Flesh out LU solving and add more tests

This commit is contained in:
Andrew Cassidy 2022-12-03 16:56:39 -08:00
parent 57636dc8dd
commit 1e8399eb41
5 changed files with 209 additions and 118 deletions

View File

@ -1,6 +1,7 @@
use std::fmt::Debug; use std::fmt::Debug;
pub trait Index2D: Copy + Debug { pub trait Index2D: Copy + Debug {
#[inline(always)]
fn to_1d(self, height: usize, width: usize) -> Option<usize> { fn to_1d(self, height: usize, width: usize) -> Option<usize> {
let (r, c) = self.to_2d(height, width)?; let (r, c) = self.to_2d(height, width)?;
Some(r * width + c) Some(r * width + c)
@ -10,6 +11,7 @@ pub trait Index2D: Copy + Debug {
} }
impl Index2D for usize { impl Index2D for usize {
#[inline(always)]
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)> { fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)> {
match self < (height * width) { match self < (height * width) {
true => Some((self / width, self % width)), true => Some((self / width, self % width)),
@ -19,6 +21,7 @@ impl Index2D for usize {
} }
impl Index2D for (usize, usize) { impl Index2D for (usize, usize) {
#[inline(always)]
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)> { fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)> {
match self.0 < height && self.1 < width { match self.0 < height && self.1 < width {
true => Some(self), true => Some(self),

View File

@ -3,5 +3,6 @@ extern crate core;
pub mod index; pub mod index;
mod macros; mod macros;
mod matrix; mod matrix;
mod util;
pub use matrix::{LUSolve, Matrix, Vector}; pub use matrix::{LUSolve, Matrix, Vector};

