You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
quicktex/src/test/test.cpp

855 lines
32 KiB
C++

// test.cpp - Command line example/test app
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif
#pragma GCC diagnostic ignored "-Weverything"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iosfwd>
#include <string>
#include <type_traits>
#include <vector>
#include "../blocks.h"
#include "../rgbcx.h"
#include "../rgbcxDecoders.h"
#include "../util.h"
#include "bc7decomp.h"
#include "bc7enc.h"
#include "dds_defs.h"
#include "lodepng.h"
const int MAX_UBER_LEVEL = 5;
static int print_usage() {
fprintf(stderr, "bc7enc\n");
fprintf(stderr,
"Reads PNG files (with or without alpha channels) and packs them to BC1-5 or BC7/BPTC (default) using\nmodes 1, 6 (opaque blocks) or modes 1, 5, "
"6, and 7 (alpha blocks).\n");
fprintf(stderr,
"By default, a DX10 DDS file and a unpacked PNG file will be written to the current\ndirectory with the .dds/_unpacked.png/_unpacked_alpha.png "
"suffixes.\n\n");
fprintf(stderr, "Usage: bc7enc [-apng_filename] [options] input_filename.png [compressed_output.dds] [unpacked_output.png]\n\n");
fprintf(stderr, "-apng_filename Load G channel of PNG file into alpha channel of source image\n");
fprintf(stderr, "-g Don't write unpacked output PNG files (this disables PSNR metrics too).\n");
fprintf(stderr, "-y Flip source image along Y axis before packing\n");
fprintf(stderr, "-o Write output files to the current directory\n");
fprintf(stderr, "-1 Encode to BC1. -u[0,5] controls quality vs. perf. tradeoff for RGB.\n");
fprintf(stderr, "-3 Encode to BC3. -u[0,5] controls quality vs. perf. tradeoff for RGB.\n");
fprintf(stderr, "-4 Encode to BC4\n");
fprintf(stderr, "-5 Encode to BC5\n");
fprintf(stderr, "\n");
fprintf(stderr, "-X# BC4/5: Set first color channel (defaults to 0 or red)\n");
fprintf(stderr, "-Y# BC4/5: Set second color channel (defaults to 1 or green)\n");
fprintf(stderr, "\n");
fprintf(stderr, "-l BC7: Use linear colorspace metrics instead of perceptual\n");
fprintf(stderr, "-uX BC1/3/7: Higher quality levels, X ranges from [0,4] for BC7, or [0,5] for BC1-3\n");
fprintf(stderr, "-pX BC7: Scan X partitions in mode 1, X ranges from [0,64], use 0 to disable mode 1 entirely (faster)\n");
fprintf(stderr, "\n");
fprintf(stderr,
"-b BC1: Enable 3-color mode for blocks containing black or very dark pixels. (Important: engine/shader MUST ignore decoded texture alpha if this "
"flag is enabled!)\n");
fprintf(stderr, "-c BC1: Disable 3-color mode for solid color blocks\n");
fprintf(stderr, "-n BC1: Encode/decode for NVidia GPU's\n");
fprintf(stderr, "-m BC1: Encode/decode for AMD GPU's\n");
fprintf(stderr, "-r BC1: Encode/decode using ideal BC1 formulas with rounding for 4-color block colors 2,3 (same as AMD Compressonator)\n");
fprintf(stderr, "-LX BC1: Set encoding level, where 0=fastest and 19=slowest but highest quality\n");
fprintf(stderr, "-f Force writing DX10-style DDS files (otherwise for BC1-5 it uses DX9-style DDS files)\n");
fprintf(stderr,
"\nBy default, this tool encodes to BC1 without rounding 4-color block colors 2,3, which may not match the output of some software decoders.\n");
