You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvimage/nvtt/dxtlib.cpp

492 lines
13 KiB
C++

// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Memory.h>
#include <nvcore/Ptr.h>
#include <nvimage/DirectDrawSurface.h>
#include <nvimage/ColorBlock.h>
#include <nvimage/BlockDXT.h>
#include <nvimage/Image.h>
#include <nvimage/FloatImage.h>
#include <nvimage/Filter.h>
#include <nvimage/Quantize.h>
#include <nvimage/NormalMap.h>
#include "CompressDXT.h"
#include "FastCompressDXT.h"
#include "CompressRGB.h"
#include "InputOptions.h"
#include "CompressionOptions.h"
#include "cuda/CudaUtils.h"
#include "cuda/CudaCompressDXT.h"
using namespace nv;
using namespace nvtt;
namespace
{
static int blockSize(Format format)
{
if (format == Format_DXT1 /*|| format == Format_DXT1a*/) {
return 8;
}
else if (format == Format_DXT3) {
return 16;
}
else if (format == Format_DXT5 || format == Format_DXT5n) {
return 16;
}
else if (format == Format_BC4) {
return 8;
}
else if (format == Format_BC5) {
return 16;
}
return 0;
}
static int computeImageSize(int w, int h, Format format)
{
if (format == Format_RGBA) {
return w * h * sizeof(Color32);
}
else {
return ((w + 3) / 4) * ((h + 3) / 4) * blockSize(format);
}
}
} // namespace
//
// compress
//
static void outputHeader(const InputOptions::Private & inputOptions, const OutputOptions & outputOptions, const CompressionOptions::Private & compressionOptions)
{
// Output DDS header.
if (outputOptions.outputHandler != NULL && outputOptions.outputHeader)
{
DDSHeader header;
InputOptions::Private::Image * img = inputOptions.images;
nvCheck(img != NULL);
header.setWidth(img->width);
header.setHeight(img->height);
int mipmapCount = inputOptions.mipmapCount;
if (!inputOptions.generateMipmaps) mipmapCount = 0;
else if (inputOptions.maxLevel != -1 && inputOptions.maxLevel < mipmapCount) mipmapCount = inputOptions.maxLevel;
header.setMipmapCount(mipmapCount);
if (inputOptions.textureType == TextureType_2D) {
header.setTexture2D();
}
else if (inputOptions.textureType == TextureType_Cube) {
header.setTextureCube();
}
/*else if (inputOptions.textureType == TextureType_3D) {
header.setTexture3D();
header.setDepth(img->depth);
}*/
if (compressionOptions.format == Format_RGBA)
{
header.setPitch(4 * img->width);
header.setPixelFormat(compressionOptions.bitcount, compressionOptions.rmask, compressionOptions.gmask, compressionOptions.bmask, compressionOptions.amask);
}
else
{
header.setLinearSize(computeImageSize(img->width, img->height, compressionOptions.format));
if (compressionOptions.format == Format_DXT1 /*|| compressionOptions.format == Format_DXT1a*/) {
header.setFourCC('D', 'X', 'T', '1');
}
else if (compressionOptions.format == Format_DXT3) {
header.setFourCC('D', 'X', 'T', '3');
}
else if (compressionOptions.format == Format_DXT5) {
header.setFourCC('D', 'X', 'T', '5');
}
else if (compressionOptions.format == Format_DXT5n) {
header.setFourCC('D', 'X', 'T', '5');
header.setNormalFlag(true);
}
else if (compressionOptions.format == Format_BC4) {
header.setFourCC('A', 'T', 'I', '1');
}
else if (compressionOptions.format == Format_BC5) {
header.setFourCC('A', 'T', 'I', '2');
header.setNormalFlag(true);
}
}
// Swap bytes if necessary.
header.swapBytes();
nvStaticCheck(sizeof(DDSHeader) == 128);
outputOptions.outputHandler->writeData(&header, 128);
// Revert swap.
