Improved matrix/vector class

This commit is contained in:
Andrew Cassidy 2022-06-12 17:06:53 -07:00
parent 59fefae3f7
commit f767525aa1
3 changed files with 281 additions and 223 deletions

View File

@ -29,82 +29,97 @@
namespace quicktex {
template <typename T, size_t N, size_t M>
requires(N >= 1) && (M >= 1)
class Matrix;
template <typename T, size_t M> using Vec = Matrix<T, 1, M>;
template <typename V>
concept vector_like = subscriptable_range<V> && requires { V::size(); };
template <typename V> constexpr size_t vector_dims = vector_like<V> ? 1 + vector_dims<range_value_t<V>> : 0;
template <typename T, size_t N> class Vec;
namespace detail {
template <typename T> struct _vector_stype { using type = T; };
template <typename T>
requires vector_like<T>
struct _vector_stype<T> {
using type = range_value_t<T>;
};
template <typename T, size_t N = 1, size_t M = 1> struct _make_matrix { using type = T; };
template <typename T, size_t N, size_t M>
requires(N > 1 && M == 1)
struct _make_matrix<T, N, M> {
using type = Vec<T, N>;
};
template <typename T, size_t N, size_t M>
requires(N > 1 && M > 1)
struct _make_matrix<T, N, M> {
using type = Vec<Vec<T, N>, M>;
};
template <typename T> struct _vector_width { static constexpr size_t width = 1; };
template <typename T>
requires vector_like<T>
struct _vector_width<T> {
static constexpr size_t width = T::size();
};
template <typename T> struct _vector_height { static constexpr size_t height = 1; };
template <typename T>
requires vector_like<T>
struct _vector_height<T> {
static constexpr size_t height = _vector_width<range_value_t<T>>::width;
};
} // namespace detail
template <typename T> using vector_stype = typename detail::_vector_stype<T>::type;
template <typename T, size_t N = 1, size_t M = 1> using make_matrix = typename detail::_make_matrix<T, N, M>::type;
template <typename T> constexpr size_t vector_width = detail::_vector_width<T>::width;
template <typename T> constexpr size_t vector_height = detail::_vector_height<T>::height;
template <typename L, typename R, typename Op>
concept operable_VV = vector_like<L> && vector_like<R> && (vector_dims<L> == vector_dims<R>) &&
(vector_width<L> == vector_width<R>) &&
requires(range_value_t<L> &l, range_value_t<R> &r, Op &op) { op(l, r); };
concept operable_VV =
vector_like<L> && vector_like<R> && requires(range_value_t<L> &l, range_value_t<R> &r, Op &op) { op(l, r); };
template <typename L, typename R, typename Op>
concept operable_Vs = vector_like<L> && (!vector_like<R>) && requires(range_value_t<L> &l, R &r, Op &op) { op(l, r); };
template <typename T, size_t N, typename D> class VecBase {
template <typename L, typename R, typename Op>
concept operable = requires(L &l, R &r, Op &op) {
{ op(l, r) } -> std::same_as<L>;
};
template <typename L, typename R, typename Op>
concept scalar_operable = std::is_scalar_v<L> && std::is_scalar_v<R> && operable<L, R, Op>;
template <typename V>
concept is_matrix = requires(V &v) {
V::width();
V::height();
V::value_type;
} && std::same_as < Matrix<typename V::value_type, V::width(), V::height()>,
std::remove_cvref_t < V >> ;
template <typename V, size_t N, size_t M>
concept is_matrix_NxM = is_matrix<V> && (V::width() == N) && (V::height() == M);
template <typename T, size_t N> class VecBase {
public:
const T &operator[](size_t index) const { return _c[index]; }
T &operator[](size_t index) { return _c[index]; }
const T &at(size_t index) const { return _c.at(index); }
T &at(size_t index) { return _c.at(index); }
auto begin() { return _c.begin(); }
auto begin() const { return _c.begin(); }
auto end() { return _c.end(); }
auto end() const { return _c.end(); }
private:
std::array<T, N> _c;
};
template <typename T, size_t N, size_t M> using matrix_row_type = std::conditional_t<N <= 1, T, Vec<T, N>>;
template <typename T, size_t N, size_t M> using matrix_column_type = std::conditional_t<M <= 1, T, Vec<T, M>>;
/**
* A matrix of values that can be operated on
