You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvtt/InputOptions.cpp

409 lines
9.5 KiB
C++

// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <string.h> // memcpy
#include <nvcore/Memory.h>
#include "nvtt.h"
#include "InputOptions.h"
using namespace nv;
using namespace nvtt;
namespace
{
static uint countMipmaps(int w, int h, int d)
{
uint mipmap = 0;
while (w != 1 || h != 1 || d != 1) {
w = max(1, w / 2);
h = max(1, h / 2);
d = max(1, d / 2);
mipmap++;
}
return mipmap + 1;
}
// 1 -> 1, 2 -> 2, 3 -> 2, 4 -> 4, 5 -> 4, ...
static uint previousPowerOfTwo(const uint v)
{
return nextPowerOfTwo(v + 1) / 2;
}
static uint nearestPowerOfTwo(const uint v)
{
const uint np2 = nextPowerOfTwo(v);
const uint pp2 = previousPowerOfTwo(v);
if (np2 - v <= v - pp2)
{
return np2;
}
else
{
return pp2;
}
}
} // namespace
/// Constructor.
InputOptions::InputOptions() : m(*new InputOptions::Private())
{
reset();
}
// Delete images.
InputOptions::~InputOptions()
{
resetTextureLayout();
delete &m;
}
// Reset input options.
void InputOptions::reset()
{
m.wrapMode = WrapMode_Mirror;
m.textureType = TextureType_2D;
m.inputFormat = InputFormat_BGRA_8UB;
m.alphaMode = AlphaMode_None;
m.inputGamma = 2.2f;
m.outputGamma = 2.2f;
m.colorTransform = ColorTransform_None;
m.linearTransform = Matrix(identity);
m.generateMipmaps = true;
m.maxLevel = -1;
m.mipmapFilter = MipmapFilter_Box;
m.kaiserWidth = 3;
m.kaiserAlpha = 4.0f;
m.kaiserStretch = 1.0f;
m.isNormalMap = false;
m.normalizeMipmaps = true;
m.convertToNormalMap = false;
m.heightFactors.set(0.0f, 0.0f, 0.0f, 1.0f);
m.bumpFrequencyScale = Vector4(1.0f, 0.5f, 0.25f, 0.125f) / (1.0f + 0.5f + 0.25f + 0.125f);
m.maxExtent = 0;
m.roundMode = RoundMode_None;
}
// Setup the input image.
void InputOptions::setTextureLayout(TextureType type, int width, int height, int depth /*= 1*/)
{
// Validate arguments.
nvCheck(width >= 0);
nvCheck(height >= 0);
nvCheck(depth >= 0);
// Correct arguments.
if (width == 0) width = 1;
if (height == 0) height = 1;
if (depth == 0) depth = 1;
// Delete previous images.
resetTextureLayout();
m.textureType = type;
// Allocate images.
m.mipmapCount = countMipmaps(width, height, depth);
m.faceCount = (type == TextureType_Cube) ? 6 : 1;
m.imageCount = m.mipmapCount * m.faceCount;
m.images = new Private::InputImage[m.imageCount];
for(uint f = 0; f < m.faceCount; f++)
{
uint w = width;
uint h = height;
uint d = depth;
for (uint mipLevel = 0; mipLevel < m.mipmapCount; mipLevel++)
{
Private::InputImage & img = m.images[f * m.mipmapCount + mipLevel];
img.width = w;
img.height = h;
img.depth = d;
img.mipLevel = mipLevel;
img.face = f;
img.data = NULL;
w = max(1U, w / 2);
h = max(1U, h / 2);
d = max(1U, d / 2);
}
}
}
void InputOptions::resetTextureLayout()
{
if (m.images != NULL)
{
// Delete image array.
delete [] m.images;
m.images = NULL;
m.faceCount = 0;
m.mipmapCount = 0;
m.imageCount = 0;
}
}
// Copies the data to our internal structures.
bool InputOptions::setMipmapData(const void * data, int width, int height, int depth /*= 1*/, int face /*= 0*/, int mipLevel /*= 0*/)
{
nvCheck(depth == 1);
const int idx = face * m.mipmapCount + mipLevel;
if (m.images[idx].width != width || m.images[idx].height != height || m.images[idx].depth != depth || m.images[idx].mipLevel != mipLevel || m.images[idx].face != face)
{
// Invalid dimension or index.
return false;
}
m.images[idx].data = new nv::Image();
m.images[idx].data->allocate(width, height);
memcpy(m.images[idx].data->pixels(), data, width * height * 4);
return true;
}
/// Describe the format of the input.
void InputOptions::setFormat(InputFormat format)
{
m.inputFormat = format;
}
/// Set the way the input alpha channel is interpreted.
void InputOptions::setAlphaMode(AlphaMode alphaMode)
{
m.alphaMode = alphaMode;
}
/// Set gamma settings.
void InputOptions::setGamma(float inputGamma, float outputGamma)
{
m.inputGamma = inputGamma;
m.outputGamma = outputGamma;
}
/// Set texture wrappign mode.