View File

@ -1,12 +1,15 @@
use crate::impl_matrix_op; use crate::impl_matrix_op;
use crate::index::Index2D; use crate::index::Index2D;
use crate::util::{checked_div, checked_inv};
use num_traits::real::Real; use num_traits::real::Real;
use num_traits::{Num, NumOps, One, Zero}; use num_traits::{Num, NumOps, One, Zero};
use std::fmt::Debug; use std::fmt::Debug;
use std::iter::{zip, Flatten, Product, Sum}; use std::iter::{zip, Flatten, Product, Sum};
use std::mem::swap;
use std::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Mul, MulAssign, Neg}; use std::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Mul, MulAssign, Neg};
use std::process::id;
/// A 2D array of values which can be operated upon. /// A 2D array of values which can be operated upon.
/// ///
@ -181,7 +184,7 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Some(&mut self.data[m][n]) Some(&mut self.data[m][n])
} }
/// Returns a row of the matrix. panics if index is out of bounds /// Returns a row of the matrix. or [None] if index is out of bounds
/// ///
/// # Examples /// # Examples
/// ///
@ -194,12 +197,15 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// ``` /// ```
#[inline] #[inline]
#[must_use] #[must_use]
pub fn row(&self, m: usize) -> Option<Vector<T, N>> { pub fn row(&self, m: usize) -> Vector<T, N> {
if m < M { assert!(
Some(Vector::<T, N>::vec(self.data[m])) m < M,
} else { "Row index {} out of bounds for {}x{} matrix",
None m,
} M,
N
);
Vector::<T, N>::vec(self.data[m])
} }
#[inline] #[inline]
@ -211,25 +217,28 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
M, M,
N N
); );
for (n, v) in val.elements().enumerate() { for n in 0..N {
self.data[m][n] = *v; self.data[m][n] = val.data[n][0];
} }
} }
pub fn pivot_row(&mut self, m1: usize, m2: usize) { pub fn pivot_row(&mut self, m1: usize, m2: usize) {
let tmp = self.row(m2).expect("Invalid row index"); let tmp = self.row(m2);
self.set_row(m2, &self.row(m1).expect("Invalid row index")); self.set_row(m2, &self.row(m1));
self.set_row(m1, &tmp); self.set_row(m1, &tmp);
} }
#[inline] #[inline]
#[must_use] #[must_use]
pub fn col(&self, n: usize) -> Option<Vector<T, M>> { pub fn col(&self, n: usize) -> Vector<T, M> {
if n < N { assert!(
Some(Vector::<T, M>::vec(self.data.map(|r| r[n]))) n < N,
} else { "Column index {} out of bounds for {}x{} matrix",
None n,
} M,
N
);
Vector::<T, M>::vec(self.data.map(|r| r[n]))
} }
#[inline] #[inline]
@ -242,25 +251,41 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
N N
); );
for (m, v) in val.elements().enumerate() { for m in 0..M {
self.data[m][n] = *v; self.data[m][n] = val.data[m][0];
} }
} }
pub fn pivot_col(&mut self, n1: usize, n2: usize) { pub fn pivot_col(&mut self, n1: usize, n2: usize) {
let tmp = self.col(n2).expect("Invalid column index"); let tmp = self.col(n2);
self.set_col(n2, &self.col(n1).expect("Invalid column index")); self.set_col(n2, &self.col(n1));
self.set_col(n1, &tmp); self.set_col(n1, &tmp);
} }
#[must_use] #[must_use]
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a { pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m).expect("invalid row reached while iterating")) (0..M).map(|m| self.row(m))
} }
#[must_use] #[must_use]
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a { pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n).expect("invalid column reached while iterating")) (0..N).map(|n| self.col(n))
}
#[must_use]
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
where
T: Default,
{
Self::from_rows(ms.elements().map(|&m| self.row(m)))
}
#[must_use]
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
where
T: Default,
{
Self::from_cols(ns.elements().map(|&n| self.col(n)))
} }
pub fn transpose(&self) -> Matrix<T, N, M> pub fn transpose(&self) -> Matrix<T, N, M>
@ -305,14 +330,7 @@ impl<T: Copy, const N: usize> Vector<T, N> {
/// Create a vector from a 1D array. /// Create a vector from a 1D array.
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors /// Note that vectors are always column vectors unless explicitly instantiated as row vectors
/// ///
/// # Arguments
///
/// * `data`: A 1D array of elements to copy into the new vector
///
/// returns: Vector<T, M>
///
/// # Examples /// # Examples
///
/// ``` /// ```
/// # use vector_victor::{Matrix, Vector}; /// # use vector_victor::{Matrix, Vector};
/// let my_vector = Vector::vec([1,2,3,4]); /// let my_vector = Vector::vec([1,2,3,4]);
@ -374,8 +392,9 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