* @tparam T Scalar type
* @tparam N Width of the matrix
* @tparam M Height of the matrix
*/
template <typename T, size_t N, size_t M>
requires(N >= 1) && (M >= 1)
class Matrix : public VecBase<std::conditional_t<N == 1, T, VecBase<T, N>>, M> {
public:
using base = VecBase<std::conditional_t<N == 1, T, VecBase<T, N>>, M>;
using value_type = T;
using row_type = std::conditional_t<N == 1, T, Vec<T, N>>;
using column_type = std::conditional_t<M == 1, T, Vec<T, M>>;
using base::base;
using base::begin;
using base::end;
using base::operator[];
public:
// region constructors
/**
* Create a vector from an intializer list
* @param il values to populate with
*/
VecBase(std::initializer_list<T> il) {
assert(il.size() == N); // ensure il is of the right size
std::copy_n(il.begin(), N, begin());
Matrix(std::initializer_list<T> il) {
assert(il.size() == M); // ensure il is of the right size
std::copy_n(il.begin(), M, this->begin());
}
/**
* Create a vector from a scalar value
* @param scalar value to populate with
*/
VecBase(const T &scalar) { std::fill(begin(), end(), scalar); }
Matrix(const T &scalar) { std::fill(this->begin(), this->end(), scalar); }
/**
* Create a vector from an iterator
@ -112,10 +127,10 @@ template <typename T, size_t N, typename D> class VecBase {
* @param input_iterator iterator to copy from
*/
template <typename II>
VecBase(const II input_iterator)
Matrix(const II input_iterator)
requires std::input_iterator<II> && std::convertible_to<std::iter_value_t<II>,
T> {
std::copy_n(input_iterator, N, begin());
std::copy_n(input_iterator, M, this->begin());
}
/**
@ -124,246 +139,275 @@ template <typename T, size_t N, typename D> class VecBase {
* @param input_range Range to copy from
*/
template <typename R>
VecBase(const R &input_range)
Matrix(const R &input_range)
requires range<R> && std::convertible_to<typename R::value_type, T>
: VecBase(input_range.begin()) {
assert(std::distance(input_range.begin(), input_range.end()) == N);
: Matrix(input_range.begin()) {
assert(std::distance(input_range.begin(), input_range.end()) == M);
}
// endregion
// region iterators and accessors
static constexpr size_t size() { return N; }
inline auto begin() { return this->_derived()._begin(); }
inline auto begin() const { return this->_derived()._begin(); }
inline auto end() { return this->_derived()._end(); }
inline auto end() const { return this->_derived()._end(); }
static constexpr size_t size() { return M; }
static constexpr size_t width() { return N; }
static constexpr size_t height() { return M; }
inline T &at(size_t i) {
assert(i < N);
return this->_derived()._at(i);
}
inline const T &at(size_t i) const {
assert(i < N);
return this->_derived()._at(i);
}
auto row_begin() { return this->begin(); }
auto row_begin() const { return this->begin(); }
const T &operator[](size_t i) const { return at(i); }
T &operator[](size_t i) { return at(i); }
auto row_end() { return this->end(); }
auto row_end() const { return this->end(); }
const T &get_row(size_t y) const { return at(y); }
auto column_begin() const { return column_iterator(this, 0); }
auto column_end() const { return column_iterator(this, N); }
template <typename R>
requires vector_like<R> && (R::size() == N)
void set_row(size_t y, const R &value) {
at(y) = value;
}
const row_type &get_row(size_t y) const { return this->at(y); }
const auto &get_column(size_t x) const {
make_matrix<vector_stype<D>, vector_height<D>> ret;
if constexpr (vector_height<D> == 1) {
return at(x);
}
for (unsigned y = 0; y < vector_height<D>; y++) { ret[y] = at(x)[y]; }
template <typename R> void set_row(size_t y, const R &value) { this->at(y) = value; }
template <typename S = T> column_type get_column(size_t n) const {
column_type ret;
for (unsigned m = 0; m < M; m++) { ret[m] = element(m, n); }
return ret;
}
template <typename R>
requires vector_like<R> && (R::size() == vector_height<D>)
void set_column(size_t x, const R &value) {
