Flesh out LU solving and add more tests

This commit is contained in:
Andrew Cassidy 2022-12-03 16:56:39 -08:00
parent 57636dc8dd
commit 1e8399eb41
5 changed files with 209 additions and 118 deletions

View File

@ -1,6 +1,7 @@
use std::fmt::Debug;
pub trait Index2D: Copy + Debug {
#[inline(always)]
fn to_1d(self, height: usize, width: usize) -> Option<usize> {
let (r, c) = self.to_2d(height, width)?;
Some(r * width + c)
@ -10,6 +11,7 @@ pub trait Index2D: Copy + Debug {
}
impl Index2D for usize {
#[inline(always)]
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)> {
match self < (height * width) {
true => Some((self / width, self % width)),
@ -19,6 +21,7 @@ impl Index2D for usize {
}
impl Index2D for (usize, usize) {
#[inline(always)]
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)> {
match self.0 < height && self.1 < width {
true => Some(self),

View File

@ -3,5 +3,6 @@ extern crate core;
pub mod index;
mod macros;
mod matrix;
mod util;
pub use matrix::{LUSolve, Matrix, Vector};

View File

@ -1,12 +1,15 @@
use crate::impl_matrix_op;
use crate::index::Index2D;
use crate::util::{checked_div, checked_inv};
use num_traits::real::Real;
use num_traits::{Num, NumOps, One, Zero};
use std::fmt::Debug;
use std::iter::{zip, Flatten, Product, Sum};
use std::mem::swap;
use std::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Mul, MulAssign, Neg};
use std::process::id;
/// A 2D array of values which can be operated upon.
///
@ -181,7 +184,7 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Some(&mut self.data[m][n])
}
/// Returns a row of the matrix. panics if index is out of bounds
/// Returns a row of the matrix. or [None] if index is out of bounds
///
/// # Examples
///
@ -194,12 +197,15 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// ```
#[inline]
#[must_use]
pub fn row(&self, m: usize) -> Option<Vector<T, N>> {
if m < M {
Some(Vector::<T, N>::vec(self.data[m]))
} else {
None
}
pub fn row(&self, m: usize) -> Vector<T, N> {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
m,
M,
N
);
Vector::<T, N>::vec(self.data[m])
}
#[inline]
@ -211,25 +217,28 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
M,
N
);
for (n, v) in val.elements().enumerate() {
self.data[m][n] = *v;
for n in 0..N {
self.data[m][n] = val.data[n][0];
}
}
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
let tmp = self.row(m2).expect("Invalid row index");
self.set_row(m2, &self.row(m1).expect("Invalid row index"));
let tmp = self.row(m2);
self.set_row(m2, &self.row(m1));
self.set_row(m1, &tmp);
}
#[inline]
#[must_use]
pub fn col(&self, n: usize) -> Option<Vector<T, M>> {
if n < N {
Some(Vector::<T, M>::vec(self.data.map(|r| r[n])))
} else {
None
}
pub fn col(&self, n: usize) -> Vector<T, M> {
assert!(
n < N,
"Column index {} out of bounds for {}x{} matrix",
n,
M,
N
);
Vector::<T, M>::vec(self.data.map(|r| r[n]))
}
#[inline]
@ -242,25 +251,41 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
N
);
for (m, v) in val.elements().enumerate() {
self.data[m][n] = *v;
for m in 0..M {
self.data[m][n] = val.data[m][0];
}
}
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
let tmp = self.col(n2).expect("Invalid column index");
self.set_col(n2, &self.col(n1).expect("Invalid column index"));
let tmp = self.col(n2);
self.set_col(n2, &self.col(n1));
self.set_col(n1, &tmp);
}
#[must_use]
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m).expect("invalid row reached while iterating"))
(0..M).map(|m| self.row(m))
}
#[must_use]
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n).expect("invalid column reached while iterating"))
(0..N).map(|n| self.col(n))
}
#[must_use]
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
where
T: Default,
{
Self::from_rows(ms.elements().map(|&m| self.row(m)))
