quicktex/src/test/test.cpp

951 lines
26 KiB
C++
Raw Normal View History

// test.cpp - Command line example/test app
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <assert.h>
#include <time.h>
#include "bc7enc.h"
#include "lodepng.h"
#include "dds_defs.h"
#include "bc7decomp.h"
#include "../rgbcx.h"
const int MAX_UBER_LEVEL = 5;
static int print_usage()
{
fprintf(stderr, "bc7enc\n");
fprintf(stderr, "Reads PNG files (with or without alpha channels) and packs them to BC1-5 or BC7/BPTC (default) using\nmodes 1, 6 (opaque blocks) or modes 1, 5, 6, and 7 (alpha blocks).\n");
fprintf(stderr, "By default, a DX10 DDS file and a unpacked PNG file will be written to the current\ndirectory with the .dds/_unpacked.png/_unpacked_alpha.png suffixes.\n\n");
fprintf(stderr, "Usage: bc7enc [-apng_filename] [options] input_filename.png [compressed_output.dds] [unpacked_output.png]\n\n");
fprintf(stderr, "-apng_filename Load G channel of PNG file into alpha channel of source image\n");
fprintf(stderr, "-g Don't write unpacked output PNG files (this disables PSNR metrics too).\n");
fprintf(stderr, "-y Flip source image along Y axis before packing\n");
fprintf(stderr, "-o Write output files to the current directory\n");
fprintf(stderr, "-1 Encode to BC1. -u[0,5] controls quality vs. perf. tradeoff for RGB.\n");
fprintf(stderr, "-3 Encode to BC3. -u[0,5] controls quality vs. perf. tradeoff for RGB.\n");
fprintf(stderr, "-4 Encode to BC4\n");
fprintf(stderr, "-5 Encode to BC5\n");
fprintf(stderr, "\n");
fprintf(stderr, "-X# BC4/5: Set first color channel (defaults to 0 or red)\n");
fprintf(stderr, "-Y# BC4/5: Set second color channel (defaults to 1 or green)\n");
fprintf(stderr, "\n");
fprintf(stderr, "-l BC7: Use linear colorspace metrics instead of perceptual\n");
fprintf(stderr, "-uX BC1/3/7: Higher quality levels, X ranges from [0,4] for BC7, or [0,5] for BC1-3\n");
fprintf(stderr, "-pX BC7: Scan X partitions in mode 1, X ranges from [0,64], use 0 to disable mode 1 entirely (faster)\n");
fprintf(stderr, "\n");
fprintf(stderr, "-b BC1: Enable 3-color mode for blocks containing black or very dark pixels. (Important: engine/shader MUST ignore decoded texture alpha if this flag is enabled!)\n");
fprintf(stderr, "-c BC1: Disable 3-color mode for solid color blocks\n");
fprintf(stderr, "-n BC1: Encode/decode for NVidia GPU's\n");
fprintf(stderr, "-m BC1: Encode/decode for AMD GPU's\n");
fprintf(stderr, "-r BC1: Encode/decode using ideal BC1 formulas with rounding for 4-color block colors 2,3 (same as AMD Compressonator)\n");
fprintf(stderr, "-LX BC1: Set encoding level, where 0=fastest and 19=slowest but highest quality\n");
fprintf(stderr, "-f Force writing DX10-style DDS files (otherwise for BC1-5 it uses DX9-style DDS files)\n");
fprintf(stderr, "\nBy default, this tool encodes to BC1 without rounding 4-color block colors 2,3, which may not match the output of some software decoders.\n");
fprintf(stderr, "\nFor BC4 and BC5: Not all tools support reading DX9-style BC4/BC5 format files (or BC4/5 files at all). AMD Compressonator does.\n");
return EXIT_FAILURE;
}
struct color_quad_u8
{
uint8_t m_c[4];
inline color_quad_u8(uint8_t r, uint8_t g, uint8_t b, uint8_t a)
{
set(r, g, b, a);
}
inline color_quad_u8(uint8_t y = 0, uint8_t a = 255)
{
set(y, a);
}
inline color_quad_u8 &set(uint8_t y, uint8_t a = 255)
{
m_c[0] = y;
m_c[1] = y;
m_c[2] = y;
m_c[3] = a;
return *this;
}
inline color_quad_u8 &set(uint8_t r, uint8_t g, uint8_t b, uint8_t a)
{
m_c[0] = r;
m_c[1] = g;
m_c[2] = b;
m_c[3] = a;
return *this;
}
inline uint8_t &operator[] (uint32_t i) { assert(i < 4); return m_c[i]; }
inline uint8_t operator[] (uint32_t i) const { assert(i < 4); return m_c[i]; }
inline int get_luma() const { return (13938U * m_c[0] + 46869U * m_c[1] + 4729U * m_c[2] + 32768U) >> 16U; } // REC709 weightings
};
typedef std::vector<color_quad_u8> color_quad_u8_vec;
class image_u8
{
public:
image_u8() :
m_width(0), m_height(0)
{
}
image_u8(uint32_t width, uint32_t height) :
m_width(width), m_height(height)
{
m_pixels.resize(width * height);