fprintf(stderr, "\nFor BC4 and BC5: Not all tools support reading DX9-style BC4/BC5 format files (or BC4/5 files at all). AMD Compressonator does.\n");
return EXIT_FAILURE;
}
/*
struct color_quad_u8 {
uint8_t m_c[4];
inline color_quad_u8(uint8_t r, uint8_t g, uint8_t b, uint8_t a) { set(r, g, b, a); }
inline color_quad_u8(uint8_t y = 0, uint8_t a = 255) { set(y, a); }
inline color_quad_u8 &set(uint8_t y, uint8_t a = 255) {
m_c[0] = y;
m_c[1] = y;
m_c[2] = y;
m_c[3] = a;
return *this;
}
inline color_quad_u8 &set(uint8_t r, uint8_t g, uint8_t b, uint8_t a) {
m_c[0] = r;
m_c[1] = g;
m_c[2] = b;
m_c[3] = a;
return *this;
}
inline uint8_t &operator[](uint32_t i) {
assert(i < 4);
return m_c[i];
}
inline uint8_t operator[](uint32_t i) const {
assert(i < 4);
return m_c[i];
}
inline int get_luma() const { return (13938U * m_c[0] + 46869U * m_c[1] + 4729U * m_c[2] + 32768U) >> 16U; } // REC709 weightings
};*/
using color_quad_u8 = Color;
typedef std::vector<color_quad_u8> color_quad_u8_vec;
class image_u8 {
public:
image_u8() : m_width(0), m_height(0) {}
image_u8(uint32_t width, uint32_t height) : m_width(width), m_height(height) { m_pixels.resize(width * height); }
inline const color_quad_u8_vec &get_pixels() const { return m_pixels; }
inline color_quad_u8_vec &get_pixels() { return m_pixels; }
void set_pixels(const color_quad_u8_vec &pixels) {
m_pixels = pixels;
}
inline uint32_t width() const { return m_width; }
inline uint32_t height() const { return m_height; }
inline uint32_t total_pixels() const { return m_width * m_height; }
inline color_quad_u8 &operator()(uint32_t x, uint32_t y) {
assert(x < m_width && y < m_height);
return m_pixels[x + m_width * y];
}
inline const color_quad_u8 &operator()(uint32_t x, uint32_t y) const {
assert(x < m_width && y < m_height);
return m_pixels[x + m_width * y];
}
image_u8 &clear() {
m_width = m_height = 0;
m_pixels.clear();
return *this;
}
image_u8 &init(uint32_t width, uint32_t height) {
clear();
m_width = width;
m_height = height;
m_pixels.resize(width * height);
return *this;
}
image_u8 &set_all(const color_quad_u8 &p) {
for (uint32_t i = 0; i < m_pixels.size(); i++) m_pixels[i] = p;
return *this;
}
image_u8 &crop(uint32_t new_width, uint32_t new_height) {
if ((m_width == new_width) && (m_height == new_height)) return *this;
image_u8 new_image(new_width, new_height);
const uint32_t w = std::min(m_width, new_width);
const uint32_t h = std::min(m_height, new_height);
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++) new_image(x, y) = (*this)(x, y);
return swap(new_image);
}
image_u8 &swap(image_u8 &other) {
std::swap(m_width, other.m_width);
std::swap(m_height, other.m_height);
std::swap(m_pixels, other.m_pixels);
return *this;
}
inline void get_block(uint32_t bx, uint32_t by, uint32_t width, uint32_t height, color_quad_u8 *pPixels) {
assert((bx * width + width) <= m_width);
assert((by * height + height) <= m_height);
for (uint32_t y = 0; y < height; y++) memcpy(pPixels + y * width, &(*this)(bx * width, by * height + y), width * sizeof(color_quad_u8));
}
inline void set_block(uint32_t bx, uint32_t by, uint32_t width, uint32_t height, const color_quad_u8 *pPixels) {
