/* Python-rgbcx Texture Compression Library Copyright (C) 2021 Andrew Cassidy Partially derived from rgbcx.h written by Richard Geldreich and licenced under the public domain This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include "BC1Encoder.h" #include #include #include #include #include #include #include #include "../BlockView.h" #include "../Color.h" #include "../Matrix4x4.h" #include "../Vector4.h" #include "../Vector4Int.h" #include "../bitwiseEnums.h" #include "../util.h" #include "Histogram.h" #include "OrderTable.h" #include "SingleColorTable.h" namespace rgbcx { using InterpolatorPtr = std::shared_ptr; using Hash = uint16_t; using BlockMetrics = Color4x4::BlockMetrics; using EncodeResults = BC1Encoder::EncodeResults; using ColorMode = BC1Encoder::ColorMode; // constructors BC1Encoder::BC1Encoder(InterpolatorPtr interpolator) : _interpolator(interpolator) { _flags = Flags::UseFullMSEEval | Flags::TwoLeastSquaresPasses | Flags::UseLikelyTotalOrderings | Flags::Use3ColorBlocks; _error_mode = ErrorMode::Full; _endpoint_mode = EndpointMode::PCA; _orderings4 = 16; _orderings3 = 8; OrderTable<3>::Generate(); OrderTable<4>::Generate(); assert(OrderTable<3>::generated); assert(OrderTable<4>::generated); } void BC1Encoder::EncodeBlock(Color4x4 pixels, BC1Block *dest) const { auto r_view = pixels.GetChannel(0); auto g_view = pixels.GetChannel(1); auto b_view = pixels.GetChannel(2); Color first = pixels.Get(0, 0); if (pixels.IsSingleColor()) { // single-color pixel block, do it the fast way WriteBlockSolid(first, dest); return; } auto metrics = pixels.GetMetrics(); bool needs_block_error = (_flags & Flags::UseLikelyTotalOrderings | Flags::Use3ColorBlocks | Flags::UseFullMSEEval) != Flags::None; needs_block_error |= (_search_rounds > 0); needs_block_error |= metrics.has_black && ((_flags & Flags::Use3ColorBlocksForBlackPixels) != Flags::None); ErrorMode error_mode = needs_block_error ? _error_mode : ErrorMode::None; const unsigned total_ls_passes = (_flags & Flags::TwoLeastSquaresPasses) != Flags::None ? 2 : 1; const unsigned total_ep_rounds = needs_block_error && ((_flags & Flags::TryAllInitialEndpoints) != Flags::None) ? 2 : 1; const unsigned total_cf_iters = (_flags & Flags::Iterative) != Flags::None ? 2 : 1; // Initial block generation EncodeResults orig; EncodeResults result; for (unsigned round = 0; round < total_ep_rounds; round++) { EndpointMode endpoint_mode = (round == 1) ? EndpointMode::BoundingBox : _endpoint_mode; EncodeResults trial_orig; FindEndpoints(pixels, trial_orig, metrics, endpoint_mode); EncodeResults trial_result = trial_orig; FindSelectors(pixels, trial_result, error_mode); RefineBlockLS(pixels, trial_result, metrics, error_mode, total_ls_passes); if (!needs_block_error || trial_result.error < result.error) { result = trial_result; orig = trial_orig; } } // First refinement pass using ordered cluster fit if (result.error > 0 && (bool)(_flags & Flags::UseLikelyTotalOrderings)) { for (unsigned iter = 0; iter < total_cf_iters; iter++) { RefineBlockCF(pixels, result, metrics, _error_mode, _orderings4); } } // try for 3-color block if (result.error > 0 && (bool)(_flags & Flags::Use3ColorBlocks)) { EncodeResults trial_result = orig; FindSelectors(pixels, trial_result, ErrorMode::Full); RefineBlockLS(pixels, trial_result, metrics, ErrorMode::Full, total_ls_passes); // First refinement pass using ordered cluster fit if (trial_result.error > 0 && (bool)(_flags & Flags::UseLikelyTotalOrderings)) { for (unsigned iter = 0; iter < total_cf_iters; iter++) { RefineBlockCF(pixels, trial_result, metrics, ErrorMode::Full, _orderings3); } } if (trial_result.error < result.error) { result = trial_result; }; } WriteBlock(result, dest); } void BC1Encoder::WriteBlockSolid(Color color, BC1Block *dest) const { uint8_t mask = 0xAA; // 2222 uint16_t min16, max16; if ((color.r | color.g | color.b) == 0) { // quick shortcut for all-black blocks min16 = 0; max16 = 1; mask = 0x55; // 1111 (Min value only, max is ignored) } else { // why is there no subscript operator for shared_ptr EncodeResults result; FindEndpointsSingleColor(result, color, false); if ((_flags & (Flags::Use3ColorBlocks | Flags::Use3ColorBlocksForBlackPixels)) != Flags::None) { EncodeResults result_3color; FindEndpointsSingleColor(result_3color, color, true); if (result_3color.error < result.error) { result = result_3color; } } min16 = result.low.Pack565Unscaled(); max16 = result.high.Pack565Unscaled(); if (result.color_mode == ColorMode::Solid) { if (min16 == max16) { // make sure this isnt accidentally a 3-color block // so make max16 > min16 (l > h) if (min16 > 0) { min16--; mask = 0; // endpoints are equal so mask doesnt matter } else { assert(min16 == 0 && max16 == 0); max16 = 1; min16 = 0; mask = 0x55; // 1111 (Min value only, max is ignored) } } else if (max16 < min16) { std::swap(min16, max16); mask = 0xFF; // invert mask to 3333 } assert(max16 > min16); } else if (max16 > min16) { std::swap(min16, max16); // assure 3-color blocks } } dest->SetLowColor(max16); dest->SetHighColor(min16); dest->selectors[0] = mask; dest->selectors[1] = mask; dest->selectors[2] = mask; dest->selectors[3] = mask; } void BC1Encoder::WriteBlock(EncodeResults &block, BC1Block *dest) const { bool flip = false; BC1Block::UnpackedSelectors selectors; uint16_t color1 = block.low.Pack565Unscaled(); uint16_t color0 = block.high.Pack565Unscaled(); std::array lut; assert(block.color_mode != ColorMode::Incomplete); if ((bool)(block.color_mode & ColorMode::FourColor)) { lut = {1, 3, 2, 0}; if (color1 > color0) { std::swap(color1, color0); lut = {0, 2, 3, 1}; } else if (color1 == color0) { if (color1 > 0) { color1--; lut = {0, 0, 0, 0}; } else { assert(color1 == 0 && color0 == 0); color0 = 1; color1 = 0; lut = {1, 1, 1, 1}; } } assert(color0 > color1); } else { lut = {1, 2, 0, 3}; if (color1 < color0) { std::swap(color1, color0); lut = {0, 2, 1, 3}; } assert(color0 <= color1); } for (unsigned i = 0; i < 16; i++) { unsigned x = i % 4; unsigned y = i / 4; selectors[y][x] = lut[block.selectors[i]]; if (block.color_mode == ColorMode::ThreeColor) { assert(selectors[y][x] != 3); } } // if (block.color_mode != ColorMode::ThreeColor) return; dest->SetLowColor(color0); dest->SetHighColor(color1); dest->PackSelectors(selectors); } void BC1Encoder::FindEndpointsSingleColor(EncodeResults &block, Color color, bool is_3color) const { auto &match5 = is_3color ? _single_match5_half : _single_match5; auto &match6 = is_3color ? _single_match6_half : _single_match6; BC1MatchEntry match_r = match5->at(color.r); BC1MatchEntry match_g = match6->at(color.g); BC1MatchEntry match_b = match5->at(color.b); block.color_mode = is_3color ? ColorMode::ThreeColorSolid : ColorMode::Solid; block.error = match_r.error + match_g.error + match_b.error; block.low = Color(match_r.low, match_g.low, match_b.low); block.high = Color(match_r.high, match_g.high, match_b.high); // selectors decided when writing, no point deciding them now } void BC1Encoder::FindEndpointsSingleColor(EncodeResults &block, Color4x4 &pixels, Color color, bool is_3color) const { std::array colors = _interpolator->InterpolateBC1(block.low, block.high, is_3color); Vector4Int