You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvtt/cuda/CudaCompressDXT.cpp

381 lines
10 KiB
C++

// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Debug.h>
#include <nvcore/Containers.h>
#include <nvmath/Color.h>
#include <nvimage/Image.h>
#include <nvimage/ColorBlock.h>
#include <nvimage/BlockDXT.h>
#include <nvtt/CompressionOptions.h>
#include <nvtt/OutputOptions.h>
#include <nvtt/QuickCompressDXT.h>
#include <nvtt/OptimalCompressDXT.h>
#include "CudaCompressDXT.h"
#include "CudaUtils.h"
#if defined HAVE_CUDA
#include <cuda_runtime_api.h>
#endif
#include <time.h>
#include <stdio.h>
using namespace nv;
using namespace nvtt;
#if defined HAVE_CUDA
#define MAX_BLOCKS 8192U // 32768, 65535
extern "C" void setupCompressKernel(const float weights[3]);
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
#include "Bitmaps.h" // @@ Rename to BitmapTable.h
// Convert linear image to block linear.
static void convertToBlockLinear(const Image * image, uint * blockLinearImage)
{
const uint w = (image->width() + 3) / 4;
const uint h = (image->height() + 3) / 4;
for(uint by = 0; by < h; by++) {
for(uint bx = 0; bx < w; bx++) {
const uint bw = min(image->width() - bx * 4, 4U);
const uint bh = min(image->height() - by * 4, 4U);
for (uint i = 0; i < 16; i++) {
const int x = (i % 4) % bw;
const int y = (i / 4) % bh;
blockLinearImage[(by * w + bx) * 16 + i] = image->pixel(bx * 4 + x, by * 4 + y).u;
}
}
}
}
#endif
CudaCompressor::CudaCompressor() : m_bitmapTable(NULL), m_data(NULL), m_result(NULL)
{
#if defined HAVE_CUDA
// Allocate and upload bitmaps.
cudaMalloc((void**) &m_bitmapTable, 992 * sizeof(uint));
if (m_bitmapTable != NULL)
{
cudaMemcpy(m_bitmapTable, s_bitmapTable, 992 * sizeof(uint), cudaMemcpyHostToDevice);
}
// Allocate scratch buffers.
cudaMalloc((void**) &m_data, MAX_BLOCKS * 64U);
cudaMalloc((void**) &m_result, MAX_BLOCKS * 8U);
#endif
}
CudaCompressor::~CudaCompressor()
{
#if defined HAVE_CUDA
// Free device mem allocations.
cudaFree(m_data);
cudaFree(m_result);
cudaFree(m_bitmapTable);
#endif
}
bool CudaCompressor::isValid() const
{
#if defined HAVE_CUDA
if (cudaGetLastError() != cudaSuccess)
{
return false;
}
#endif
return m_data != NULL && m_result != NULL && m_bitmapTable != NULL;
}
// @@ This code is very repetitive and needs to be cleaned up.
void CudaCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
{
m_image = image;
m_alphaMode = alphaMode;
}
/// Compress image using CUDA.
void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Image size in blocks.
const uint w = (m_image->width() + 3) / 4;
const uint h = (m_image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) ::malloc(imageSize);
convertToBlockLinear(m_image, blockLinearImage); // @@ Do this in parallel with the GPU, or in the GPU!
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
clock_t start = clock();
setupCompressKernel(compressionOptions.colorWeight.ptr());
// TODO: Add support for multiple GPUs.
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
compressKernelDXT1(count, m_data, m_result, m_bitmapTable);
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
{
outputOptions.outputHandler->writeData(blockLinearImage, count * 8);
}
bn += count;
}
clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(blockLinearImage);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
/// Compress image using CUDA.
void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Image size in blocks.
const uint w = (m_image->width() + 3) / 4;
const uint h = (m_image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) ::malloc(imageSize);
convertToBlockLinear(m_image, blockLinearImage);
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
AlphaBlockDXT3 * alphaBlocks = NULL;
alphaBlocks = (AlphaBlockDXT3 *)::malloc(min(compressedSize, MAX_BLOCKS * 8U));
setupCompressKernel(compressionOptions.colorWeight.ptr());
clock_t start = clock();
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
if (m_alphaMode == AlphaMode_Transparency)
{
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
}
else
{
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
}
// Compress alpha in parallel with the GPU.
for (uint i = 0; i < count; i++)
{
ColorBlock rgba(blockLinearImage + (bn + i) * 16);
OptimalCompress::compressDXT3A(rgba, alphaBlocks + i);
}
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
{
for (uint i = 0; i < count; i++)
{
outputOptions.outputHandler->writeData(alphaBlocks + i, 8);
outputOptions.outputHandler->writeData(blockLinearImage + i * 2, 8);
}
}
bn += count;
}
clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(alphaBlocks);
free(blockLinearImage);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
/// Compress image using CUDA.
void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Image size in blocks.
const uint w = (m_image->width() + 3) / 4;
const uint h = (m_image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) ::malloc(imageSize);
convertToBlockLinear(m_image, blockLinearImage);
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
AlphaBlockDXT5 * alphaBlocks = NULL;
alphaBlocks = (AlphaBlockDXT5 *)::malloc(min(compressedSize, MAX_BLOCKS * 8U));
setupCompressKernel(compressionOptions.colorWeight.ptr());
clock_t start = clock();
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
if (m_alphaMode == AlphaMode_Transparency)
{
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
}
else
{
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
}
// Compress alpha in parallel with the GPU.
for (uint i = 0; i < count; i++)
{
ColorBlock rgba(blockLinearImage + (bn + i) * 16);
QuickCompress::compressDXT5A(rgba, alphaBlocks + i);
}
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
{
for (uint i = 0; i < count; i++)
{
outputOptions.outputHandler->writeData(alphaBlocks + i, 8);
outputOptions.outputHandler->writeData(blockLinearImage + i * 2, 8);
}
}
bn += count;
}
clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(alphaBlocks);
free(blockLinearImage);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}