}
inline const color_quad_u8_vec &get_pixels() const { return m_pixels; }
inline color_quad_u8_vec &get_pixels() { return m_pixels; }
inline uint32_t width() const { return m_width; }
inline uint32_t height() const { return m_height; }
inline uint32_t total_pixels() const { return m_width * m_height; }
inline color_quad_u8 &operator()(uint32_t x, uint32_t y) { assert(x < m_width && y < m_height); return m_pixels[x + m_width * y]; }
inline const color_quad_u8 &operator()(uint32_t x, uint32_t y) const { assert(x < m_width && y < m_height); return m_pixels[x + m_width * y]; }
image_u8& clear()
{
m_width = m_height = 0;
m_pixels.clear();
return *this;
}
image_u8& init(uint32_t width, uint32_t height)
{
clear();
m_width = width;
m_height = height;
m_pixels.resize(width * height);
return *this;
}
image_u8& set_all(const color_quad_u8 &p)
{
for (uint32_t i = 0; i < m_pixels.size(); i++)
m_pixels[i] = p;
return *this;
}
image_u8& crop(uint32_t new_width, uint32_t new_height)
{
if ((m_width == new_width) && (m_height == new_height))
return *this;
image_u8 new_image(new_width, new_height);
const uint32_t w = std::min(m_width, new_width);
const uint32_t h = std::min(m_height, new_height);
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
new_image(x, y) = (*this)(x, y);
return swap(new_image);
}
image_u8 &swap(image_u8 &other)
{
std::swap(m_width, other.m_width);
std::swap(m_height, other.m_height);
std::swap(m_pixels, other.m_pixels);
return *this;
}
inline void get_block(uint32_t bx, uint32_t by, uint32_t width, uint32_t height, color_quad_u8 *pPixels)
{
assert((bx * width + width) <= m_width);
assert((by * height + height) <= m_height);
for (uint32_t y = 0; y < height; y++)
memcpy(pPixels + y * width, &(*this)(bx * width, by * height + y), width * sizeof(color_quad_u8));
}
inline void set_block(uint32_t bx, uint32_t by, uint32_t width, uint32_t height, const color_quad_u8 *pPixels)
{
assert((bx * width + width) <= m_width);
assert((by * height + height) <= m_height);
for (uint32_t y = 0; y < height; y++)
memcpy(&(*this)(bx * width, by * height + y), pPixels + y * width, width * sizeof(color_quad_u8));
}
image_u8 &swizzle(uint32_t r, uint32_t g, uint32_t b, uint32_t a)
{
assert((r | g | b | a) <= 3);
for (uint32_t y = 0; y < m_height; y++)
{
for (uint32_t x = 0; x < m_width; x++)
{
color_quad_u8 tmp((*this)(x, y));
(*this)(x, y).set(tmp[r], tmp[g], tmp[b], tmp[a]);
}
}
return *this;
}
private:
color_quad_u8_vec m_pixels;
uint32_t m_width, m_height;
};
static bool load_png(const char *pFilename, image_u8 &img)
{
img.clear();
std::vector<unsigned char> pixels;
unsigned int w = 0, h = 0;
unsigned int e = lodepng::decode(pixels, w, h, pFilename);
if (e != 0)
{
fprintf(stderr, "Failed loading PNG file %s\n", pFilename);
return false;
}
img.init(w, h);
memcpy(&img.get_pixels()[0], &pixels[0], w * h * sizeof(uint32_t));
return true;
}
static bool save_png(const char *pFilename, const image_u8 &img, bool save_alpha)
{
const uint32_t w = img.width();
const uint32_t h = img.height();
std::vector<unsigned char> pixels;
if (save_alpha)
{
pixels.resize(w * h * sizeof(color_quad_u8));
memcpy(&pixels[0], &img.get_pixels()[0], w * h * sizeof(color_quad_u8));
}
else
{
pixels.resize(w * h * 3);
unsigned char *pDst = &pixels[0];
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++, pDst += 3)
pDst[0] = img(x, y)[0], pDst[1] = img(x, y)[1], pDst[2] = img(x, y)[2];
}
return lodepng::encode(pFilename, pixels, w, h, save_alpha ? LCT_RGBA : LCT_RGB) == 0;
}
class image_metrics
{
public:
double m_max, m_mean, m_mean_squared, m_root_mean_squared, m_peak_snr;
image_metrics()
{
clear();
}
void clear()
{
memset(this, 0, sizeof(*this));
}
void compute(const image_u8 &a, const image_u8 &b, uint32_t first_channel, uint32_t num_channels)
{
const bool average_component_error = true;
const uint32_t width = std::min(a.width(), b.width());
const uint32_t height = std::min(a.height(), b.height());
assert((first_channel < 4U) && (first_channel + num_channels <= 4U));
// Histogram approach originally due to Charles Bloom.
