mirror of
https://github.com/drewcassidy/vector-victor.git
synced 2024-09-01 14:58:35 +00:00
Refactor LUDecompose slightly
This commit is contained in:
parent
bc1b3f199d
commit
2b303892f7
@ -1,6 +1,7 @@
|
||||
use crate::util::checked_inv;
|
||||
use crate::{Matrix, Vector};
|
||||
use num_traits::real::Real;
|
||||
use num_traits::Signed;
|
||||
use std::iter::{Product, Sum};
|
||||
use std::ops::{Mul, Neg, Not};
|
||||
|
||||
@ -37,7 +38,7 @@ impl Not for Parity {
|
||||
}
|
||||
}
|
||||
|
||||
/// The result of the [LU decomposition](LUDecomposable::lu) of a matrix.
|
||||
/// The result of the [LU decomposition](LUDecompose::lu) of a matrix.
|
||||
///
|
||||
/// This struct provides a convenient way to reuse one LU decomposition to solve multiple
|
||||
/// matrix equations. You likely do not need to worry about its contents.
|
||||
@ -46,26 +47,26 @@ impl Not for Parity {
|
||||
/// on wikipedia for more information
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
pub struct LUDecomposition<T: Copy, const N: usize> {
|
||||
/// The $L$ and $U$ matrices combined into one
|
||||
/// The $bbL$ and $bbU$ matrices combined into one
|
||||
///
|
||||
/// for example if
|
||||
///
|
||||
/// $ U = [[u_{11}, u_{12}, cdots, u_{1n} ],
|
||||
/// [0, u_{22}, cdots, u_{2n} ],
|
||||
/// [vdots, vdots, ddots, vdots ],
|
||||
/// [0, 0, cdots, u_{mn} ]] $
|
||||
/// $ bbU = [[u_{11}, u_{12}, cdots, u_{1n} ],
|
||||
/// [0, u_{22}, cdots, u_{2n} ],
|
||||
/// [vdots, vdots, ddots, vdots ],
|
||||
/// [0, 0, cdots, u_{mn} ]] $
|
||||
/// and
|
||||
/// $ L = [[1, 0, cdots, 0 ],
|
||||
/// [l_{21}, 1, cdots, 0 ],
|
||||
/// [vdots, vdots, ddots, vdots ],
|
||||
/// [l_{m1}, l_{m2}, cdots, 1 ]] $,
|
||||
/// $ bbL = [[1, 0, cdots, 0 ],
|
||||
/// [l_{21}, 1, cdots, 0 ],
|
||||
/// [vdots, vdots, ddots, vdots ],
|
||||
/// [l_{m1}, l_{m2}, cdots, 1 ]] $,
|
||||
/// then
|
||||
/// $ LU = [[u_{11}, u_{12}, cdots, u_{1n} ],
|
||||
/// [l_{21}, u_{22}, cdots, u_{2n} ],
|
||||
/// [vdots, vdots, ddots, vdots ],
|
||||
/// [l_{m1}, l_{m2}, cdots, u_{mn} ]] $
|
||||
/// $ bb{LU} = [[u_{11}, u_{12}, cdots, u_{1n} ],
|
||||
/// [l_{21}, u_{22}, cdots, u_{2n} ],
|
||||
/// [vdots, vdots, ddots, vdots ],
|
||||
/// [l_{m1}, l_{m2}, cdots, u_{mn} ]] $
|
||||
///
|
||||
/// note that the diagonals of the $L$ matrix are always 1, so no information is lost
|
||||
/// note that the diagonals of the $bbL$ matrix are always 1, so no information is lost
|
||||
pub lu: Matrix<T, N, N>,
|
||||
|
||||
/// The indices of the permutation matrix $P$, such that $PxxA$ = $LxxU$
|
||||
@ -79,13 +80,10 @@ pub struct LUDecomposition<T: Copy, const N: usize> {
|
||||
pub parity: Parity,
|
||||
}
|
||||
|
||||
impl<T: Copy + Default, const N: usize> LUDecomposition<T, N>
|
||||
where
|
||||
T: Real + Default + Sum + Product,
|
||||
{
|
||||
/// Solve for $x$ in $M xx x = b$, where $M$ is the original matrix this is a decomposition of.
|
||||
impl<T: Copy + Default + Real, const N: usize> LUDecomposition<T, N> {
|
||||
/// Solve for $x$ in $bbM xx x = b$, where $bbM$ is the original matrix this is a decomposition of.
|
||||
///
|
||||
/// This is equivalent to [`LUDecomposable::solve`] while allowing the LU decomposition
|
||||
/// This is equivalent to [`LUDecompose::solve`] while allowing the LU decomposition
|
||||
/// to be reused
|
||||
#[must_use]
|
||||
pub fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Matrix<T, N, M> {
|
||||
@ -123,17 +121,17 @@ where
|
||||
/// Calculate the determinant $|M|$ of the matrix $M$.