assert((bx * width + width) <= m_width);
assert((by * height + height) <= m_height);
for (uint32_t y = 0; y < height; y++) memcpy(&(*this)(bx * width, by * height + y), pPixels + y * width, width * sizeof(color_quad_u8));
}
image_u8 &swizzle(uint32_t r, uint32_t g, uint32_t b, uint32_t a) {
assert((r | g | b | a) <= 3);
for (uint32_t y = 0; y < m_height; y++) {
for (uint32_t x = 0; x < m_width; x++) {
color_quad_u8 tmp((*this)(x, y));
(*this)(x, y).SetRGBA(tmp[r], tmp[g], tmp[b], tmp[a]);
}
}
return *this;
}
private:
color_quad_u8_vec m_pixels;
uint32_t m_width, m_height;
};
static bool load_png(const char *pFilename, image_u8 &img) {
img.clear();
std::vector<unsigned char> pixels;
unsigned int w = 0, h = 0;
unsigned int e = lodepng::decode(pixels, w, h, pFilename);
if (e != 0) {
fprintf(stderr, "Failed loading PNG file %s\n", pFilename);
return false;
}
img.init(w, h);
memcpy(&img.get_pixels()[0], &pixels[0], w * h * sizeof(uint32_t));
return true;
}
static bool save_png(const char *pFilename, const image_u8 &img, bool save_alpha) {
const uint32_t w = img.width();
const uint32_t h = img.height();
std::vector<unsigned char> pixels;
if (save_alpha) {
pixels.resize(w * h * sizeof(color_quad_u8));
memcpy(&pixels[0], &img.get_pixels()[0], w * h * sizeof(color_quad_u8));
} else {
pixels.resize(w * h * 3);
unsigned char *pDst = &pixels[0];
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++, pDst += 3) pDst[0] = img(x, y)[0], pDst[1] = img(x, y)[1], pDst[2] = img(x, y)[2];
}
return lodepng::encode(pFilename, pixels, w, h, save_alpha ? LCT_RGBA : LCT_RGB) == 0;
}
class image_metrics {
public:
double m_max, m_mean, m_mean_squared, m_root_mean_squared, m_peak_snr;
image_metrics() { clear(); }
void clear() { memset(this, 0, sizeof(*this)); }
void compute(const image_u8 &a, const image_u8 &b, uint32_t first_channel, uint32_t num_channels) {
const bool average_component_error = true;
const uint32_t width = std::min(a.width(), b.width());
const uint32_t height = std::min(a.height(), b.height());
assert((first_channel < 4U) && (first_channel + num_channels <= 4U));
// Histogram approach originally due to Charles Bloom.
double hist[256];
memset(hist, 0, sizeof(hist));
for (uint32_t y = 0; y < height; y++) {
for (uint32_t x = 0; x < width; x++) {
const color_quad_u8 &ca = a(x, y);
const color_quad_u8 &cb = b(x, y);
if (!num_channels)
hist[iabs(ca.get_luma() - cb.get_luma())]++;
else {
for (uint32_t c = 0; c < num_channels; c++) hist[iabs(ca[first_channel + c] - cb[first_channel + c])]++;
}
}
}
m_max = 0;
double sum = 0.0f, sum2 = 0.0f;
for (uint32_t i = 0; i < 256; i++) {
if (!hist[i]) continue;
m_max = std::max<double>(m_max, i);
double x = i * hist[i];
sum += x;
sum2 += i * x;
}
// See http://richg42.blogspot.com/2016/09/how-to-compute-psnr-from-old-berkeley.html
double total_values = width * height;
if (average_component_error) total_values *= clamp<uint32_t>(num_channels, 1, 4);
m_mean = clamp<double>(sum / total_values, 0.0f, 255.0f);
m_mean_squared = clamp<double>(sum2 / total_values, 0.0f, 255.0f * 255.0f);
m_root_mean_squared = sqrt(m_mean_squared);