for (unsigned y = 0; y < vector_height<D>; y++) { at(x)[y] = value[y]; }
void set_column(size_t n, const column_type &value) {
column_type ret;
for (unsigned m = 0; m < M; m++) { element(m, n) = value[m]; }
return ret;
}
const T &element(size_t m, size_t n) const {
assert(n < N);
assert(m < M);
if constexpr (N == 1) {
return this->at(m);
} else {
return this->at(m)[n];
}
}
T &element(size_t n, size_t m) { return const_cast<T &>(static_cast<const Matrix &>(*this).element(n, m)); }
const T &element(size_t i) const { return element(i / N, i % N); }
T &element(size_t i) { return element(i / N, i % N); }
// RGBA accessors
const T &r() const { return at(0); }
T &r() { return at(0); }
template <typename S = T> std::enable_if_t<N >= 2, const S &> g() const { return at(1); }
template <typename S = T> std::enable_if_t<N >= 2, S &> g() { return at(1); }
template <typename S = T> std::enable_if_t<N >= 3, const S &> b() const { return at(2); }
template <typename S = T> std::enable_if_t<N >= 3, S &> b() { return at(2); }
template <typename S = T> std::enable_if_t<N >= 4, const S &> a() const { return at(3); }
template <typename S = T> std::enable_if_t<N >= 4, S &> a() { return at(3); }
const T &r() const { return this->at(0); }
T &r() { return this->at(0); }
template <typename S = T> std::enable_if_t<M >= 2, const S &> g() const { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 2, S &> g() { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 3, const S &> b() const { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 3, S &> b() { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 4, const S &> a() const { return this->at(3); }
template <typename S = T> std::enable_if_t<M >= 4, S &> a() { return this->at(3); }
// XYZW accessors
const T &x() const { return at(0); }
T &x() { return at(0); }
template <typename S = T> std::enable_if_t<N >= 2, const S &> y() const { return at(1); }
template <typename S = T> std::enable_if_t<N >= 2, S &> y() { return at(1); }
template <typename S = T> std::enable_if_t<N >= 3, const S &> z() const { return at(2); }
template <typename S = T> std::enable_if_t<N >= 3, S &> z() { return at(2); }
template <typename S = T> std::enable_if_t<N >= 4, const S &> w() const { return at(3); }
template <typename S = T> std::enable_if_t<N >= 4, S &> w() { return at(3); }
const T &x() const { return this->at(0); }
T &x() { return this->at(0); }
template <typename S = T> std::enable_if_t<M >= 2, const S &> y() const { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 2, S &> y() { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 3, const S &> z() const { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 3, S &> z() { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 4, const S &> w() const { return this->at(3); }
template <typename S = T> std::enable_if_t<M >= 4, S &> w() { return this->at(3); }
// endregion
// template <typename R>
// requires sized_range<R> bool
bool operator==(const VecBase &rhs) const {
return size() == rhs.size() && std::equal(begin(), end(), rhs.begin());
template <typename R>
requires std::equality_comparable_with<T, R> bool
operator==(const Matrix<R, N, M> &rhs) const {
return size() == rhs.size() && std::equal(this->begin(), this->end(), rhs.begin());
};
// unary vector negation
template <typename S = T>
requires(!std::unsigned_integral<T>) && requires(T &t) { -t; }
D operator-() const {
return map(_derived(), std::negate());
Matrix operator-() const {
return map(*this, std::negate());
};
// add vectors
template <typename R>
requires operable_VV<D, R, std::plus<>>
D operator+(const R &rhs) const {
return map(_derived(), rhs, std::plus());
requires operable<R, T, std::plus<>>
Matrix operator+(const Matrix<R, N, M> &rhs) const {
return map(*this, rhs, std::plus());
};
// subtract vectors
template <typename R>
requires operable_VV<D, R, std::minus<>>
D operator-(const R &rhs) const {