} }
} }
// Square matrix impls // Square matrix implementations
impl<T: Copy, const N: usize> Matrix<T, N, N> { impl<T: Copy, const N: usize> Matrix<T, N, N> {
/// Create an identity matrix
#[must_use] #[must_use]
pub fn identity() -> Self pub fn identity() -> Self
where where
@ -388,31 +407,36 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
return result; return result;
} }
/// returns an iterator over the elements along the diagonal of a square matrix
#[must_use] #[must_use]
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's { pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..N).map(|n| self[(n, n)]) (0..N).map(|n| self[(n, n)])
} }
/// Returns an iterator over the elements directly below the diagonal of a square matrix
#[must_use] #[must_use]
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's { pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..N - 1).map(|n| self[(n, n + 1)]) (0..N - 1).map(|n| self[(n, n + 1)])
} }
#[must_use] /// Returns `Some(lu, idx, d)`, or [None] if the matrix is singular.
/// ///
/// <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a^{3}" display="block"> /// Where:
/// <msup> /// * `lu`: The LU decomposition of `self`. The upper and lower matrices are combined into a single matrix
/// <mi>a</mi> /// * `idx`: The permutation of rows on the original matrix needed to perform the decomposition.
/// <mn>3</mn> /// Each element is the corresponding row index in the original matrix
/// </msup> /// * `d`: The permutation parity of `idx`, either `1` for even or `-1` for odd
/// </math> ///
/// The resulting tuple (once unwrapped) has the [LUSolve] trait, allowing it to be used for
/// solving multiple matrices without having to repeat the LU decomposition process
#[must_use]
pub fn lu(&self) -> Option<(Self, Vector<usize, N>, T)> pub fn lu(&self) -> Option<(Self, Vector<usize, N>, T)>
where where
T: Real + Default, T: Real + Default,
{ {
// Implementation from Numerical Recipes §2.3 // Implementation from Numerical Recipes §2.3
let mut lu = self.clone(); let mut lu = self.clone();
let mut idx: Vector<usize, N> = Default::default(); let mut idx: Vector<usize, N> = (0..N).collect();
let mut d = T::one(); let mut d = T::one();
let mut vv: Vector<T, N> = self let mut vv: Vector<T, N> = self
@ -428,7 +452,7 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
for k in 0..N { for k in 0..N {
// search for the pivot element and its index // search for the pivot element and its index
let (ipivot, _) = (lu.col(k)? * vv) let (ipivot, _) = (lu.col(k) * vv)
.abs() .abs()
.elements() .elements()
.enumerate() .enumerate()
@ -442,11 +466,11 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
// do we need to interchange rows? // do we need to interchange rows?
if k != ipivot { if k != ipivot {
lu.pivot_row(ipivot, k); // yes, we do lu.pivot_row(ipivot, k); // yes, we do
idx.pivot_row(ipivot, k);
d = -d; // change parity of d d = -d; // change parity of d
vv[ipivot] = vv[k] //interchange scale factor vv[ipivot] = vv[k] //interchange scale factor
} }
idx[k] = ipivot;
let pivot = lu[(k, k)]; let pivot = lu[(k, k)];
if pivot.abs() < T::epsilon() { if pivot.abs() < T::epsilon() {
// if the pivot is zero, the matrix is singular // if the pivot is zero, the matrix is singular
@ -467,21 +491,33 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
return Some((lu, idx, d)); return Some((lu, idx, d));
} }
/// Computes the inverse matrix of `self`, or [None] if the matrix cannot be inverted.
#[must_use] #[must_use]
pub fn inverse(&self) -> Option<Self> pub fn inverse(&self) -> Option<Self>
where where
T: Real + Default + Sum, T: Real + Default + Sum + Product,
{ {
self.solve(&Self::identity()) match N {
1 => Some(Self::fill(checked_inv(self[0])?)),
2 => {
let mut result = Self::default();
result[(0, 0)] = self[(1, 1)];
result[(1, 1)] = self[(0, 0)];
result[(1, 0)] = -self[(1, 0)];
result[(0, 1)] = -self[(0, 1)];
Some(result * checked_inv(self.det())?)
}
_ => Some(self.lu()?.inverse()),
}
} }
/// Computes the determinant of `self`.
#[must_use] #[must_use]
pub fn det(&self) -> T pub fn det(&self) -> T
where where
T: Real + Default + Product + Sum, T: Real + Default + Product + Sum,
{ {
match N { match N {
0 => T::one(),
1 => self[0], 1 => self[0],
2 => (self[(0, 0)] * self[(1, 1)]) - (self[(0, 1)] * self[(1, 0)]), 2 => (self[(0, 0)] * self[(1, 1)]) - (self[(0, 1)] * self[(1, 0)]),
3 => { 3 => {