}
#[must_use]
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
where
T: Default,
{
Self::from_cols(ns.elements().map(|&n| self.col(n)))
}
pub fn transpose(&self) -> Matrix<T, N, M>
@ -305,14 +330,7 @@ impl<T: Copy, const N: usize> Vector<T, N> {
/// Create a vector from a 1D array.
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
///
/// # Arguments
///
/// * `data`: A 1D array of elements to copy into the new vector
///
/// returns: Vector<T, M>
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_vector = Vector::vec([1,2,3,4]);
@ -374,8 +392,9 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
}
}
// Square matrix impls
// Square matrix implementations
impl<T: Copy, const N: usize> Matrix<T, N, N> {
/// Create an identity matrix
#[must_use]
pub fn identity() -> Self
where
@ -388,31 +407,36 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
return result;
}
/// returns an iterator over the elements along the diagonal of a square matrix
#[must_use]
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..N).map(|n| self[(n, n)])
}
/// Returns an iterator over the elements directly below the diagonal of a square matrix
#[must_use]
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..N - 1).map(|n| self[(n, n + 1)])
}
#[must_use]
/// Returns `Some(lu, idx, d)`, or [None] if the matrix is singular.
///
/// <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a^{3}" display="block">
/// <msup>
/// <mi>a</mi>
/// <mn>3</mn>
/// </msup>
/// </math>
/// Where:
/// * `lu`: The LU decomposition of `self`. The upper and lower matrices are combined into a single matrix
/// * `idx`: The permutation of rows on the original matrix needed to perform the decomposition.
/// Each element is the corresponding row index in the original matrix
/// * `d`: The permutation parity of `idx`, either `1` for even or `-1` for odd
///
/// The resulting tuple (once unwrapped) has the [LUSolve] trait, allowing it to be used for
/// solving multiple matrices without having to repeat the LU decomposition process
#[must_use]
pub fn lu(&self) -> Option<(Self, Vector<usize, N>, T)>
where
T: Real + Default,
{
// Implementation from Numerical Recipes §2.3
let mut lu = self.clone();
let mut idx: Vector<usize, N> = Default::default();
let mut idx: Vector<usize, N> = (0..N).collect();
let mut d = T::one();
let mut vv: Vector<T, N> = self
@ -428,7 +452,7 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
for k in 0..N {
// search for the pivot element and its index
let (ipivot, _) = (lu.col(k)? * vv)
let (ipivot, _) = (lu.col(k) * vv)
.abs()
.elements()
.enumerate()
@ -442,11 +466,11 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
// do we need to interchange rows?
if k != ipivot {
lu.pivot_row(ipivot, k); // yes, we do
idx.pivot_row(ipivot, k);
d = -d; // change parity of d
vv[ipivot] = vv[k] //interchange scale factor
}
idx[k] = ipivot;
let pivot = lu[(k, k)];
if pivot.abs() < T::epsilon() {
// if the pivot is zero, the matrix is singular
@ -467,21 +491,33 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
return Some((lu, idx, d));
}
/// Computes the inverse matrix of `self`, or [None] if the matrix cannot be inverted.
#[must_use]
pub fn inverse(&self) -> Option<Self>
where
T: Real + Default + Sum,
T: Real + Default + Sum + Product,
{
self.solve(&Self::identity())
match N {
1 => Some(Self::fill(checked_inv(self[0])?)),
2 => {
let mut result = Self::default();
result[(0, 0)] = self[(1, 1)];
result[(1, 1)] = self[(0, 0)];
result[(1, 0)] = -self[(1, 0)];
result[(0, 1)] = -self[(0, 1)];
Some(result * checked_inv(self.det())?)
}
_ => Some(self.lu()?.inverse()),
}
}
/// Computes the determinant of `self`.
#[must_use]
pub fn det(&self) -> T
where
T: Real + Default + Product + Sum,
{
match N {