requires operable<R, T, std::minus<>>
Matrix operator-(const Matrix<R, N, M> &rhs) const {
// we can't just add the negation because that's invalid for unsigned types
return map(_derived(), rhs, std::minus());
return map(*this, rhs, std::minus());
};
// multiply vector with a vector or scalar
// multiply matrix with a matrix
template <typename R>
requires operable_VV<D, R, std::multiplies<>> || operable_Vs<D, R, std::multiplies<>>
D operator*(const R &rhs) const {
return map(_derived(), rhs, std::multiplies());
requires operable<R, T, std::multiplies<>>
Matrix operator*(const Matrix<R, N, M> &rhs) const {
return map(*this, rhs, std::multiplies());
};
// multiply a scalar by a vector
// multiply matrix with a scalar
template <typename R>
requires scalar_operable<R, T, std::multiplies<>>
Matrix operator*(const R &rhs) const {
return map(*this, rhs, std::multiplies());
};
// multiply a scalar by a matrix
template <typename L>
requires operable_Vs<D, L, std::multiplies<>>
friend D operator*(const L &lhs, const D &rhs) {
requires scalar_operable<L, T, std::multiplies<>>
friend Matrix operator*(const L &lhs, const Matrix &rhs) {
return rhs * lhs;
}
// divides vector with a vector or scalar
// divides a matrix by a matrix
template <typename R>
requires operable_VV<D, R, std::divides<>> || operable_Vs<D, R, std::divides<>>
D operator/(const R &rhs) const {
return map(_derived(), rhs, std::divides());
requires operable<R, T, std::divides<>>
Matrix operator/(const Matrix<R, N, M> &rhs) const {
return map(*this, rhs, std::divides());
};
// divides a matrix by a scalar
template <typename R>
requires scalar_operable<R, T, std::divides<>>
Matrix operator/(const R &rhs) const {
return map(*this, rhs, std::divides());
};
template <typename R>
requires operable_VV<D, R, std::plus<>>
D &operator+=(const R &rhs) {
return _derived() = _derived() + rhs;
requires operable<Matrix, R, std::plus<>>
Matrix &operator+=(const R &rhs) {
return *this = *this + rhs;
}
template <typename R>
requires operable_VV<D, R, std::minus<>>
D &operator-=(const R &rhs) {
return _derived() = _derived() - rhs;
requires operable<Matrix, R, std::minus<>>
Matrix &operator-=(const R &rhs) {
return *this = *this - rhs;
}
template <typename R>
requires operable_VV<D, R, std::multiplies<>> || operable_Vs<D, R, std::multiplies<>>
D &operator*=(const R &rhs) {
return _derived() = _derived() * rhs;
requires operable<Matrix, R, std::multiplies<>>
Matrix &operator*=(const R &rhs) {
return *this = *this * rhs;
}
template <typename R>
requires operable_VV<D, R, std::divides<>> || operable_Vs<D, R, std::divides<>>
D &operator/=(const R &rhs) {
return _derived() = _derived() / rhs;
requires operable<Matrix, R, std::divides<>>
Matrix &operator/=(const R &rhs) {
return *this = *this / rhs;
}
auto hsum() const {
make_matrix<vector_stype<D>, vector_height<D>> acc;
for (unsigned n = 0; n < N; n++) { acc += get_column(n); }
return acc;
template <typename S = T>
requires(N == 1 && M == 1)
operator S &() {
return this->at(0);
}
template <typename S = T>
requires(N == 1 && M == 1)
operator const S &() const {
return this->at(0);
}
template <typename V>
requires vector_like<V> && (vector_dims<V> == vector_dims<D>) && (vector_width<V> == vector_width<D>) &&
(vector_height<V> == vector_height<D>)
auto dot(const V &rhs) const {
auto product = _derived() * rhs;
return product.hsum();
column_type hsum() const { return std::accumulate(column_begin(), column_end(), column_type{}); }
row_type vsum() const { return std::accumulate(row_begin(), row_end(), row_type{}); }
template <typename R>
requires operable<T, R, std::multiplies<>> && operable<T, T, std::plus<>>
row_type dot(const Matrix<R, N, M> &rhs) const {
Matrix product = *this * rhs;
return product.vsum();
}
auto sqr_mag() const { return this->dot(_derived()); }
row_type sqr_mag() const { return this->dot(*this); }
D abs() const {
return map(_derived(), [](T val) { return quicktex::abs(val); });