double hist[256];
memset(hist, 0, sizeof(hist));
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
const color_quad_u8 &ca = a(x, y);
const color_quad_u8 &cb = b(x, y);
if (!num_channels)
hist[iabs(ca.get_luma() - cb.get_luma())]++;
else
{
for (uint32_t c = 0; c < num_channels; c++)
hist[iabs(ca[first_channel + c] - cb[first_channel + c])]++;
}
}
}
m_max = 0;
double sum = 0.0f, sum2 = 0.0f;
for (uint32_t i = 0; i < 256; i++)
{
if (!hist[i])
continue;
m_max = std::max<double>(m_max, i);
double x = i * hist[i];
sum += x;
sum2 += i * x;
}
// See http://richg42.blogspot.com/2016/09/how-to-compute-psnr-from-old-berkeley.html
double total_values = width * height;
if (average_component_error)
total_values *= clamp<uint32_t>(num_channels, 1, 4);
m_mean = clamp<double>(sum / total_values, 0.0f, 255.0f);
m_mean_squared = clamp<double>(sum2 / total_values, 0.0f, 255.0f * 255.0f);
m_root_mean_squared = sqrt(m_mean_squared);
if (!m_root_mean_squared)
m_peak_snr = 100.0f;
else
m_peak_snr = clamp<double>(log10(255.0f / m_root_mean_squared) * 20.0f, 0.0f, 100.0f);
}
};
struct block8
{
uint64_t m_vals[1];
};
typedef std::vector<block8> block8_vec;
struct block16
{
uint64_t m_vals[2];
};
typedef std::vector<block16> block16_vec;
static bool save_dds(const char *pFilename, uint32_t width, uint32_t height, const void *pBlocks, uint32_t pixel_format_bpp, DXGI_FORMAT dxgi_format, bool srgb, bool force_dx10_header)
{
(void)srgb;
FILE *pFile = NULL;
pFile = fopen(pFilename, "wb");
if (!pFile)
{
fprintf(stderr, "Failed creating file %s!\n", pFilename);
return false;
}
fwrite("DDS ", 4, 1, pFile);
DDSURFACEDESC2 desc;
memset(&desc, 0, sizeof(desc));
desc.dwSize = sizeof(desc);
desc.dwFlags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_PIXELFORMAT | DDSD_CAPS;
desc.dwWidth = width;
desc.dwHeight = height;
desc.ddsCaps.dwCaps = DDSCAPS_TEXTURE;
desc.ddpfPixelFormat.dwSize = sizeof(desc.ddpfPixelFormat);
desc.ddpfPixelFormat.dwFlags |= DDPF_FOURCC;
desc.lPitch = (((desc.dwWidth + 3) & ~3) * ((desc.dwHeight + 3) & ~3) * pixel_format_bpp) >> 3;
desc.dwFlags |= DDSD_LINEARSIZE;
desc.ddpfPixelFormat.dwRGBBitCount = 0;
if ( (!force_dx10_header) &&
((dxgi_format == DXGI_FORMAT_BC1_UNORM) ||
(dxgi_format == DXGI_FORMAT_BC3_UNORM) ||
(dxgi_format == DXGI_FORMAT_BC4_UNORM) ||
(dxgi_format == DXGI_FORMAT_BC5_UNORM)) )
{
if (dxgi_format == DXGI_FORMAT_BC1_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('D', 'X', 'T', '1');
else if (dxgi_format == DXGI_FORMAT_BC3_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('D', 'X', 'T', '5');
else if (dxgi_format == DXGI_FORMAT_BC4_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('A', 'T', 'I', '1');
else if (dxgi_format == DXGI_FORMAT_BC5_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('A', 'T', 'I', '2');
fwrite(&desc, sizeof(desc), 1, pFile);
}
else
{
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('D', 'X', '1', '0');
fwrite(&desc, sizeof(desc), 1, pFile);
DDS_HEADER_DXT10 hdr10;
memset(&hdr10, 0, sizeof(hdr10));
// Not all tools support DXGI_FORMAT_BC7_UNORM_SRGB (like NVTT), but ddsview in DirectXTex pays attention to it. So not sure what to do here.