if (!m_root_mean_squared)
m_peak_snr = 100.0f;
else
m_peak_snr = clamp<double>(log10(255.0f / m_root_mean_squared) * 20.0f, 0.0f, 100.0f);
}
};
struct block8 {
uint64_t m_vals[1];
};
typedef std::vector<block8> block8_vec;
struct block16 {
uint64_t m_vals[2];
};
typedef std::vector<block16> block16_vec;
static bool save_dds(const char *pFilename, uint32_t width, uint32_t height, const void *pBlocks, uint32_t pixel_format_bpp, DXGI_FORMAT dxgi_format, bool srgb,
bool force_dx10_header) {
(void)srgb;
FILE *pFile = NULL;
pFile = fopen(pFilename, "wb");
if (!pFile) {
fprintf(stderr, "Failed creating file %s!\n", pFilename);
return false;
}
fwrite("DDS ", 4, 1, pFile);
DDSURFACEDESC2 desc;
memset(&desc, 0, sizeof(desc));
desc.dwSize = sizeof(desc);
desc.dwFlags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_PIXELFORMAT | DDSD_CAPS;
desc.dwWidth = width;
desc.dwHeight = height;
desc.ddsCaps.dwCaps = DDSCAPS_TEXTURE;
desc.ddpfPixelFormat.dwSize = sizeof(desc.ddpfPixelFormat);
desc.ddpfPixelFormat.dwFlags |= DDPF_FOURCC;
desc.lPitch = (((desc.dwWidth + 3) & ~3) * ((desc.dwHeight + 3) & ~3) * pixel_format_bpp) >> 3;
desc.dwFlags |= DDSD_LINEARSIZE;
desc.ddpfPixelFormat.dwRGBBitCount = 0;
if ((!force_dx10_header) && ((dxgi_format == DXGI_FORMAT_BC1_UNORM) || (dxgi_format == DXGI_FORMAT_BC3_UNORM) || (dxgi_format == DXGI_FORMAT_BC4_UNORM) ||
(dxgi_format == DXGI_FORMAT_BC5_UNORM))) {
if (dxgi_format == DXGI_FORMAT_BC1_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('D', 'X', 'T', '1');
else if (dxgi_format == DXGI_FORMAT_BC3_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('D', 'X', 'T', '5');
else if (dxgi_format == DXGI_FORMAT_BC4_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('A', 'T', 'I', '1');
else if (dxgi_format == DXGI_FORMAT_BC5_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('A', 'T', 'I', '2');
fwrite(&desc, sizeof(desc), 1, pFile);
} else {
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('D', 'X', '1', '0');
fwrite(&desc, sizeof(desc), 1, pFile);
DDS_HEADER_DXT10 hdr10;
memset(&hdr10, 0, sizeof(hdr10));
// Not all tools support DXGI_FORMAT_BC7_UNORM_SRGB (like NVTT), but ddsview in DirectXTex pays attention to it. So not sure what to do here.
// For best compatibility just write DXGI_FORMAT_BC7_UNORM.
// hdr10.dxgiFormat = srgb ? DXGI_FORMAT_BC7_UNORM_SRGB : DXGI_FORMAT_BC7_UNORM;
hdr10.dxgiFormat = dxgi_format; // DXGI_FORMAT_BC7_UNORM;
hdr10.resourceDimension = D3D10_RESOURCE_DIMENSION_TEXTURE2D;
hdr10.arraySize = 1;
fwrite(&hdr10, sizeof(hdr10), 1, pFile);
}
fwrite(pBlocks, desc.lPitch, 1, pFile);
if (fclose(pFile) == EOF) {
fprintf(stderr, "Failed writing to DDS file %s!\n", pFilename);
return false;
}
return true;
}
static void strip_extension(std::string &s) {
for (int32_t i = (int32_t)s.size() - 1; i >= 0; i--) {
if (s[i] == '.') {
s.resize(i);
break;
}
}
}
static void strip_path(std::string &s) {
for (int32_t i = (int32_t)s.size() - 1; i >= 0; i--) {
if ((s[i] == '/') || (s[i] == ':') || (s[i] == '\\')) {
s.erase(0, i + 1);
break;
}
}
}
int main(int argc, char *argv[]) {
if (argc < 2) return print_usage();
std::string src_filename;