Matrix abs() const {
Matrix ret;
for (unsigned i = 0; i < N * M; i++) { ret.element(i) = quicktex::abs(element(i)); }
return ret;
}
D clamp(T low, T high) {
return map(_derived(), [&low, &high](T val) { return quicktex::clamp(val, low, high); });
Matrix clamp(T low, T high) {
Matrix ret;
for (unsigned i = 0; i < N * M; i++) { ret.element(i) = quicktex::clamp(element(i), low, high); }
return ret;
}
template <typename L, typename H>
requires vector_like<L> && vector_like<H> && (L::size() == H::size())
D clamp(const L &low, const H &high) {
D r;
for (unsigned i = 0; i < N; i++) { r[i] = quicktex::clamp(at(i), low[i], high[i]); }
return r;
Matrix clamp(const Matrix &low, const Matrix &high) {
Matrix ret;
for (unsigned i = 0; i < N * M; i++) {
ret.element(i) = quicktex::clamp(element(i), low.element(i), high.element(i));
}
return ret;
}
protected:
template <typename Op, typename L>
requires subscriptable_range<L>
static inline D map(const L &lhs, Op f) {
D r;
for (unsigned i = 0; i < lhs.size(); i++) { r[i] = f(lhs[i]); }
return r;
template <typename Op> static inline Matrix map(Matrix &lhs, Op f) {
Matrix ret;
for (unsigned i = 0; i < lhs.size(); i++) { ret[i] = f(lhs[i]); }
return ret;
}
template <typename Op, typename L, typename R>
requires operable_Vs<L, R, Op>
static inline D map(const L &lhs, const R &rhs, Op f) {
D r;
template <typename Op, typename R>
requires scalar_operable<R, T, Op>
static inline Matrix map(const Matrix &lhs, const R &rhs, Op f) {
Matrix r;
for (unsigned i = 0; i < lhs.size(); i++) { r[i] = f(lhs[i], rhs); }
return r;
}
template <typename Op, typename L, typename R>
requires operable_VV<L, R, Op>
static inline D map(const L &lhs, const R &rhs, Op f) {
D r;
for (unsigned i = 0; i < N; i++) { r[i] = f(lhs[i], rhs[i]); }
template <typename Op, typename R>
requires scalar_operable<R, T, Op>
static inline Matrix map(const Matrix &lhs, const Matrix<R, N, M> &rhs, Op f) {
Matrix r;
for (unsigned i = 0; i < lhs.size(); i++) { r[i] = f(lhs[i], rhs[i]); }
return r;
}
private:
// error guard constructor prevents incorrect CRTP usage
VecBase() {
static_assert(vector_like<D>); // obviousy a vector is vector-like
class column_iterator : public index_iterator_base<column_iterator> {
public:
using value_type = column_type;
using base = index_iterator_base<column_iterator>;
column_iterator(const Matrix *matrix = nullptr, size_t index = 0) : base(index), _matrix(matrix){};
column_type operator*() const { return _matrix->get_column(this->_index); }
const column_type *operator->() const { &(_matrix->get_column(this->_index)); }
friend bool operator==(const column_iterator &lhs, const column_iterator &rhs) {
return (lhs._matrix == rhs._matrix) && (lhs._index == rhs._index);
}
private:
const Matrix *_matrix;
};
friend D;
D &_derived() { return static_cast<D &>(*this); }
D const &_derived() const { return static_cast<D const &>(*this); }
};
class linear_iterator : public index_iterator_base<column_iterator> {
public:
using value_type = column_type;
using base = index_iterator_base<column_iterator>;
#pragma pack(push, 1)
template <typename T, size_t N> class Vec : public VecBase<T, N, Vec<T, N>> {
public:
typedef T value_type;
typedef VecBase<T, N, Vec<T, N>> base;
linear_iterator(const Matrix *matrix = nullptr, size_t index = 0) : base(index), _matrix(matrix){};
friend base;
using base::base; // import base constructors
T &operator*() const { return _matrix->element(this->_index); }
T *operator->() const { &(_matrix->element(this->_index)); }
Vec() : _c() {} // default constructor
friend bool operator==(const column_iterator &lhs, const column_iterator &rhs) {
return (lhs._matrix == rhs._matrix) && (lhs._index == rhs._index);
}
protected:
const T &_at(size_t i) const { return _c[i]; }
T &_at(size_t i) { return _c[i]; }
auto _begin() { return _c.begin(); }
auto _begin() const { return _c.begin(); }
auto _end() { return _c.end(); }