result_vector = (Vector4Int)colors[2]; FindEndpointsSingleColor(block, color, is_3color); block.error = 0; for (unsigned i = 0; i < 16; i++) { Vector4Int pixel_vector = (Vector4Int)pixels.Get(i); auto diff = pixel_vector - result_vector; block.error += diff.SqrMag(); block.selectors[i] = 1; } } void BC1Encoder::FindEndpoints(Color4x4 pixels, EncodeResults &block, const BlockMetrics &metrics, EndpointMode endpoint_mode) const { if (metrics.is_greyscale) { // specialized greyscale case const unsigned fr = pixels.Get(0).r; if (metrics.max.r - metrics.min.r < 2) { // single color block uint8_t fr5 = (uint8_t)scale8To5(fr); uint8_t fr6 = (uint8_t)scale8To6(fr); block.low = Color(fr5, fr6, fr5); block.high = block.low; } else { uint8_t lr5 = scale8To5(metrics.min.r); uint8_t lr6 = scale8To6(metrics.min.r); uint8_t hr5 = scale8To5(metrics.max.r); uint8_t hr6 = scale8To6(metrics.max.r); block.low = Color(lr5, lr6, lr5); block.high = Color(hr5, hr6, hr5); } } else if (endpoint_mode == EndpointMode::LeastSquares) { // 2D Least Squares approach from Humus's example, with added inset and optimal rounding. Color diff = Color(metrics.max.r - metrics.min.r, metrics.max.g - metrics.min.g, metrics.max.b - metrics.min.b); Vector4 l = {0, 0, 0}; Vector4 h = {0, 0, 0}; auto &sums = metrics.sums; auto &min = metrics.min; unsigned chan0 = (unsigned)diff.MaxChannelRGB(); // primary axis of the bounding box l[chan0] = (float)min[chan0]; h[chan0] = (float)min[chan0]; assert((diff[chan0] >= diff[(chan0 + 1) % 3]) && (diff[chan0] >= diff[(chan0 + 2) % 3])); std::array sums_xy; for (unsigned i = 0; i < 16; i++) { auto val = pixels.Get(i); for (unsigned c = 0; c < 3; c++) { sums_xy[c] += val[chan0] * val[c]; } } const unsigned sum_x = (unsigned)sums[chan0]; const unsigned sum_xx = sums_xy[chan0]; float denominator = (float)(16 * sum_xx) - (float)(sum_x * sum_x); // once per secondary axis, calculate high and low using least squares if (fabs(denominator) > 1e-8f) { for (unsigned i = 1; i < 3; i++) { /* each secondary axis is fitted with a linear formula of the form * y = ax + b * where y is the secondary axis and x is the primary axis * a = (m∑xy - ∑x∑y) / m∑x² - (∑x)² * b = (∑x²∑y - ∑xy∑x) / m∑x² - (∑x)² * see Giordano/Weir pg.103 */ const unsigned chan = (chan0 + i) % 3; const unsigned sum_y = (unsigned)sums[chan]; const unsigned sum_xy = sums_xy[chan]; float a = (float)((16 * sum_xy) - (sum_x * sum_y)) / denominator; float b = (float)((sum_xx * sum_y) - (sum_xy * sum_x)) / denominator; l[chan] = b + (a * l[chan0]); h[chan] = b + (a * h[chan0]); } } // once per axis, inset towards the center by 1/16 of the delta and scale for (unsigned c = 0; c < 3; c++) { float inset = (h[c] - l[c]) / 16.0f; l[c] = ((l[c] + inset) / 255.0f); h[c] = ((h[c] - inset) / 255.0f); } block.low = Color::PreciseRound565(l); block.high = Color::PreciseRound565(h); } else if (endpoint_mode == EndpointMode::BoundingBox) { // Algorithm from icbc.h compress_dxt1_fast() Vector4 l, h; const float bias = 8.0f / 255.0f; // rescale and inset values for (unsigned c = 0; c < 3; c++) { // heh, c++ l[c] = (float)metrics.min[c] / 255.0f; h[c] = (float)metrics.max[c] / 255.0f; float inset = (h[c] - l[c] - bias) / 16.0f; l[c] += inset; h[c] -= inset; } // Select the correct diagonal across the bounding box int icov_xz = 0, icov_yz = 0; for (unsigned i = 0; i < 16; i++) { int b = (int)pixels.Get(i).b - metrics.avg.b; icov_xz += b * (int)pixels.Get(i).r - metrics.avg.r; icov_yz += b * (int)pixels.Get(i).g - metrics.avg.g; } if (icov_xz < 0) std::swap(l[0], h[0]); if (icov_yz < 0) std::swap(l[1], h[1]); block.low = Color::PreciseRound565(l); block.high = Color::PreciseRound565(h); } else if (endpoint_mode == EndpointMode::BoundingBoxInt) { // Algorithm from icbc.h compress_dxt1_fast(), but converted to integer. Color min, max; // rescale and inset values for (unsigned c = 0; c < 3; c++) { int inset = ((int)(metrics.max[c] - metrics.min[c]) - 8) >> 4; // 1/16 of delta, with bias min[c] = clamp255(metrics.min[c] + inset); max[c] = clamp255(metrics.max[c] - inset); } int icov_xz = 0, icov_yz = 0; for (unsigned i = 0; i < 16; i++) { int b = (int)pixels.Get(i).b - metrics.avg.b; icov_xz += b * (int)pixels.Get(i).r - metrics.avg.r; icov_yz += b * (int)pixels.Get(i).g - metrics.avg.g; } if (icov_xz < 0) std::swap(min.r, max.r); if (icov_yz < 0) std::swap(min.g, max.g); block.low = min.ScaleTo565(); block.high = max.ScaleTo565(); } else if (endpoint_mode == EndpointMode::PCA) { // the slow way // Select 2 colors along the principle axis. (There must be a faster/simpler way.) auto min = Vector4::FromColorRGB(metrics.min); auto max = Vector4::FromColorRGB(metrics.max); auto avg = Vector4::FromColorRGB(metrics.avg); std::array colors; Vector4 axis = {306, 601, 117}; // Luma vector Matrix4x4 covariance = Matrix4x4::Identity(); const unsigned total_power_iters = (_flags & Flags::Use6PowerIters) != Flags::None ? 6 : 4; for (unsigned i = 0; i < 16; i++) { colors[i] = Vector4::FromColorRGB(pixels.Get(i)); Vector4 diff = colors[i] - avg; for (unsigned c1 = 0; c1 < 3; c1++) { for (unsigned c2 = c1; c2 < 3; c2++) { covariance[c1][c2] += (diff[c1] * diff[c2]); assert(c1 <= c2); } } } covariance /= 255.0f; covariance.Mirror(); Vector4 delta = max - min; // realign r and g axes to match if (covariance[0][2] < 0) delta[0] = -delta[0]; // r vs b if (covariance[1][2] < 0) delta[1] = -delta[1]; // g vs b // using the covariance matrix, stretch the delta vector towards the primary axis of the data using power iteration // the end result of this may actually be the same as the least squares approach, will have to do more research for (unsigned power_iter = 0; power_iter < total_power_iters; power_iter++) { delta = covariance * delta; } // if we found any correlation, then this is our new axis. otherwise we fallback to the luma vector float k = delta.MaxAbs(3); if (k >= 2) { axis = delta * (2048.0f / k); } axis *= 16; float min_dot = INFINITY; float max_dot = -INFINITY; unsigned min_index = 0, max_index = 0; for (unsigned i = 0; i < 16; i++) { // since axis is constant here, I dont think its magnitude actually matters, // since we only care about the min or max dot product float dot = colors[i].Dot(axis); if (dot > max_dot) { max_dot = dot; max_index = i; } if (dot < min_dot) { min_dot = dot; min_index = i; } } block.low = pixels.Get(min_index).ScaleTo565(); block.high = pixels.Get(max_index).ScaleTo565(); } block.color_mode = ColorMode::Incomplete; } template void BC1Encoder::FindSelectors(Color4x4 &pixels, EncodeResults &block, ErrorMode error_mode) const { assert(!((error_mode != ErrorMode::Full) && (bool)(M & ColorMode::ThreeColor))); assert(!