std::string src_alpha_filename;
std::string dds_output_filename;
std::string png_output_filename;
std::string png_alpha_output_filename;
bool no_output_png = false;
bool out_cur_dir = false;
int uber_level = 0;
int max_partitions_to_scan = BC7ENC_MAX_PARTITIONS1;
bool perceptual = true;
bool y_flip = false;
uint32_t bc45_channel0 = 0;
uint32_t bc45_channel1 = 1;
rgbcx::bc1_approx_mode bc1_mode = rgbcx::bc1_approx_mode::cBC1Ideal;
bool use_bc1_3color_mode = true;
bool use_bc1_3color_mode_for_black = false;
int bc1_quality_level = 2;
DXGI_FORMAT dxgi_format = DXGI_FORMAT_BC7_UNORM;
uint32_t pixel_format_bpp = 8;
bool force_dx10_dds = false;
for (int i = 1; i < argc; i++) {
const char *pArg = argv[i];
if (pArg[0] == '-') {
switch (pArg[1]) {
case '1': {
dxgi_format = DXGI_FORMAT_BC1_UNORM;
pixel_format_bpp = 4;
printf("Compressing to BC1\n");
break;
}
case '3': {
dxgi_format = DXGI_FORMAT_BC3_UNORM;
pixel_format_bpp = 8;
printf("Compressing to BC3\n");
break;
}
case '4': {
dxgi_format = DXGI_FORMAT_BC4_UNORM;
pixel_format_bpp = 4;
printf("Compressing to BC4\n");
break;
}
case '5': {
dxgi_format = DXGI_FORMAT_BC5_UNORM;
pixel_format_bpp = 8;
printf("Compressing to BC5\n");
break;
}
case 'y': {
y_flip = true;
break;
}
case 'a': {
src_alpha_filename = pArg + 2;
break;
}
case 'X': {
bc45_channel0 = atoi(pArg + 2);
if ((bc45_channel0 < 0) || (bc45_channel0 > 3)) {
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'Y': {
bc45_channel1 = atoi(pArg + 2);
if ((bc45_channel1 < 0) || (bc45_channel1 > 3)) {
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'f': {
force_dx10_dds = true;
break;
}
case 'u': {
uber_level = atoi(pArg + 2);
if ((uber_level < 0) || (uber_level > MAX_UBER_LEVEL)) {
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'L': {
bc1_quality_level = atoi(pArg + 2);
if (((int)bc1_quality_level < (int)rgbcx::MIN_LEVEL) || ((int)bc1_quality_level > (int)(rgbcx::MAX_LEVEL + 1))) {
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'g': {
no_output_png = true;
break;
}
case 'l': {
perceptual = false;
break;
}
case 'p': {
max_partitions_to_scan = atoi(pArg + 2);
if ((max_partitions_to_scan < 0) || (max_partitions_to_scan > BC7ENC_MAX_PARTITIONS1)) {
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
break;
}
case 'n': {
bc1_mode = rgbcx::bc1_approx_mode::cBC1NVidia;
break;
}
case 'm': {
bc1_mode = rgbcx::bc1_approx_mode::cBC1AMD;
break;
}
case 'r': {
bc1_mode = rgbcx::bc1_approx_mode::cBC1IdealRound4;
break;
}
case 'o': {
out_cur_dir = true;
break;
}
case 'b': {
use_bc1_3color_mode_for_black = true;
break;
}
case 'c': {
use_bc1_3color_mode = false;
break;
}
default: {
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
}
} else {
if (!src_filename.size())
src_filename = pArg;
else if (!dds_output_filename.size())
dds_output_filename = pArg;
else if (!png_output_filename.size())
png_output_filename = pArg;
else {
fprintf(stderr, "Invalid argument: %s\n", pArg);
return EXIT_FAILURE;
}
}
}
const uint32_t bytes_per_block = (16 * pixel_format_bpp) / 8;
assert(bytes_per_block == 8 || bytes_per_block == 16);
if (!src_filename.size()) {
fprintf(stderr, "No source filename specified!\n");