// For best compatibility just write DXGI_FORMAT_BC7_UNORM.
//hdr10.dxgiFormat = srgb ? DXGI_FORMAT_BC7_UNORM_SRGB : DXGI_FORMAT_BC7_UNORM;
hdr10.dxgiFormat = dxgi_format; // DXGI_FORMAT_BC7_UNORM;
hdr10.resourceDimension = D3D10_RESOURCE_DIMENSION_TEXTURE2D;
hdr10.arraySize = 1;
fwrite(&hdr10, sizeof(hdr10), 1, pFile);
}
fwrite(pBlocks, desc.lPitch, 1, pFile);
if (fclose(pFile) == EOF)
{
fprintf(stderr, "Failed writing to DDS file %s!\n", pFilename);
return false;
}
return true;
}
static void strip_extension(std::string &s)
{
for (int32_t i = (int32_t)s.size() - 1; i >= 0; i--)
{
if (s[i] == '.')
{
s.resize(i);
break;
}
}
}
static void strip_path(std::string& s)
{
for (int32_t i = (int32_t)s.size() - 1; i >= 0; i--)
{
if ((s[i] == '/') || (s[i] == ':') || (s[i] == '\\'))
{
s.erase(0, i + 1);
break;
}
}
}
int main(int argc, char *argv[])
{
if (argc < 2)
return print_usage();
std::string src_filename;
std::string src_alpha_filename;
std::string dds_output_filename;
std::string png_output_filename;
std::string png_alpha_output_filename;
bool no_output_png = false;
bool out_cur_dir = false;
int uber_level = 0;
int max_partitions_to_scan = BC7ENC_MAX_PARTITIONS1;
bool perceptual = true;
bool y_flip = false;
uint32_t bc45_channel0 = 0;
uint32_t bc45_channel1 = 1;
rgbcx::bc1_approx_mode bc1_mode = rgbcx::bc1_approx_mode::cBC1Ideal;
bool use_bc1_3color_mode = true;
bool use_bc1_3color_mode_for_black = false;
int bc1_quality_level = 2;
DXGI_FORMAT dxgi_format = DXGI_FORMAT_BC7_UNORM;
uint32_t pixel_format_bpp = 8;
bool force_dx10_dds = false;
for (int i = 1; i < argc; i++)
{
const char *pArg = argv[i];
if (pArg[0] == '-')
{
switch (pArg[1])
{
case '1':
{
dxgi_format = DXGI_FORMAT_BC1_UNORM;
pixel_format_bpp = 4;
printf("Compressing to BC1\n");
break;
}
case '3':
{
dxgi_format = DXGI_FORMAT_BC3_UNORM;
pixel_format_bpp = 8;
printf("Compressing to BC3\n");
break;
}
case '4':
{
dxgi_format = DXGI_FORMAT_BC4_UNORM;
pixel_format_bpp = 4;
printf("Compressing to BC4\n");
break;
}
case '5':
{
dxgi_format = DXGI_FORMAT_BC5_UNORM;
pixel_format_bpp = 8;
printf("Compressing to BC5\n");
break;
}
case 'y':
{
y_flip = true;
break;
}
case 'a':
{
src_alpha_filename = pArg + 2;
break;
}
case 'X':
{
bc45_channel0 = atoi(pArg + 2);
if ((bc45_channel0 < 0) || (bc45_channel0 > 3))
{
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'Y':
{
bc45_channel1 = atoi(pArg + 2);
if ((bc45_channel1 < 0) || (bc45_channel1 > 3))
{
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'f':
{
force_dx10_dds = true;
break;
}
case 'u':
{
uber_level = atoi(pArg + 2);
if ((uber_level < 0) || (uber_level > MAX_UBER_LEVEL))
{
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'L':
{
bc1_quality_level = atoi(pArg + 2);
if (((int)bc1_quality_level < (int)rgbcx::MIN_LEVEL) || ((int)bc1_quality_level > (int)(rgbcx::MAX_LEVEL + 1)))
{
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'g':
{
no_output_png = true;
break;
}
case 'l':
{
perceptual = false;
break;
}
case 'p':
{
max_partitions_to_scan = atoi(pArg + 2);
if ((max_partitions_to_scan < 0) || (max_partitions_to_scan > BC7ENC_MAX_PARTITIONS1))
{
