;
}
bool ClusterFit::compress4( Vector3 * start, Vector3 * end )
{
const int count = m_count;
const SimdVector one = SimdVector(1.0f);
const SimdVector zero = SimdVector(0.0f);
const SimdVector half = SimdVector(0.5f);
const SimdVector two = SimdVector(2.0);
const SimdVector onethird( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f );
const SimdVector twothirds( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f );
const SimdVector twonineths = SimdVector( 2.0f/9.0f );
const SimdVector grid( 31.0f, 63.0f, 31.0f, 0.0f );
const SimdVector gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f );
// declare variables
SimdVector beststart = SimdVector( 0.0f );
SimdVector bestend = SimdVector( 0.0f );
SimdVector besterror = SimdVector( FLT_MAX );
SimdVector x0 = zero;
int b0 = 0, b1 = 0, b2 = 0;
// check all possible clusters for this total order
for( int c0 = 0; c0 <= count; c0++)
{
SimdVector x1 = zero;
for( int c1 = 0; c1 <= count-c0; c1++)
{
SimdVector x2 = zero;
for( int c2 = 0; c2 <= count-c0-c1; c2++)
{
const SimdVector x3 = m_xsum - x2 - x1 - x0;
//const Vector3 alphax_sum = x0 + x1 * (2.0f / 3.0f) + x2 * (1.0f / 3.0f);
//const float alpha2_sum = w0 + w1 * (4.0f/9.0f) + w2 * (1.0f/9.0f);
const SimdVector alphax_sum = multiplyAdd(x2, onethird, multiplyAdd(x1, twothirds, x0)); // alphax_sum, alpha2_sum
const SimdVector alpha2_sum = alphax_sum.splatW();
//const Vector3 betax_sum = x3 + x2 * (2.0f / 3.0f) + x1 * (1.0f / 3.0f);
//const float beta2_sum = w3 + w2 * (4.0f/9.0f) + w1 * (1.0f/9.0f);
const SimdVector betax_sum = multiplyAdd(x2, twothirds, multiplyAdd(x1, onethird, x3)); // betax_sum, beta2_sum
const SimdVector beta2_sum = betax_sum.splatW();
//const float alphabeta_sum = (w1 + w2) * (2.0f/9.0f);
const SimdVector alphabeta_sum = twonineths*( x1 + x2 ).splatW(); // alphabeta_sum
//const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
const SimdVector factor = reciprocal( negativeMultiplySubtract(alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum) );
SimdVector a = negativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor;
SimdVector b = negativeMultiplySubtract(alphax_sum, alphabeta_sum, betax_sum*alpha2_sum) * factor;
// clamp to the grid
a = min( one, max( zero, a ) );
b = min( one, max( zero, b ) );
a = truncate( multiplyAdd( grid, a, half ) ) * gridrcp;
b = truncate( multiplyAdd( grid, b, half ) ) * gridrcp;
// compute the error (we skip the constant xxsum)
SimdVector e1 = multiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
SimdVector e2 = negativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum );
SimdVector e3 = negativeMultiplySubtract( b, betax_sum, e2 );
SimdVector e4 = multiplyAdd( two, e3, e1 );
#if 1
// apply the metric to the error term
SimdVector e5 = e4 * m_metricSqr;
SimdVector error = e5.splatX() + e5.splatY() + e5.splatZ();
#else
// @@ Is there a horizontal max SIMD instruction?