void InputOptions::setWrapMode(WrapMode mode)
{
m.wrapMode = mode;
}
/// Set mipmap filter.
void InputOptions::setMipmapFilter(MipmapFilter filter)
{
m.mipmapFilter = filter;
}
/// Set mipmap generation.
void InputOptions::setMipmapGeneration(bool enabled, int maxLevel/*= -1*/)
{
m.generateMipmaps = enabled;
m.maxLevel = maxLevel;
}
/// Set Kaiser filter parameters.
void InputOptions::setKaiserParameters(float width, float alpha, float stretch)
{
m.kaiserWidth = width;
m.kaiserAlpha = alpha;
m.kaiserStretch = stretch;
}
/// Indicate whether input is a normal map or not.
void InputOptions::setNormalMap(bool b)
{
m.isNormalMap = b;
}
/// Enable normal map conversion.
void InputOptions::setConvertToNormalMap(bool convert)
{
m.convertToNormalMap = convert;
}
/// Set height evaluation factors.
void InputOptions::setHeightEvaluation(float redScale, float greenScale, float blueScale, float alphaScale)
{
// Do not normalize height factors.
// float total = redScale + greenScale + blueScale + alphaScale;
m.heightFactors = Vector4(redScale, greenScale, blueScale, alphaScale);
}
/// Set normal map conversion filter.
void InputOptions::setNormalFilter(float small, float medium, float big, float large)
{
float total = small + medium + big + large;
m.bumpFrequencyScale = Vector4(small, medium, big, large) / total;
}
/// Enable mipmap normalization.
void InputOptions::setNormalizeMipmaps(bool normalize)
{
m.normalizeMipmaps = normalize;
}
/// Set color transform.
void InputOptions::setColorTransform(ColorTransform t)
{
m.colorTransform = t;
}
// Set linear transform for the given channel.
void InputOptions::setLinearTransform(int channel, float w0, float w1, float w2, float w3)
{
nvCheck(channel >= 0 && channel < 4);
Vector4 w(w0, w1, w2, w3);
//m.linearTransform.setRow(channel, w);
}
void InputOptions::setMaxExtents(int e)
{
nvDebugCheck(e > 0);
m.maxExtent = e;
}
void InputOptions::setRoundMode(RoundMode mode)
{
m.roundMode = mode;
}
void InputOptions::Private::computeTargetExtents() const
{
nvCheck(images != NULL);
uint maxExtent = this->maxExtent;
if (roundMode != RoundMode_None)
{
// rounded max extent should never be higher than original max extent.
maxExtent = previousPowerOfTwo(maxExtent);
}
uint w = images->width;
uint h = images->height;
uint d = images->depth;
nvDebugCheck(w > 0);
nvDebugCheck(h > 0);
nvDebugCheck(d > 0);
// Scale extents without changing aspect ratio.
uint maxwhd = max(max(w, h), d);
if (maxExtent != 0 && maxwhd > maxExtent)
{
w = max((w * maxExtent) / maxwhd, 1U);
h = max((h * maxExtent) / maxwhd, 1U);
d = max((d * maxExtent) / maxwhd, 1U);
}
// Round to power of two.
if (roundMode == RoundMode_ToNextPowerOfTwo)
{
w = nextPowerOfTwo(w);
h = nextPowerOfTwo(h);
d = nextPowerOfTwo(d);
}
else if (roundMode == RoundMode_ToNearestPowerOfTwo)
{
w = nearestPowerOfTwo(w);
h = nearestPowerOfTwo(h);
d = nearestPowerOfTwo(d);
}
else if (roundMode == RoundMode_ToPreviousPowerOfTwo)
{
w = previousPowerOfTwo(w);
h = previousPowerOfTwo(h);
d = previousPowerOfTwo(d);
}
this->targetWidth = w;
this->targetHeight = h;
this->targetDepth = d;
this->targetMipmapCount = countMipmaps(w, h, d);
}
// Return real number of mipmaps, including first level.
// computeTargetExtents should have been called before.
int InputOptions::Private::realMipmapCount() const
{
int mipmapCount = targetMipmapCount;
if (!generateMipmaps) mipmapCount = 1;
else if (maxLevel != -1 && maxLevel < mipmapCount - 1) mipmapCount = maxLevel + 1;
return mipmapCount;
}
const Image * InputOptions::Private::image(uint face, uint mipmap) const
{
nvDebugCheck(face < faceCount);
nvDebugCheck(mipmap < mipmapCount);
const InputImage & image = this->images[face * mipmapCount + mipmap];
nvDebugCheck(image.face == face);
nvDebugCheck(image.mipLevel == mipmap);
return image.data.ptr();
}
const Image * InputOptions::Private::image(uint idx) const
{
nvDebugCheck(idx < faceCount * mipmapCount);
const InputImage & image = this->images[idx];
return image.data.ptr();
}