(bool)(M & ColorMode::Solid)); const int color_count = (unsigned)M & 0x0F; std::array colors = _interpolator->InterpolateBC1(block.low, block.high, color_count == 3); std::array color_vectors; if (color_count == 4) { color_vectors = {(Vector4Int)colors[0], (Vector4Int)colors[2], (Vector4Int)colors[3], (Vector4Int)colors[1]}; } else { color_vectors = {(Vector4Int)colors[0], (Vector4Int)colors[2], (Vector4Int)colors[1], (Vector4Int)colors[3]}; } unsigned total_error = 0; if (error_mode == ErrorMode::None || error_mode == ErrorMode::Faster) { Vector4Int axis = color_vectors[3] - color_vectors[0]; std::array dots; for (unsigned i = 0; i < 4; i++) { dots[i] = axis.Dot(color_vectors[i]); } int t0 = dots[0] + dots[1], t1 = dots[1] + dots[2], t2 = dots[2] + dots[3]; axis *= 2; for (unsigned i = 0; i < 16; i++) { Vector4Int pixel_vector = (Vector4Int)pixels.Get(i); int dot = axis.Dot(pixel_vector); uint8_t level = (dot <= t0) + (dot < t1) + (dot < t2); uint8_t selector = 3 - level; assert(level < 4); assert(selector < 4); if (error_mode == ErrorMode::Faster) { // llvm is just going to unswitch this anyways so its not an issue auto diff = pixel_vector - color_vectors[selector]; total_error += diff.SqrMag(); if (i % 4 != 0 && total_error >= block.error) break; // check only once per row if we're generating too much error } block.selectors[i] = selector; } } else if (error_mode == ErrorMode::Check2) { Vector4Int axis = color_vectors[3] - color_vectors[0]; const float f = 4.0f / ((float)axis.SqrMag() + .00000125f); for (unsigned i = 0; i < 16; i++) { Vector4Int pixel_vector = (Vector4Int)pixels.Get(i); auto diff = pixel_vector - color_vectors[0]; float sel_f = (float)diff.Dot(axis) * f + 0.5f; uint8_t sel = (uint8_t)clampi((int)sel_f, 1, 3); unsigned err0 = (color_vectors[sel - 1] - pixel_vector).SqrMag(); unsigned err1 = (color_vectors[sel] - pixel_vector).SqrMag(); uint8_t best_sel = sel; unsigned best_err = err1; if (err0 == err1) { // prefer non-interpolation if ((best_sel) == 1) best_sel = 0; } else if (err0 < best_err) { best_sel = sel - 1; best_err = err0; } total_error += best_err; if (total_error >= block.error) break; block.selectors[i] = best_sel; } } else if (error_mode == ErrorMode::Full) { unsigned max_sel = (bool)(M == ColorMode::ThreeColor) ? 3 : 4; for (unsigned i = 0; i < 16; i++) { unsigned best_error = UINT_MAX; uint8_t best_sel = 0; Vector4Int pixel_vector = (Vector4Int)pixels.Get(i); // exhasustively check every pixel's distance from each color, and calculate the error for (uint8_t j = 0; j < max_sel; j++) { auto diff = color_vectors[j] - pixel_vector; unsigned err = diff.SqrMag(); if (err < best_error || ((err == best_error) && (j == 3))) { best_error = err; best_sel = j; } } total_error += best_error; if (total_error >= block.error) { break; } assert(best_sel < max_sel); block.selectors[i] = best_sel; } } else { assert(false); } block.error = total_error; block.color_mode = M; } template bool BC1Encoder::RefineEndpointsLS(Color4x4 pixels, EncodeResults &block, BlockMetrics metrics) const { const int color_count = (unsigned)M & 0x0F; static_assert(color_count == 3 || color_count == 4); static_assert(!(bool)(M & ColorMode::Solid)); assert(block.color_mode != ColorMode::Incomplete); int denominator = color_count - 1; Vector4 q00 = {0, 0, 0}; Vector4 matrix = Vector4(0); for (unsigned i = 0; i < 16; i++) { const Color color = pixels.Get(i); const uint8_t sel = block.selectors[i]; if ((bool)(M & ColorMode::ThreeColorBlack) && color.IsBlack()) continue; if ((bool)(M & ColorMode::ThreeColor) && sel == 3U) continue; // NOTE: selectors for 3-color are in linear order here, but not in original assert(sel < color_count); const Vector4Int color_vector = Vector4Int::FromColorRGB(color); q00 += color_vector * sel; matrix += OrderTable::Weights[sel]; } // invert matrix float det = matrix.Determinant2x2(); // z00 * z11 - z01 * z10; if (fabs(det) < 1e-8f) { block.color_mode = ColorMode::Incomplete; return false; } std::swap(matrix[0], matrix[3]); matrix *= Vector4(1, -1, -1, 1); matrix *= ((float)denominator / 255.0f) / det; Vector4 q10 = (metrics.sums * denominator) - q00; Vector4 low = (matrix[0] * q00) + (matrix[1] * q10); Vector4 high = (matrix[2] * q00) + (matrix[3] * q10); block.color_mode = M; block.low = Color::PreciseRound565(low); block.high = Color::PreciseRound565(high); return true; } template void BC1Encoder::RefineEndpointsLS(std::array &sums, EncodeResults &block, Vector4 &matrix, Hash hash) const { const int color_count = (unsigned)M & 0x0F; static_assert(color_count == 3 || color_count == 4); static_assert(!