0 => T::one(),
1 => self[0],
2 => (self[(0, 0)] * self[(1, 1)]) - (self[(0, 1)] * self[(1, 0)]),
3 => {
@ -500,37 +536,52 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
}
_ => {
// use LU decomposition
if let Some((lu, _, d)) = self.lu() {
d * lu.diagonals().product()
} else {
T::zero()
}
self.lu().map_or(T::zero(), |lu| lu.det())
}
}
}
/// Solves a system of `Ax = b` using `self` for `A`, or [None] if there is no solution.
#[must_use]
pub fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Option<Matrix<T, N, M>>
where
T: Real + Default + Sum,
T: Real + Default + Sum + Product,
{
Some(self.lu()?.solve(b))
}
}
pub trait LUSolve<R>: Copy {
fn solve(&self, rhs: &R) -> R;
/// Trait for the result of [Matrix::lu()],
/// allowing a single LU decomposition to be used to solve multiple equations
pub trait LUSolve<T, const N: usize>: Copy
where
T: Real + Copy,
{
/// Solves a system of `Ax = b` using an LU decomposition.
fn solve<const M: usize>(&self, rhs: &Matrix<T, N, M>) -> Matrix<T, N, M>;
/// Solves the determinant using an LU decomposition,
/// by multiplying the product of the diagonals by the permutation parity
fn det(&self) -> T;
/// Solves the inverse of the matrix that the LU decomposition represents.
fn inverse(&self) -> Matrix<T, N, N> {
return self.solve(&Matrix::<T, N, N>::identity());
}
/// Separate the lu decomposition into L and U matrices, such that `L*U = P*A`.
fn separate(&self) -> (Matrix<T, N, N>, Matrix<T, N, N>);
}
impl<T: Copy, const N: usize, const M: usize> LUSolve<Matrix<T, N, M>>
for (Matrix<T, N, N>, Vector<usize, N>, T)
impl<T: Copy, const N: usize> LUSolve<T, N> for (Matrix<T, N, N>, Vector<usize, N>, T)
where
for<'t> T: Real + Default + Sum,
T: Real + Default + Sum + Product,
{
#[must_use]
fn solve(&self, b: &Matrix<T, N, M>) -> Matrix<T, N, M> {
fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Matrix<T, N, M> {
let (lu, idx, _) = self;
Matrix::<T, N, M>::from_cols(b.cols().map(|mut x| {
let bp = b.permute_rows(idx);
Matrix::from_cols(bp.cols().map(|mut x| {
// Implementation from Numerical Recipes §2.3
// When ii is set to a positive value,
@ -538,42 +589,48 @@ where
let mut ii = 0usize;
for i in 0..N {
// forward substitution
let ip = idx[i]; // i permuted
let sum = x[ip];
x[ip] = x[i]; // unscramble as we go
if ii > 0 {
x[i] = sum
- (lu.row(i).expect("Invalid row reached") * x)
.elements()
.take(i)
.skip(ii - 1)
.cloned()
.sum()
} else {
x[i] = sum;
if sum.abs() > T::epsilon() {
ii = i + 1;
let mut sum = x[i];
if ii != 0 {
for j in (ii - 1)..i {
sum = sum - (lu[(i, j)] * x[j]);
}
} else if sum.abs() > T::epsilon() {
ii = i + 1;
}
x[i] = sum;
}
for i in (0..(N - 1)).rev() {
for i in (0..N).rev() {
// back substitution
let sum = x[i]
- (lu.row(i).expect("Invalid row reached") * x)
.elements()
.skip(i + 1)
.cloned()
.sum();
let mut sum = x[i];
for j in (i + 1)..N {
sum = sum - (lu[(i, j)] * x[j]);
}
x[i] = sum / lu[(i, i)]
}
x
}))
}
}
// Square matrices
impl<T: Copy, const N: usize> Matrix<T, N, N> {}
fn det(&self) -> T {
let (lu, _, d) = self;
*d * lu.diagonals().product()
}
fn separate(&self) -> (Matrix<T, N, N>, Matrix<T, N, N>) {
let mut l = Matrix::<T, N, N>::identity();
let mut u = self.0; // lu
for m in 1..N {
for n in 0..m {
// iterate over lower diagonal
l[(m, n)] = u[(m, n)];
u[(m, n)] = T::zero();
}
}
(l, u)
}
}
// Index
impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N>
@ -583,6 +640,7 @@ where
{
type Output = T;
#[inline(always)]
fn index(&self, index: I) -> &Self::Output {
self.get(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",
@ -597,6 +655,7 @@ where
I: Index2D,
T: Copy,
{
#[inline(always)]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
self.get_mut(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",