return EXIT_FAILURE;
}
if (!dds_output_filename.size()) {
dds_output_filename = src_filename;
strip_extension(dds_output_filename);
if (out_cur_dir) strip_path(dds_output_filename);
dds_output_filename += ".dds";
}
if (!png_output_filename.size()) {
png_output_filename = src_filename;
strip_extension(png_output_filename);
if (out_cur_dir) strip_path(png_output_filename);
png_output_filename += "_unpacked.png";
}
png_alpha_output_filename = png_output_filename;
strip_extension(png_alpha_output_filename);
png_alpha_output_filename += "_alpha.png";
image_u8 source_image;
if (!load_png(src_filename.c_str(), source_image)) return EXIT_FAILURE;
printf("Source image: %s %ux%u\n", src_filename.c_str(), source_image.width(), source_image.height());
if (src_alpha_filename.size()) {
image_u8 source_alpha_image;
if (!load_png(src_alpha_filename.c_str(), source_alpha_image)) return EXIT_FAILURE;
printf("Source alpha image: %s %ux%u\n", src_alpha_filename.c_str(), source_alpha_image.width(), source_alpha_image.height());
const uint32_t w = std::min(source_alpha_image.width(), source_image.width());
const uint32_t h = std::min(source_alpha_image.height(), source_image.height());
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++) source_image(x, y)[3] = source_alpha_image(x, y)[1];
}
#if 0
// HACK HACK
for (uint32_t y = 0; y < source_image.height(); y++)
for (uint32_t x = 0; x < source_image.width(); x++)
source_image(x, y)[3] = 254;
#endif
const uint32_t orig_width = source_image.width();
const uint32_t orig_height = source_image.height();
if (y_flip) {
image_u8 temp;
temp.init(orig_width, orig_height);
for (uint32_t y = 0; y < orig_height; y++)
for (uint32_t x = 0; x < orig_width; x++) temp(x, (orig_height - 1) - y) = source_image(x, y);
temp.swap(source_image);
}
source_image.crop((source_image.width() + 3) & ~3, (source_image.height() + 3) & ~3);
const uint32_t blocks_x = source_image.width() / 4;
const uint32_t blocks_y = source_image.height() / 4;
block16_vec packed_image16(blocks_x * blocks_y);
block8_vec packed_image8(blocks_x * blocks_y);
bc7enc_compress_block_params pack_params;
bc7enc_compress_block_params_init(&pack_params);
if (!perceptual) bc7enc_compress_block_params_init_linear_weights(&pack_params);
pack_params.m_max_partitions_mode = max_partitions_to_scan;
pack_params.m_uber_level = std::min(BC7ENC_MAX_UBER_LEVEL, uber_level);
if (dxgi_format == DXGI_FORMAT_BC7_UNORM) {
printf("Max mode 1 partitions: %u, uber level: %u, perceptual: %u\n", pack_params.m_max_partitions_mode, pack_params.m_uber_level, perceptual);
} else {
printf("Level: %u, use 3-color mode: %u, use 3-color mode for black: %u, bc1_mode: %u\n", bc1_quality_level, use_bc1_3color_mode,
use_bc1_3color_mode_for_black, (int)bc1_mode);
}
bc7enc_compress_block_init();
rgbcx::init(bc1_mode);
bool has_alpha = false;
clock_t start_t = clock();
uint32_t bc7_mode_hist[8];
memset(bc7_mode_hist, 0, sizeof(bc7_mode_hist));
for (uint32_t by = 0; by < blocks_y; by++) {
for (uint32_t bx = 0; bx < blocks_x; bx++) {
color_quad_u8 pixels[16];
source_image.get_block(bx, by, 4, 4, pixels);
if (!has_alpha) {
for (uint32_t i = 0; i < 16; i++) {