SimdVector error = e4.splatX() + e4.splatY() + e4.splatZ();
error *= two;
error += max(max(e4.splatX(), e4.splatY()), e4.splatZ());
error -= min(min(e4.splatX(), e4.splatY()), e4.splatZ());
#endif
// keep the solution if it wins
if (compareAnyLessThan(error, besterror))
{
besterror = error;
beststart = a;
bestend = b;
b0 = c0;
b1 = c1;
b2 = c2;
}
x2 += m_weighted[c0+c1+c2];
}
x1 += m_weighted[c0+c1];
}
x0 += m_weighted[c0];
}
// save the block if necessary
if (compareAnyLessThan(besterror, m_besterror))
{
*start = beststart.toVector3();
*end = bestend.toVector3();
// save the error
m_besterror = besterror;
return true;
}
return false;
}
#else
inline Vector3 round565(const Vector3 & v) {
uint r = ftoi_floor(v.x * 31.0f);
float r0 = float(((r+0) << 3) | ((r+0) >> 2));
float r1 = float(((r+1) << 3) | ((r+1) >> 2));
if (fabs(v.x - r1) < fabs(v.x - r0)) r = min(r+1, 31U);
r = (r << 3) | (r >> 2);
uint g = ftoi_floor(v.y * 63.0f);
float g0 = float(((g+0) << 2) | ((g+0) >> 4));
float g1 = float(((g+1) << 2) | ((g+1) >> 4));
if (fabs(v.y - g1) < fabs(v.y - g0)) g = min(g+1, 63U);
g = (g << 2) | (g >> 4);
uint b = ftoi_floor(v.z * 31.0f);
float b0 = float(((b+0) << 3) | ((b+0) >> 2));
float b1 = float(((b+1) << 3) | ((b+1) >> 2));
if (fabs(v.z - b1) < fabs(v.z - b0)) b = min(b+1, 31U);
b = (b << 3) | (b >> 2);
return Vector3(float(r)/255, float(g)/255, float(b)/255);
}
bool ClusterFit::compress3(Vector3 * start, Vector3 * end)
{
const uint count = m_count;
const Vector3 grid( 31.0f, 63.0f, 31.0f );
const Vector3 gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f );
// declare variables
Vector3 beststart( 0.0f );
Vector3 bestend( 0.0f );
float besterror = FLT_MAX;
Vector3 x0(0.0f);
float w0 = 0.0f;
int b0 = 0, b1 = 0;
// check all possible clusters for this total order
for (uint c0 = 0; c0 <= count; c0++)
{
Vector3 x1(0.0f);
float w1 = 0.0f;
for (uint c1 = 0; c1 <= count-c0; c1++)
{
float w2 = m_wsum - w0 - w1;
// These factors could be entirely precomputed.
float const alpha2_sum = w0 + w1 * 0.25f;
float const beta2_sum = w2 + w1 * 0.25f;
float const alphabeta_sum = w1 * 0.25f;
float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
Vector3 const alphax_sum = x0 + x1 * 0.5f;
Vector3 const betax_sum = m_xsum - alphax_sum;
Vector3 a = (alphax_sum*beta2_sum - betax_sum*alphabeta_sum) * factor;
Vector3 b = (betax_sum*alpha2_sum - alphax_sum*alphabeta_sum) * factor;
// clamp to the grid
a = clamp(a, 0, 1);
b = clamp(b, 0, 1);
//a = floor(grid * a + 0.5f) * gridrcp;
//b = floor(grid * b + 0.5f) * gridrcp;
//int ar = ftoi_round(31 * a.x); ar = (ar << 3) | (ar >> 2); a.x = float(ar) / 255.0f;
//int ag = ftoi_round(63 * a.y); ar = (ag << 2) | (ag >> 4); a.y = float(ag) / 255.0f;
//int ab = ftoi_round(31 * a.z); ar = (ab << 3) | (ab >> 2); a.z = float(ab) / 255.0f;
//int br = ftoi_round(31 * b.x); br = (br << 3) | (br >> 2); b.x = float(br) / 255.0f;
//int bg = ftoi_round(63 * b.y); br = (bg << 2) | (bg >> 4); b.y = float(bg) / 255.0f;
//int bb = ftoi_round(31 * b.z); br = (bb << 3) | (bb >> 2); b.z = float(bb) / 255.0f;
/*a = floor(a * grid + 0.5f);
a.x = (a.x * 8 + floorf(a.x / 4)) / 255.0f;
a.y = (a.y * 4 + floorf(a.y / 16)) / 255.0f;
a.z = (a.z * 8 + floorf(a.z / 4)) / 255.0f;
b = floor(b * grid + 0.5f);
b.x = (b.x * 8 + floorf(b.x / 4)) / 255.0f;
b.y = (b.y * 4 + floorf(b.y / 16)) / 255.0f;
b.z = (b.z * 8 + floorf(b.z / 4)) / 255.0f;*/
a = round565(a);