header.swapBytes();
}
}
static bool compressMipmap(const Image * image, const OutputOptions & outputOptions, const CompressionOptions::Private & compressionOptions)
{
nvDebugCheck(image != NULL);
if (compressionOptions.format == Format_RGBA || compressionOptions.format == Format_RGB)
{
compressRGB(image, outputOptions, compressionOptions);
}
else if (compressionOptions.format == Format_DXT1)
{
#if defined(HAVE_S3QUANT)
if (compressionOptions.externalCompressor == "s3")
{
s3CompressDXT1(image, outputOptions);
}
else
#endif
#if defined(HAVE_ATITC)
if (compressionOptions.externalCompressor == "ati")
{
printf("ATI\n");
atiCompressDXT1(image, outputOptions);
}
else
#endif
if (compressionOptions.useCuda && nv::cuda::isHardwarePresent())
{
cudaCompressDXT1(image, outputOptions, compressionOptions);
}
else
{
if (compressionOptions.quality == Quality_Fastest)
{
fastCompressDXT1(image, outputOptions);
}
else
{
compressDXT1(image, outputOptions, compressionOptions);
}
}
}
else if (compressionOptions.format == Format_DXT3)
{
if (compressionOptions.quality == Quality_Fastest)
{
fastCompressDXT3(image, outputOptions);
}
else
{
compressDXT3(image, outputOptions, compressionOptions);
}
}
else if (compressionOptions.format == Format_DXT5)
{
if (compressionOptions.quality == Quality_Fastest)
{
fastCompressDXT5(image, outputOptions);
}
else
{
compressDXT5(image, outputOptions, compressionOptions);
}
}
else if (compressionOptions.format == Format_DXT5n)
{
if (compressionOptions.quality == Quality_Fastest)
{
fastCompressDXT5n(image, outputOptions);
}
else
{
compressDXT5n(image, outputOptions, compressionOptions);
}
}
else if (compressionOptions.format == Format_BC4)
{
compressBC4(image, outputOptions, compressionOptions);
}
else if (compressionOptions.format == Format_BC5)
{
compressBC5(image, outputOptions, compressionOptions);
}
return true;
}
// Convert input image to linear float image.
static FloatImage * toFloatImage(const Image * image, const InputOptions::Private & inputOptions)
{
nvDebugCheck(image != NULL);
FloatImage * floatImage = new FloatImage(image);
if (inputOptions.normalMap)
{
// Expand normals. to [-1, 1] range.
// floatImage->expandNormals(0);
}
else if (inputOptions.inputGamma != 1.0f)
{
// Convert to linear space.
floatImage->toLinear(0, 3, inputOptions.inputGamma);
}
return floatImage;
}
// Convert linear float image to output image.
static Image * toFixedImage(const FloatImage * floatImage, const InputOptions::Private & inputOptions)
{
nvDebugCheck(floatImage != NULL);
return floatImage->createImageGammaCorrect(inputOptions.outputGamma);
}
// Create mipmap from the given image.
static FloatImage * createMipmap(const FloatImage * floatImage, const InputOptions::Private & inputOptions)
{
FloatImage * result = NULL;
if (inputOptions.mipmapFilter == MipmapFilter_Box)
{
// Use fast downsample.
result = floatImage->fastDownSample();
}
else if (inputOptions.mipmapFilter == MipmapFilter_Triangle)
{
Kernel1 kernel(4);
kernel.initFilter(Filter::Triangle);
result = floatImage->downSample(kernel, (FloatImage::WrapMode)inputOptions.wrapMode);
}
else /*if (inputOptions.mipmapFilter == MipmapFilter_Kaiser)*/
{
Kernel1 kernel(10);
kernel.initKaiser(8.0, 0.75f);
result = floatImage->downSample(kernel, (FloatImage::WrapMode)inputOptions.wrapMode);
}
// Normalize mipmap.
if (inputOptions.normalizeMipmaps)
{
normalize(result);
}
return result;
}
// Quantize the input image to the precision of the output format.
static void quantize(Image * img, const InputOptions::Private & inputOptions, Format format)
{
if (inputOptions.enableColorDithering)
{
if (format >= Format_DXT1 && format <= Format_DXT5)
{
Quantize::FloydSteinberg_RGB16(img);
}
}
if (inputOptions.binaryAlpha)
{
if (inputOptions.enableAlphaDithering)
{
Quantize::FloydSteinberg_BinaryAlpha(img, inputOptions.alphaThreshold);
}
else
{
Quantize::BinaryAlpha(img, inputOptions.alphaThreshold);
}
}
else
{
if (inputOptions.enableAlphaDithering)
{
if (format == Format_DXT3)
{
Quantize::Alpha4(img);
}
/*else if (format == Format_DXT1a)
{
Quantize::BinaryAlpha(img, inputOptions.alphaThreshold);
}*/
}
}
}
/// Compress the input texture with the given compression options.