13
src/util.rs Normal file
View File

@ -0,0 +1,13 @@
use num_traits::{Num, NumOps, One, Zero};
use std::ops::Div;
pub fn checked_div<L: Num + Div<R, Output = T>, R: Num + Zero, T>(num: L, den: R) -> Option<T> {
if den.is_zero() {
return None;
}
return Some(num / den);
}
pub fn checked_inv<T: Num + Div<T, Output = T> + Zero + One>(den: T) -> Option<T> {
return checked_div(T::one(), den);
}

View File

@ -1,9 +1,10 @@
use generic_parameterize::parameterize;
use num_traits::real::Real;
use num_traits::Zero;
use std::fmt::Debug;
use std::iter::{Product, Sum};
use std::ops;
use vector_victor::{Matrix, Vector};
use vector_victor::{LUSolve, Matrix, Vector};
#[parameterize(S = (i32, f32, u32), M = [1,4], N = [1,4])]
#[test]
@ -25,40 +26,54 @@ fn test_lu_identity<S: Default + Real + Debug + Product + Sum, const M: usize>()
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
let i = Matrix::<S, M, M>::identity();
let ones = Vector::<S, M>::fill(S::one());
let (lu, idx, d) = i.lu().expect("Singular matrix encountered");
assert_eq!(
lu,
i,
"Incorrect LU decomposition matrix for {m}x{m} identity matrix",
m = M
);
let decomp = i.lu().expect("Singular matrix encountered");
let (lu, idx, d) = decomp;
assert_eq!(lu, i, "Incorrect LU decomposition");
assert!(
(0..M).eq(idx.elements().cloned()),
"Incorrect permutation matrix result for {m}x{m} identity matrix",
m = M
"Incorrect permutation matrix",
);
assert_eq!(
d,
S::one(),
"Incorrect permutation parity for {m}x{m} identity matrix",
m = M
);
assert_eq!(
i.det(),
S::one(),
"Incorrect determinant for {m}x{m} identity matrix",
m = M
);
assert_eq!(
i.inverse(),
Some(i),
"Incorrect inverse for {m}x{m} identity matrix",
m = M
);
assert_eq!(
i.solve(&ones),
Some(ones),
"Incorrect solve result for {m}x{m} identity matrix",
m = M
)
assert_eq!(d, S::one(), "Incorrect permutation parity");
assert_eq!(i.det(), S::one());
assert_eq!(i.inverse(), Some(i));
assert_eq!(i.solve(&ones), Some(ones));
assert_eq!(decomp.separate(), (i, i));
}
#[parameterize(S = (f32, f64), M = [2,3,4])]
#[test]
fn test_lu_singular<S: Default + Real + Debug + Product + Sum, const M: usize>() {
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
let mut a = Matrix::<S, M, M>::zero();
let ones = Vector::<S, M>::fill(S::one());
a.set_row(0, &ones);
assert_eq!(a.lu(), None, "Matrix should be singular");
assert_eq!(a.det(), S::zero());
assert_eq!(a.inverse(), None);
assert_eq!(a.solve(&ones), None)
}
#[test]
fn test_lu_2x2() {
let a = Matrix::new([[1.0, 2.0], [3.0, 0.0]]);
let decomp = a.lu().expect("Singular matrix encountered");
let (lu, idx, d) = decomp;
// the decomposition is non-unique, due to the combination of lu and idx.
// Instead of checking the exact value, we only check the results.
// Also check if they produce the same results with both methods, since the
// Matrix<> methods use shortcuts the decomposition methods don't
let (l, u) = decomp.separate();
assert_eq!(l.mmul(&u), a.permute_rows(&idx));
assert_eq!(a.det(), -6.0);
assert_eq!(a.det(), decomp.det());
assert_eq!(
a.inverse(),
Some(Matrix::new([[0.0, 2.0], [3.0, -1.0]]) * (1.0 / 6.0))
);
assert_eq!(a.inverse(), Some(decomp.inverse()));
assert_eq!(a.inverse().unwrap().inverse().unwrap(), a)
}