auto _end() const { return _c.end(); }
private:
std::array<T, N> _c; // internal array of components
private:
const Matrix *_matrix;
};
};
template <typename T, size_t M, typename A = xsimd::default_arch> class BatchVec : Vec<xsimd::batch<T, A>, M> {
template <size_t N, typename U = xsimd::unaligned_mode>
static BatchVec load_columns(const make_matrix<T, N, M> &matrix, size_t column) {
static BatchVec load_columns(const Matrix<T, N, M> &matrix, size_t column) {
const size_t batch_size = xsimd::batch<T, A>::size;
assert(column + batch_size <= N);
@ -373,13 +417,12 @@ template <typename T, size_t M, typename A = xsimd::default_arch> class BatchVec
}
template <typename U = xsimd::unaligned_mode, typename V, size_t N>
void store_columns(make_matrix<T, N, M> &matrix, size_t column) {
void store_columns(Matrix<T, N, M> &matrix, size_t column) {
const size_t batch_size = xsimd::batch<T, A>::size;
assert(column + batch_size <= N);
for (unsigned i = 0; i < M; i++) { this->at(i).store((&(matrix[column][i]), U{})); }
}
};
#pragma pack(pop)
} // namespace quicktex

View File

@ -64,9 +64,9 @@ UTEST(Vec_float, div) {
ASSERT_LT(diff, 0.01f);
}
UTEST(Vec_float, hsum) {
UTEST(Vec_float, vsum) {
auto a = Vec<float, 5>{1.0f, 2.0f, 3.5f, 4.0f, -4.0f};
auto diff = abs(a.hsum() - 6.5f);
auto diff = abs(a.vsum() - 6.5f);
ASSERT_LT(diff, 0.01f);
}

View File

@ -35,8 +35,8 @@ namespace quicktex {
// std::ranges::range is not usable by default in libc++ 13
template <class T>
concept range = std::is_constructible_v<T> && requires(T &t) {
std::begin(t);
std::end(t);
t.begin();
t.end();
};
template <class T>
@ -82,6 +82,22 @@ size_t distance(T range) {
return std::distance(range.begin(), range.end());
}
template <class II>
requires std::input_or_output_iterator<II>
class view {
public:
view() : _begin(), _end() {}
view(II begin, II end) : _begin(begin), _end(end) {}
inline size_t size() { return distance(_begin, _end); }
inline II begin() { return _begin; }
inline II end() { return _end; }
private:
II _begin;
II _end;
};
template <typename Seq, typename Fn> constexpr auto map(const Seq &input, Fn op) {
using I = typename Seq::value_type;
using O = decltype(op(I{}));
@ -94,8 +110,6 @@ template <typename Seq, typename Fn> constexpr auto map(const Seq &input, Fn op)
template <typename D> class index_iterator_base {
public:
friend D;
typedef long long difference_type;
D &operator++() {
@ -145,13 +159,14 @@ template <typename D> class index_iterator_base {
friend auto operator<=>(const D &lhs, const D &rhs) { return lhs._index <=> rhs._index; }
auto &operator[](difference_type i) { return *(static_cast<D>(*this) + i); }
auto &operator[](difference_type i) { return *(static_cast<D &>(*this) + i); }
auto operator[](difference_type i) const { return *(static_cast<const D &>(*this) + i); }
protected:
size_t _index;
private:
friend D;
index_iterator_base(size_t index = 0) : _index(index) {}
};
@ -182,19 +197,19 @@ template <typename R>
requires subscriptable<R>
class index_iterator : public index_iterator_base<index_iterator<R>> {
public:
typedef index_iterator_base<index_iterator<R>> base;
typedef long long difference_type;
typedef range_value_t<R> value_type;
using base = index_iterator_base<index_iterator<R>>;
using difference_type = long long;
using value_type = range_value_t<R>;
index_iterator() : base(0), _range(nullptr) {}
index_iterator(R &range, size_t index) : base(index), _range(&range) {}
value_type operator*() const {
auto operator*() const {
// if we have the information, do a bounds check
if constexpr (sized<R>) { assert(this->_index < std::size(*_range)); }
return (*_range)[this->_index];
}
const value_type *operator->() const { return &((*_range)[this->_index]); }
auto *operator->() const { return &((*_range)[this->_index]); }
friend bool operator==(const index_iterator &lhs, const index_iterator &rhs) {
return (lhs._range == rhs._range) && (lhs._index == rhs._index);