bool nvtt::compress(const InputOptions & inputOptions, const OutputOptions & outputOptions, const CompressionOptions & compressionOptions)
{
// Make sure enums match.
nvStaticCheck(FloatImage::WrapMode_Clamp == (FloatImage::WrapMode)WrapMode_Clamp);
nvStaticCheck(FloatImage::WrapMode_Mirror == (FloatImage::WrapMode)WrapMode_Mirror);
nvStaticCheck(FloatImage::WrapMode_Repeat == (FloatImage::WrapMode)WrapMode_Repeat);
// Output DDS header.
outputHeader(inputOptions.m, outputOptions, compressionOptions.m);
Format format = compressionOptions.m.format;
for (int f = 0; f < inputOptions.m.faceCount; f++)
{
Image * lastImage = NULL;
AutoPtr<FloatImage> floatImage(NULL);
for (int m = 0; m < inputOptions.m.mipmapCount; m++)
{
int idx = f * inputOptions.m.mipmapCount + m;
InputOptions::Private::Image & mipmap = inputOptions.m.images[idx];
if (outputOptions.outputHandler)
{
int size = computeImageSize(mipmap.width, mipmap.height, format);
outputOptions.outputHandler->mipmap(size, mipmap.width, mipmap.height, mipmap.depth, mipmap.face, mipmap.mipLevel);
}
Image * img; // Image to compress.
if (mipmap.data != NULL) // Mipmap provided.
{
// Convert to normal map.
if (inputOptions.m.convertToNormalMap)
{
floatImage = createNormalMap(mipmap.data, (FloatImage::WrapMode)inputOptions.m.wrapMode, inputOptions.m.heightFactors, inputOptions.m.bumpFrequencyScale);
}
else
{
lastImage = img = mipmap.data;
// Delete float image.
floatImage = NULL;
}
}
else // Create mipmap from last.
{
if (m == 0) {
// First mipmap missing.
if (outputOptions.errorHandler != NULL) outputOptions.errorHandler->error(Error_InvalidInput);
return false;
}
if (floatImage == NULL)
{
nvDebugCheck(lastImage != NULL);
floatImage = toFloatImage(lastImage, inputOptions.m);
}
// Create mipmap.
floatImage = createMipmap(floatImage.ptr(), inputOptions.m);
}
if (floatImage != NULL)
{
// Convert to fixed.
img = toFixedImage(floatImage.ptr(), inputOptions.m);
}
quantize(img, inputOptions.m, format);
compressMipmap(img, outputOptions, compressionOptions.m);
if (img != mipmap.data)
{
delete img;
}
if (!inputOptions.m.generateMipmaps || (inputOptions.m.maxLevel >= 0 && m >= inputOptions.m.maxLevel)) {
// continue with next face.
break;
}
}
}
return true;
}
/// Estimate the size of compressing the input with the given options.
int nvtt::estimateSize(const InputOptions & inputOptions, const CompressionOptions & compressionOptions)
{
Format format = compressionOptions.m.format;
int size = 0;
for (int f = 0; f < inputOptions.m.faceCount; f++)
{
for (int m = 0; m < inputOptions.m.mipmapCount; m++)
{
int idx = f * inputOptions.m.mipmapCount + m;
const InputOptions::Private::Image & img = inputOptions.m.images[idx];
size += computeImageSize(img.width, img.height, format);
if (!inputOptions.m.generateMipmaps || (inputOptions.m.maxLevel >= 0 && m >= inputOptions.m.maxLevel)) {
// continue with next face.
break;
}
}
}
return size;
}
/// Return a string for the given error.
const char * nvtt::errorString(Error e)
{
switch(e)
{
case Error_InvalidInput:
return "Invalid input";
case Error_UserInterruption:
return "User interruption";
case Error_UnsupportedFeature:
return "Unsupported feature";
case Error_CudaError:
return "CUDA error";
case Error_Unknown:
return "Unknown error";
}
return NULL;
}