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'n':
{
bc1_mode = rgbcx::bc1_approx_mode::cBC1NVidia;
break;
}
case 'm':
{
bc1_mode = rgbcx::bc1_approx_mode::cBC1AMD;
break;
}
case 'r':
{
bc1_mode = rgbcx::bc1_approx_mode::cBC1IdealRound4;
break;
}
case 'o':
{
out_cur_dir = true;
break;
}
case 'b':
{
use_bc1_3color_mode_for_black = true;
break;
}
case 'c':
{
use_bc1_3color_mode = false;
break;
}
default:
{
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
}
}
else
{
if (!src_filename.size())
src_filename = pArg;
else if (!dds_output_filename.size())
dds_output_filename = pArg;
else if (!png_output_filename.size())
png_output_filename = pArg;
else
{
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
}
}
const uint32_t bytes_per_block = (16 * pixel_format_bpp) / 8;
assert(bytes_per_block == 8 || bytes_per_block == 16);
if (!src_filename.size())
{
fprintf(stderr, "No source filename specified!\n");
return EXIT_FAILURE;
}
if (!dds_output_filename.size())
{
dds_output_filename = src_filename;
strip_extension(dds_output_filename);
if (out_cur_dir)
strip_path(dds_output_filename);
dds_output_filename += ".dds";
}
if (!png_output_filename.size())
{
png_output_filename = src_filename;
strip_extension(png_output_filename);
if (out_cur_dir)
strip_path(png_output_filename);
png_output_filename += "_unpacked.png";
}
png_alpha_output_filename = png_output_filename;
strip_extension(png_alpha_output_filename);
png_alpha_output_filename += "_alpha.png";
image_u8 source_image;
if (!load_png(src_filename.c_str(), source_image))
return EXIT_FAILURE;
printf("Source image: %s %ux%u\n", src_filename.c_str(), source_image.width(), source_image.height());
if (src_alpha_filename.size())
{
image_u8 source_alpha_image;
if (!load_png(src_alpha_filename.c_str(), source_alpha_image))
return EXIT_FAILURE;
printf("Source alpha image: %s %ux%u\n", src_alpha_filename.c_str(), source_alpha_image.width(), source_alpha_image.height());
const uint32_t w = std::min(source_alpha_image.width(), source_image.width());
const uint32_t h = std::min(source_alpha_image.height(), source_image.height());
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++)
source_image(x, y)[3] = source_alpha_image(x, y)[1];
}
#if 0
// HACK HACK
for (uint32_t y = 0; y < source_image.height(); y++)
for (uint32_t x = 0; x < source_image.width(); x++)
source_image(x, y)[3] = 254;
#endif
const uint32_t orig_width = source_image.width();
const uint32_t orig_height = source_image.height();
if (y_flip)
{
image_u8 temp;
temp.init(orig_width, orig_height);
for (uint32_t y = 0; y < orig_height; y++)
for (uint32_t x = 0; x < orig_width; x++)
temp(x, (orig_height - 1) - y) = source_image(x, y);
temp.swap(source_image);
}
source_image.crop((source_image.width() + 3) & ~3, (source_image.height() + 3) & ~3);
const uint32_t blocks_x = source_image.width() / 4;
const uint32_t blocks_y = source_image.height() / 4;
block16_vec packed_image16(blocks_x * blocks_y);
block8_vec packed_image8(blocks_x * blocks_y);
bc7enc_compress_block_params pack_params;
bc7enc_compress_block_params_init(&pack_params);
if (!perceptual)