b = round565(b);
// compute the error
Vector3 e1 = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum );
// apply the metric to the error term
float error = dot(e1, m_metricSqr);
// keep the solution if it wins
if (error < besterror)
{
besterror = error;
beststart = a;
bestend = b;
b0 = c0;
b1 = c1;
}
x1 += m_weighted[c0+c1];
w1 += m_weights[c0+c1];
}
x0 += m_weighted[c0];
w0 += m_weights[c0];
}
// save the block if necessary
if( besterror < m_besterror )
{
*start = beststart;
*end = bestend;
// save the error
m_besterror = besterror;
return true;
}
return false;
}
bool ClusterFit::compress4(Vector3 * start, Vector3 * end)
{
const uint count = m_count;
const Vector3 grid( 31.0f, 63.0f, 31.0f );
const Vector3 gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f );
// declare variables
Vector3 beststart( 0.0f );
Vector3 bestend( 0.0f );
float besterror = FLT_MAX;
Vector3 x0(0.0f);
float w0 = 0.0f;
int b0 = 0, b1 = 0, b2 = 0;
// check all possible clusters for this total order
for (uint c0 = 0; c0 <= count; c0++)
{
Vector3 x1(0.0f);
float w1 = 0.0f;
for (uint c1 = 0; c1 <= count-c0; c1++)
{
Vector3 x2(0.0f);
float w2 = 0.0f;
for (uint c2 = 0; c2 <= count-c0-c1; c2++)
{
float w3 = m_wsum - w0 - w1 - w2;
float const alpha2_sum = w0 + w1 * (4.0f/9.0f) + w2 * (1.0f/9.0f);
float const beta2_sum = w3 + w2 * (4.0f/9.0f) + w1 * (1.0f/9.0f);
float const alphabeta_sum = (w1 + w2) * (2.0f/9.0f);
float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
Vector3 const alphax_sum = x0 + x1 * (2.0f / 3.0f) + x2 * (1.0f / 3.0f);
Vector3 const betax_sum = m_xsum - alphax_sum;
Vector3 a = ( alphax_sum*beta2_sum - betax_sum*alphabeta_sum )*factor;
Vector3 b = ( betax_sum*alpha2_sum - alphax_sum*alphabeta_sum )*factor;
// clamp to the grid
a = clamp(a, 0, 1);
b = clamp(b, 0, 1);
//a = floor(a * grid + 0.5f) * gridrcp;
//b = floor(b * grid + 0.5f) * gridrcp;
//int ar = ftoi_round(31 * a.x); ar = (ar << 3) | (ar >> 2); a.x = float(ar) / 255.0f;
//int ag = ftoi_round(63 * a.y); ar = (ag << 2) | (ag >> 4); a.y = float(ag) / 255.0f;
//int ab = ftoi_round(31 * a.z); ar = (ab << 3) | (ab >> 2); a.z = float(ab) / 255.0f;
//int br = ftoi_round(31 * b.x); br = (br << 3) | (br >> 2); b.x = float(br) / 255.0f;
//int bg = ftoi_round(63 * b.y); br = (bg << 2) | (bg >> 4); b.y = float(bg) / 255.0f;
//int bb = ftoi_round(31 * b.z); br = (bb << 3) | (bb >> 2); b.z = float(bb) / 255.0f;
/*
a = floor(a * grid + 0.5f);
a.x = (a.x * 8 + floorf(a.x / 4)) / 255.0f;
a.y = (a.y * 4 + floorf(a.y / 16)) / 255.0f;
a.z = (a.z * 8 + floorf(a.z / 4)) / 255.0f;
b = floor(b * grid + 0.5f);
b.x = (b.x * 8 + floorf(b.x / 4)) / 255.0f;
b.y = (b.y * 4 + floorf(b.y / 16)) / 255.0f;
b.z = (b.z * 8 + floorf(b.z / 4)) / 255.0f;
*/
a = round565(a);
b = round565(b);
// compute the error
Vector3 e1 = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum );
// apply the metric to the error term
float error = dot( e1, m_metricSqr );
// keep the solution if it wins
if (error < besterror)
{
besterror = error;
beststart = a;
bestend = b;
b0 = c0;
b1 = c1;
b2 = c2;
}
x2 += m_weighted[c0+c1+c2];
w2 += m_weights[c0+c1+c2];
}
x1 += m_weighted[c0+c1];
w1 += m_weights[c0+c1];
}
x0 += m_weighted[c0];
w0 += m_weights[c0];
}
// save the block if necessary
if (besterror < m_besterror)
{
*start = beststart;
*end = bestend;
// save the error
m_besterror = besterror;
return true;
}
return false;
}
#endif // NVTT_USE_SIMD