if (pixels[i][3] < 255) {
has_alpha = true;
break;
}
}
}
switch (dxgi_format) {
case DXGI_FORMAT_BC1_UNORM: {
block8 *pBlock = &packed_image8[bx + by * blocks_x];
rgbcx::encode_bc1(bc1_quality_level, pBlock, &pixels[0][0], use_bc1_3color_mode, use_bc1_3color_mode_for_black);
break;
}
case DXGI_FORMAT_BC3_UNORM: {
BC3Block *pBlock = reinterpret_cast<BC3Block *>(&packed_image16[bx + by * blocks_x]);
rgbcx::encode_bc3(bc1_quality_level, pBlock, &pixels[0][0]);
break;
}
case DXGI_FORMAT_BC4_UNORM: {
block8 *pBlock = &packed_image8[bx + by * blocks_x];
rgbcx::encode_bc4(pBlock, &pixels[0][bc45_channel0], 4);
break;
}
case DXGI_FORMAT_BC5_UNORM: {
block16 *pBlock = &packed_image16[bx + by * blocks_x];
rgbcx::encode_bc5(reinterpret_cast<BC5Block *>(pBlock), &pixels[0][0], bc45_channel0, bc45_channel1, 4);
break;
}
case DXGI_FORMAT_BC7_UNORM: {
block16 *pBlock = &packed_image16[bx + by * blocks_x];
bc7enc_compress_block(pBlock, pixels, &pack_params);
uint32_t mode = ((uint8_t *)pBlock)[0];
for (uint32_t m = 0; m <= 7; m++) {
if (mode & (1 << m)) {
bc7_mode_hist[m]++;
break;
}
}
break;
}
default: {
assert(0);
break;
}
}
}
if ((by & 127) == 0) printf(".");
}
clock_t end_t = clock();
printf("\nTotal time: %f secs\n", (double)(end_t - start_t) / CLOCKS_PER_SEC);
if (dxgi_format == DXGI_FORMAT_BC7_UNORM) {
printf("BC7 mode histogram:\n");
for (uint32_t i = 0; i < 8; i++) printf("%u: %u\n", i, bc7_mode_hist[i]);
}
if (has_alpha) printf("Source image had an alpha channel.\n");
bool failed = false;
if (!save_dds(dds_output_filename.c_str(), orig_width, orig_height, (bytes_per_block == 16) ? (void *)&packed_image16[0] : (void *)&packed_image8[0],
pixel_format_bpp, dxgi_format, perceptual, force_dx10_dds))
failed = true;
else
printf("Wrote DDS file %s\n", dds_output_filename.c_str());
if ((!no_output_png) && (png_output_filename.size())) {
image_u8 unpacked_image(source_image.width(), source_image.height());
bool punchthrough_flag = false;
auto decoder_bc1 = rgbcx::BC1Decoder();
auto decoder_bc3 = rgbcx::BC3Decoder();
auto decoder_bc4 = rgbcx::BC4Decoder();
auto decoder_bc5 = rgbcx::BC5Decoder();
switch (dxgi_format) {
case DXGI_FORMAT_BC1_UNORM:
unpacked_image.set_pixels(decoder_bc1.DecodeImage(reinterpret_cast<uint8_t *>(&packed_image8[0]), source_image.width(), source_image.height()));
break;
case DXGI_FORMAT_BC3_UNORM:
unpacked_image.set_pixels(
decoder_bc3.DecodeImage(reinterpret_cast<uint8_t *>(&packed_image16[0]), source_image.width(), source_image.height()));
break;
case DXGI_FORMAT_BC4_UNORM:
unpacked_image.set_pixels(decoder_bc4.DecodeImage(reinterpret_cast<uint8_t *>(&packed_image8[0]), source_image.width(), source_image.height()));
break;
case DXGI_FORMAT_BC5_UNORM:
unpacked_image.set_pixels(
decoder_bc5.DecodeImage(reinterpret_cast<uint8_t *>(&packed_image16[0]), source_image.width(), source_image.height()));
break;
default:
assert(0);
break;
}
// for (uint32_t by = 0; by < blocks_y; by++) {
// for (uint32_t bx = 0; bx < blocks_x; bx++) {
// void *pBlock = (bytes_per_block == 16) ? (void *)&packed_image16[bx + by * blocks_x] : (void *)&packed_image8[bx + by * blocks_x];
//
// color_quad_u8 unpacked_pixels[16];