@ -500,37 +536,52 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
} }
_ => { _ => {
// use LU decomposition // use LU decomposition
if let Some((lu, _, d)) = self.lu() { self.lu().map_or(T::zero(), |lu| lu.det())
d * lu.diagonals().product()
} else {
T::zero()
}
} }
} }
} }
/// Solves a system of `Ax = b` using `self` for `A`, or [None] if there is no solution.
#[must_use] #[must_use]
pub fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Option<Matrix<T, N, M>> pub fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Option<Matrix<T, N, M>>
where where
T: Real + Default + Sum, T: Real + Default + Sum + Product,
{ {
Some(self.lu()?.solve(b)) Some(self.lu()?.solve(b))
} }
} }
pub trait LUSolve<R>: Copy { /// Trait for the result of [Matrix::lu()],
fn solve(&self, rhs: &R) -> R; /// allowing a single LU decomposition to be used to solve multiple equations
pub trait LUSolve<T, const N: usize>: Copy
where
T: Real + Copy,
{
/// Solves a system of `Ax = b` using an LU decomposition.
fn solve<const M: usize>(&self, rhs: &Matrix<T, N, M>) -> Matrix<T, N, M>;
/// Solves the determinant using an LU decomposition,
/// by multiplying the product of the diagonals by the permutation parity
fn det(&self) -> T;
/// Solves the inverse of the matrix that the LU decomposition represents.
fn inverse(&self) -> Matrix<T, N, N> {
return self.solve(&Matrix::<T, N, N>::identity());
}
/// Separate the lu decomposition into L and U matrices, such that `L*U = P*A`.
fn separate(&self) -> (Matrix<T, N, N>, Matrix<T, N, N>);
} }
impl<T: Copy, const N: usize, const M: usize> LUSolve<Matrix<T, N, M>> impl<T: Copy, const N: usize> LUSolve<T, N> for (Matrix<T, N, N>, Vector<usize, N>, T)
for (Matrix<T, N, N>, Vector<usize, N>, T)
where where
for<'t> T: Real + Default + Sum, T: Real + Default + Sum + Product,
{ {
#[must_use] #[must_use]
fn solve(&self, b: &Matrix<T, N, M>) -> Matrix<T, N, M> { fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Matrix<T, N, M> {
let (lu, idx, _) = self; let (lu, idx, _) = self;
Matrix::<T, N, M>::from_cols(b.cols().map(|mut x| { let bp = b.permute_rows(idx);
Matrix::from_cols(bp.cols().map(|mut x| {
// Implementation from Numerical Recipes §2.3 // Implementation from Numerical Recipes §2.3
// When ii is set to a positive value, // When ii is set to a positive value,
@ -538,42 +589,48 @@ where
let mut ii = 0usize; let mut ii = 0usize;
for i in 0..N { for i in 0..N {
// forward substitution // forward substitution
let ip = idx[i]; // i permuted let mut sum = x[i];
let sum = x[ip]; if ii != 0 {
x[ip] = x[i]; // unscramble as we go for j in (ii - 1)..i {
if ii > 0 { sum = sum - (lu[(i, j)] * x[j]);
x[i] = sum
- (lu.row(i).expect("Invalid row reached") * x)
.elements()
.take(i)
.skip(ii - 1)
.cloned()
.sum()
} else {
x[i] = sum;
if sum.abs() > T::epsilon() {
ii = i + 1;
} }
} else if sum.abs() > T::epsilon() {
ii = i + 1;
} }
x[i] = sum;
} }
for i in (0..(N - 1)).rev() { for i in (0..N).rev() {
// back substitution // back substitution
let sum = x[i] let mut sum = x[i];
- (lu.row(i).expect("Invalid row reached") * x) for j in (i + 1)..N {
.elements() sum = sum - (lu[(i, j)] * x[j]);
.skip(i + 1) }
.cloned()
.sum();
x[i] = sum / lu[(i, i)] x[i] = sum / lu[(i, i)]
} }
x x
})) }))
} }
}
// Square matrices fn det(&self) -> T {
impl<T: Copy, const N: usize> Matrix<T, N, N> {} let (lu, _, d) = self;
*d * lu.diagonals().product()
}
fn separate(&self) -> (Matrix<T, N, N>, Matrix<T, N, N>) {
let mut l = Matrix::<T, N, N>::identity();
let mut u = self.0; // lu
for m in 1..N {
for n in 0..m {
// iterate over lower diagonal
l[(m, n)] = u[(m, n)];
u[(m, n)] = T::zero();
}
}
(l, u)
}
}
// Index // Index
impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N> impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N>
@ -583,6 +640,7 @@ where
{ {
type Output = T; type Output = T;
#[inline(always)]
fn index(&self, index: I) -> &Self::Output { fn index(&self, index: I) -> &Self::Output {
self.get(index).expect(&*format!( self.get(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix", "index {:?} out of range for {}x{} Matrix",
@ -597,6 +655,7 @@ where
I: Index2D, I: Index2D,
T: Copy, T: Copy,
{ {
#[inline(always)]
fn index_mut(&mut self, index: I) -> &mut Self::Output { fn index_mut(&mut self, index: I) -> &mut Self::Output {
self.get_mut(index).expect(&*format!( self.get_mut(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix", "index {:?} out of range for {}x{} Matrix",