(bool)(M & ColorMode::Solid)); assert(block.color_mode != ColorMode::Incomplete); int denominator = color_count - 1; Vector4 q10 = {0, 0, 0}; unsigned level = 0; Histogram h = OrderTable::Orders[hash]; for (unsigned i = 0; i < (color_count - 1); i++) { level += h[i]; q10 += sums[level]; } Vector4 q00 = (sums[16] * denominator) - q10; Vector4 low = (matrix[0] * q00) + (matrix[1] * q10); Vector4 high = (matrix[2] * q00) + (matrix[3] * q10); block.color_mode = M; block.low = Color::PreciseRound565(low); block.high = Color::PreciseRound565(high); } template void BC1Encoder::RefineBlockLS(Color4x4 &pixels, EncodeResults &block, BlockMetrics &metrics, ErrorMode error_mode, unsigned passes) const { assert(error_mode != ErrorMode::None || passes == 1); for (unsigned pass = 0; pass < passes; pass++) { EncodeResults trial_result = block; Vector4 low, high; bool multicolor = RefineEndpointsLS(pixels, trial_result, metrics); if (!multicolor) { FindEndpointsSingleColor(trial_result, pixels, metrics.avg, (M != ColorMode::FourColor)); } else { FindSelectors(pixels, trial_result, error_mode); } if (trial_result.low == block.low && trial_result.high == block.high) break; if (error_mode == ErrorMode::None || trial_result.error < block.error) { block = trial_result; } else { return; } } } template void BC1Encoder::RefineBlockCF(Color4x4 &pixels, EncodeResults &block, BlockMetrics &metrics, ErrorMode error_mode, unsigned orderings) const { const int color_count = (unsigned)M & 0x0F; static_assert(color_count == 3 || color_count == 4); static_assert(!(bool)(M & ColorMode::Solid)); assert(block.color_mode != ColorMode::Incomplete); using OrderTable = OrderTable; using Hist = Histogram; EncodeResults orig = block; Hist h = Hist(orig.selectors); Hash start_hash = OrderTable::GetHash(h); Vector4 axis = orig.high.ScaleFrom565() - orig.low.ScaleFrom565(); std::array color_vectors; std::array dots; for (unsigned i = 0; i < 16; i++) { color_vectors[i] = Vector4::FromColorRGB(pixels.Get(i)); int dot = 0x1000000 + (int)color_vectors[i].Dot(axis); assert(dot >= 0); dots[i] = (uint32_t)(dot << 4) | i; } std::sort(dots.begin(), dots.end()); // we now have a list of indices and their dot products along the primary axis std::array sums; for (unsigned i = 0; i < 16; i++) { const unsigned p = dots[i] & 0xF; sums[i + 1] = sums[i] + color_vectors[p]; } const unsigned q_total = ((_flags & Flags::Exhaustive) != Flags::None) ? OrderTable::OrderCount : orderings; for (Hash q = 0; q < q_total; q++) { Hash trial_hash = ((_flags & Flags::Exhaustive) != Flags::None) ? q : OrderTable::BestOrders[start_hash][q]; Vector4 trial_matrix = OrderTable::GetFactors(trial_hash); EncodeResults trial_result = orig; Vector4 low, high; if (OrderTable::IsSingleColor(trial_hash)) { FindEndpointsSingleColor(trial_result, pixels, metrics.avg, (color_count == 3)); } else { RefineEndpointsLS(sums, trial_result, trial_matrix, trial_hash); FindSelectors(pixels, trial_result, _error_mode); } if (trial_result.error < block.error) { block = trial_result; } if (trial_result.error == 0) break; } } } // namespace rgbcx