bc7enc_compress_block_params_init_linear_weights(&pack_params);
pack_params.m_max_partitions_mode = max_partitions_to_scan;
pack_params.m_uber_level = std::min(BC7ENC_MAX_UBER_LEVEL, uber_level);
if (dxgi_format == DXGI_FORMAT_BC7_UNORM)
{
printf("Max mode 1 partitions: %u, uber level: %u, perceptual: %u\n", pack_params.m_max_partitions_mode, pack_params.m_uber_level, perceptual);
}
else
{
printf("Level: %u, use 3-color mode: %u, use 3-color mode for black: %u, bc1_mode: %u\n",
bc1_quality_level, use_bc1_3color_mode, use_bc1_3color_mode_for_black, (int)bc1_mode);
}
bc7enc_compress_block_init();
rgbcx::init(bc1_mode);
bool has_alpha = false;
clock_t start_t = clock();
uint32_t bc7_mode_hist[8];
memset(bc7_mode_hist, 0, sizeof(bc7_mode_hist));
for (uint32_t by = 0; by < blocks_y; by++)
{
for (uint32_t bx = 0; bx < blocks_x; bx++)
{
color_quad_u8 pixels[16];
source_image.get_block(bx, by, 4, 4, pixels);
if (!has_alpha)
{
for (uint32_t i = 0; i < 16; i++)
{
if (pixels[i].m_c[3] < 255)
{
has_alpha = true;
break;
}
}
}
switch (dxgi_format)
{
case DXGI_FORMAT_BC1_UNORM:
{
block8* pBlock = &packed_image8[bx + by * blocks_x];
rgbcx::encode_bc1(bc1_quality_level, pBlock, &pixels[0].m_c[0], use_bc1_3color_mode, use_bc1_3color_mode_for_black);
break;
}
case DXGI_FORMAT_BC3_UNORM:
{
2021-02-06 07:22:57 +00:00
BC3Block* pBlock = reinterpret_cast<BC3Block *>(&packed_image16[bx + by * blocks_x]);
rgbcx::encode_bc3(bc1_quality_level, pBlock, &pixels[0].m_c[0]);
break;
}
case DXGI_FORMAT_BC4_UNORM:
{
block8* pBlock = &packed_image8[bx + by * blocks_x];
rgbcx::encode_bc4(pBlock, &pixels[0].m_c[bc45_channel0], 4);
break;
}
case DXGI_FORMAT_BC5_UNORM:
{
block16* pBlock = &packed_image16[bx + by * blocks_x];
2021-02-06 07:22:57 +00:00
rgbcx::encode_bc5(reinterpret_cast<BC5Block *>(pBlock), &pixels[0].m_c[0], bc45_channel0, bc45_channel1, 4);
break;
}
case DXGI_FORMAT_BC7_UNORM:
{
block16* pBlock = &packed_image16[bx + by * blocks_x];
bc7enc_compress_block(pBlock, pixels, &pack_params);
uint32_t mode = ((uint8_t *)pBlock)[0];
for (uint32_t m = 0; m <= 7; m++)
{
if (mode & (1 << m))
{
bc7_mode_hist[m]++;
break;
}
}
break;
}
default:
{
assert(0);
break;
}
}
}
if ((by & 127) == 0)
printf(".");
}
clock_t end_t = clock();
printf("\nTotal time: %f secs\n", (double)(end_t - start_t) / CLOCKS_PER_SEC);
if (dxgi_format == DXGI_FORMAT_BC7_UNORM)
{
printf("BC7 mode histogram:\n");
for (uint32_t i = 0; i < 8; i++)
printf("%u: %u\n", i, bc7_mode_hist[i]);
}
if (has_alpha)
printf("Source image had an alpha channel.\n");
bool failed = false;
if (!save_dds(dds_output_filename.c_str(), orig_width, orig_height, (bytes_per_block == 16) ? (void*)&packed_image16[0] : (void*)&packed_image8[0], pixel_format_bpp, dxgi_format, perceptual, force_dx10_dds))
failed = true;
else
printf("Wrote DDS file %s\n", dds_output_filename.c_str());
if ((!no_output_png) && (png_output_filename.size()))
{
image_u8 unpacked_image(source_image.width(), source_image.height());
bool punchthrough_flag = false;
for (uint32_t by = 0; by < blocks_y; by++)
{
for (uint32_t bx = 0; bx < blocks_x; bx++)
{