13
src/util.rs Normal file
View File

@ -0,0 +1,13 @@
use num_traits::{Num, NumOps, One, Zero};
use std::ops::Div;
pub fn checked_div<L: Num + Div<R, Output = T>, R: Num + Zero, T>(num: L, den: R) -> Option<T> {
if den.is_zero() {
return None;
}
return Some(num / den);
}
pub fn checked_inv<T: Num + Div<T, Output = T> + Zero + One>(den: T) -> Option<T> {
return checked_div(T::one(), den);
}

View File

@ -1,9 +1,10 @@
use generic_parameterize::parameterize; use generic_parameterize::parameterize;
use num_traits::real::Real; use num_traits::real::Real;
use num_traits::Zero;
use std::fmt::Debug; use std::fmt::Debug;
use std::iter::{Product, Sum}; use std::iter::{Product, Sum};
use std::ops; use std::ops;
use vector_victor::{Matrix, Vector}; use vector_victor::{LUSolve, Matrix, Vector};
#[parameterize(S = (i32, f32, u32), M = [1,4], N = [1,4])] #[parameterize(S = (i32, f32, u32), M = [1,4], N = [1,4])]
#[test] #[test]
@ -25,40 +26,54 @@ fn test_lu_identity<S: Default + Real + Debug + Product + Sum, const M: usize>()
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity(); // let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
let i = Matrix::<S, M, M>::identity(); let i = Matrix::<S, M, M>::identity();
let ones = Vector::<S, M>::fill(S::one()); let ones = Vector::<S, M>::fill(S::one());
let (lu, idx, d) = i.lu().expect("Singular matrix encountered"); let decomp = i.lu().expect("Singular matrix encountered");
assert_eq!( let (lu, idx, d) = decomp;
lu, assert_eq!(lu, i, "Incorrect LU decomposition");
i,
"Incorrect LU decomposition matrix for {m}x{m} identity matrix",
m = M
);
assert!( assert!(
(0..M).eq(idx.elements().cloned()), (0..M).eq(idx.elements().cloned()),
"Incorrect permutation matrix result for {m}x{m} identity matrix", "Incorrect permutation matrix",
m = M
); );
assert_eq!( assert_eq!(d, S::one(), "Incorrect permutation parity");
d, assert_eq!(i.det(), S::one());
S::one(), assert_eq!(i.inverse(), Some(i));
"Incorrect permutation parity for {m}x{m} identity matrix", assert_eq!(i.solve(&ones), Some(ones));
m = M assert_eq!(decomp.separate(), (i, i));
); }
assert_eq!(
i.det(), #[parameterize(S = (f32, f64), M = [2,3,4])]
S::one(), #[test]
"Incorrect determinant for {m}x{m} identity matrix", fn test_lu_singular<S: Default + Real + Debug + Product + Sum, const M: usize>() {
m = M // let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
); let mut a = Matrix::<S, M, M>::zero();
assert_eq!( let ones = Vector::<S, M>::fill(S::one());
i.inverse(), a.set_row(0, &ones);
Some(i),
"Incorrect inverse for {m}x{m} identity matrix", assert_eq!(a.lu(), None, "Matrix should be singular");
m = M assert_eq!(a.det(), S::zero());
); assert_eq!(a.inverse(), None);
assert_eq!( assert_eq!(a.solve(&ones), None)
i.solve(&ones), }
Some(ones),
"Incorrect solve result for {m}x{m} identity matrix", #[test]
m = M fn test_lu_2x2() {
) let a = Matrix::new([[1.0, 2.0], [3.0, 0.0]]);
let decomp = a.lu().expect("Singular matrix encountered");
let (lu, idx, d) = decomp;
// the decomposition is non-unique, due to the combination of lu and idx.
// Instead of checking the exact value, we only check the results.
// Also check if they produce the same results with both methods, since the
// Matrix<> methods use shortcuts the decomposition methods don't
let (l, u) = decomp.separate();
assert_eq!(l.mmul(&u), a.permute_rows(&idx));
assert_eq!(a.det(), -6.0);
assert_eq!(a.det(), decomp.det());
assert_eq!(
a.inverse(),
Some(Matrix::new([[0.0, 2.0], [3.0, -1.0]]) * (1.0 / 6.0))
);
assert_eq!(a.inverse(), Some(decomp.inverse()));
assert_eq!(a.inverse().unwrap().inverse().unwrap(), a)
} }