// for (uint32_t i = 0; i < 16; i++) unpacked_pixels[i].set(0, 0, 0, 255);
//
// switch (dxgi_format) {
// case DXGI_FORMAT_BC1_UNORM:
// rgbcx::unpack_bc1(pBlock, unpacked_pixels, true, bc1_mode);
// break;
// case DXGI_FORMAT_BC3_UNORM:
// if (!rgbcx::unpack_bc3(pBlock, unpacked_pixels, bc1_mode)) punchthrough_flag = true;
// break;
// case DXGI_FORMAT_BC4_UNORM:
// rgbcx::unpack_bc4(pBlock, &unpacked_pixels[0][0], 4);
// break;
// case DXGI_FORMAT_BC5_UNORM:
// rgbcx::unpack_bc5(pBlock, &unpacked_pixels[0][0], 0, 1, 4);
// break;
// case DXGI_FORMAT_BC7_UNORM:
// bc7decomp::unpack_bc7((const uint8_t *)pBlock, (bc7decomp::color_rgba *)unpacked_pixels);
// break;
// default:
// assert(0);
// break;
// }
//
// unpacked_image.set_block(bx, by, 4, 4, unpacked_pixels);
// } // bx
// } // by
if ((punchthrough_flag) && (dxgi_format == DXGI_FORMAT_BC3_UNORM))
fprintf(stderr, "Warning: BC3 mode selected, but rgbcx::unpack_bc3() returned one or more blocks using 3-color mode!\n");
if ((dxgi_format != DXGI_FORMAT_BC4_UNORM) && (dxgi_format != DXGI_FORMAT_BC5_UNORM)) {
image_metrics y_metrics;
y_metrics.compute(source_image, unpacked_image, 0, 0);
printf("Luma Max error: %3.0f RMSE: %f PSNR %03.02f dB\n", y_metrics.m_max, y_metrics.m_root_mean_squared, y_metrics.m_peak_snr);
image_metrics rgb_metrics;
rgb_metrics.compute(source_image, unpacked_image, 0, 3);
printf("RGB Max error: %3.0f RMSE: %f PSNR %03.02f dB\n", rgb_metrics.m_max, rgb_metrics.m_root_mean_squared, rgb_metrics.m_peak_snr);
image_metrics rgba_metrics;
rgba_metrics.compute(source_image, unpacked_image, 0, 4);
printf("RGBA Max error: %3.0f RMSE: %f PSNR %03.02f dB\n", rgba_metrics.m_max, rgba_metrics.m_root_mean_squared, rgba_metrics.m_peak_snr);
}
for (uint32_t chan = 0; chan < 4; chan++) {
if (dxgi_format == DXGI_FORMAT_BC4_UNORM) {
if (chan != bc45_channel0) continue;
} else if (dxgi_format == DXGI_FORMAT_BC5_UNORM) {
if ((chan != bc45_channel0) && (chan != bc45_channel1)) continue;
}
image_metrics c_metrics;
c_metrics.compute(source_image, unpacked_image, chan, 1);
static const char *s_chan_names[4] = {"Red ", "Green", "Blue ", "Alpha"};
printf("%s Max error: %3.0f RMSE: %f PSNR %03.02f dB\n", s_chan_names[chan], c_metrics.m_max, c_metrics.m_root_mean_squared, c_metrics.m_peak_snr);
}
if (bc1_mode != rgbcx::bc1_approx_mode::cBC1Ideal) printf("Note: BC1/BC3 RGB decoding was done with the specified vendor's BC1 approximations.\n");
if (!save_png(png_output_filename.c_str(), unpacked_image, false))
failed = true;
else
printf("Wrote PNG file %s\n", png_output_filename.c_str());
if (png_alpha_output_filename.size()) {
image_u8 unpacked_image_alpha(unpacked_image);
for (uint32_t y = 0; y < unpacked_image_alpha.height(); y++)
for (uint32_t x = 0; x < unpacked_image_alpha.width(); x++) {
uint8_t alpha = unpacked_image_alpha(x, y).a;
unpacked_image_alpha(x, y).SetRGBA(alpha, alpha, alpha, 255); }
if (!save_png(png_alpha_output_filename.c_str(), unpacked_image_alpha, false))
failed = true;
else
printf("Wrote PNG file %s\n", png_alpha_output_filename.c_str());
}
}
return failed ? EXIT_FAILURE : EXIT_SUCCESS;
}
#pragma GCC diagnostic pop