void* pBlock = (bytes_per_block == 16) ? (void *)&packed_image16[bx + by * blocks_x] : (void*)&packed_image8[bx + by * blocks_x];
color_quad_u8 unpacked_pixels[16];
for (uint32_t i = 0; i < 16; i++)
unpacked_pixels[i].set(0, 0, 0, 255);
switch (dxgi_format)
{
case DXGI_FORMAT_BC1_UNORM:
rgbcx::unpack_bc1(pBlock, unpacked_pixels, true, bc1_mode);
break;
case DXGI_FORMAT_BC3_UNORM:
if (!rgbcx::unpack_bc3(pBlock, unpacked_pixels, bc1_mode))
punchthrough_flag = true;
break;
case DXGI_FORMAT_BC4_UNORM:
rgbcx::unpack_bc4(pBlock, &unpacked_pixels[0][0], 4);
break;
case DXGI_FORMAT_BC5_UNORM:
rgbcx::unpack_bc5(pBlock, &unpacked_pixels[0][0], 0, 1, 4);
break;
case DXGI_FORMAT_BC7_UNORM:
bc7decomp::unpack_bc7((const uint8_t*)pBlock, (bc7decomp::color_rgba*)unpacked_pixels);
break;
default:
assert(0);
break;
}
unpacked_image.set_block(bx, by, 4, 4, unpacked_pixels);
} // bx
} // by
if ((punchthrough_flag) && (dxgi_format == DXGI_FORMAT_BC3_UNORM))
fprintf(stderr, "Warning: BC3 mode selected, but rgbcx::unpack_bc3() returned one or more blocks using 3-color mode!\n");
if ((dxgi_format != DXGI_FORMAT_BC4_UNORM) && (dxgi_format != DXGI_FORMAT_BC5_UNORM))
{
image_metrics y_metrics;
y_metrics.compute(source_image, unpacked_image, 0, 0);
printf("Luma Max error: %3.0f RMSE: %f PSNR %03.02f dB\n", y_metrics.m_max, y_metrics.m_root_mean_squared, y_metrics.m_peak_snr);
image_metrics rgb_metrics;
rgb_metrics.compute(source_image, unpacked_image, 0, 3);
printf("RGB Max error: %3.0f RMSE: %f PSNR %03.02f dB\n", rgb_metrics.m_max, rgb_metrics.m_root_mean_squared, rgb_metrics.m_peak_snr);
image_metrics rgba_metrics;
rgba_metrics.compute(source_image, unpacked_image, 0, 4);
printf("RGBA Max error: %3.0f RMSE: %f PSNR %03.02f dB\n", rgba_metrics.m_max, rgba_metrics.m_root_mean_squared, rgba_metrics.m_peak_snr);
}
for (uint32_t chan = 0; chan < 4; chan++)
{
if (dxgi_format == DXGI_FORMAT_BC4_UNORM)
{
if (chan != bc45_channel0)
continue;
}
else if (dxgi_format == DXGI_FORMAT_BC5_UNORM)
{
if ((chan != bc45_channel0) && (chan != bc45_channel1))
continue;
}
image_metrics c_metrics;
c_metrics.compute(source_image, unpacked_image, chan, 1);
static const char *s_chan_names[4] = { "Red ", "Green", "Blue ", "Alpha" };
printf("%s Max error: %3.0f RMSE: %f PSNR %03.02f dB\n", s_chan_names[chan], c_metrics.m_max, c_metrics.m_root_mean_squared, c_metrics.m_peak_snr);
}
if (bc1_mode != rgbcx::bc1_approx_mode::cBC1Ideal)
printf("Note: BC1/BC3 RGB decoding was done with the specified vendor's BC1 approximations.\n");
if (!save_png(png_output_filename.c_str(), unpacked_image, false))
failed = true;
else
printf("Wrote PNG file %s\n", png_output_filename.c_str());
if (png_alpha_output_filename.size())
{
image_u8 unpacked_image_alpha(unpacked_image);
for (uint32_t y = 0; y < unpacked_image_alpha.height(); y++)
for (uint32_t x = 0; x < unpacked_image_alpha.width(); x++)
unpacked_image_alpha(x, y).set(unpacked_image_alpha(x, y)[3], 255);
if (!save_png(png_alpha_output_filename.c_str(), unpacked_image_alpha, false))
failed = true;
else
printf("Wrote PNG file %s\n", png_alpha_output_filename.c_str());
}
}
return failed ? EXIT_FAILURE : EXIT_SUCCESS;
}