|
||||
/// If the matrix is singular, the determinant is 0.
|
||||
///
|
||||
/// This is equivalent to [`LUDecomposable::det`] while allowing the LU decomposition
|
||||
/// This is equivalent to [`LUDecompose::det`] while allowing the LU decomposition
|
||||
/// to be reused
|
||||
pub fn det(&self) -> T {
|
||||
self.parity * self.lu.diagonals().product()
|
||||
self.parity * self.lu.diagonals().fold(T::one(), T::mul)
|
||||
}
|
||||
|
||||
/// Calculate the inverse of the original matrix, such that $MxxM^{-1} = I$
|
||||
/// Calculate the inverse of the original matrix, such that $bbM xx bbM^{-1} = bbI$
|
||||
///
|
||||
/// This is equivalent to [`Matrix::inverse`] while allowing the LU decomposition to be reused
|
||||
/// This is equivalent to [`Matrix::inv`] while allowing the LU decomposition to be reused
|
||||
#[must_use]
|
||||
pub fn inverse(&self) -> Matrix<T, N, N> {
|
||||
pub fn inv(&self) -> Matrix<T, N, N> {
|
||||
return self.solve(&Matrix::<T, N, N>::identity());
|
||||
}
|
||||
|
||||
@ -160,17 +158,14 @@ where
|
||||
///
|
||||
/// See [LU decomposition](https://en.wikipedia.org/wiki/LU_decomposition)
|
||||
/// on wikipedia for more information
|
||||
pub trait LUDecomposable<T, const N: usize>
|
||||
where
|
||||
T: Copy + Default + Real + Product + Sum,
|
||||
{
|
||||
pub trait LUDecompose<T: Copy, const N: usize> {
|
||||
/// return this matrix's [`LUDecomposition`], or [`None`] if the matrix is singular.
|
||||
/// This can be used to solve for multiple results
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::decompose::LUDecomposable;
|
||||
/// # use vector_victor::decompose::LUDecompose;
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
/// let m = Matrix::new([[1.0,3.0],[2.0,4.0]]);
|
||||
/// let m = Matrix::mat([[1.0,3.0],[2.0,4.0]]);
|
||||
/// let lu = m.lu().expect("Cannot decompose a signular matrix");
|
||||
///
|
||||
/// let b = Vector::vec([7.0,10.0]);
|
||||
@ -183,34 +178,35 @@ where
|
||||
#[must_use]
|
||||
fn lu(&self) -> Option<LUDecomposition<T, N>>;
|
||||
|
||||
/// Calculate the inverse of the matrix, such that $MxxM^{-1} = I$, or [`None`] if the matrix is singular.
|
||||
/// Calculate the inverse of the matrix, such that $bbMxxbbM^{-1} = bbI$,
|
||||
/// or [`None`] if the matrix is singular.
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::decompose::LUDecomposable;
|
||||
/// # use vector_victor::decompose::LUDecompose;
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let m = Matrix::new([[1.0,3.0],[2.0,4.0]]);
|
||||
/// let mi = m.inverse().expect("Cannot invert a singular matrix");
|
||||
/// let m = Matrix::mat([[1.0,3.0],[2.0,4.0]]);
|
||||
/// let mi = m.inv().expect("Cannot invert a singular matrix");
|
||||
///
|
||||
/// assert_eq!(mi, Matrix::new([[-2.0, 1.5],[1.0, -0.5]]), "unexpected inverse matrix");
|
||||
/// assert_eq!(mi, Matrix::mat([[-2.0, 1.5],[1.0, -0.5]]), "unexpected inverse matrix");
|
||||
///
|
||||
/// // multiplying a matrix by its inverse yields the identity matrix
|
||||
/// assert_eq!(m.mmul(&mi), Matrix::identity())
|
||||
/// ```
|
||||
#[must_use]
|
||||
fn inverse(&self) -> Option<Matrix<T, N, N>>;
|
||||
fn inv(&self) -> Option<Matrix<T, N, N>>;
|
||||
|
||||
/// Calculate the determinant $|M|$ of the matrix $M$.
|
||||
/// If the matrix is singular, the determinant is 0
|
||||
#[must_use]
|
||||
fn det(&self) -> T;
|
||||
|
||||
/// Solve for $x$ in $M xx x = b$
|
||||
/// Solve for $x$ in $bbM xx x = b$
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::decompose::LUDecomposable;
|
||||
/// # use vector_victor::decompose::LUDecompose;
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
///
|
||||
/// let m = Matrix::new([[1.0,3.0],[2.0,4.0]]);
|
||||
/// let m = Matrix::mat([[1.0,3.0],[2.0,4.0]]);
|
||||
/// let b = Vector::vec([7.0,10.0]);
|
||||
/// let x = m.solve(&b).expect("Cannot solve a singular matrix");
|
||||
///
|
||||
@ -219,26 +215,26 @@ where
|
||||
/// ```
|
||||
///
|
||||
/// $x$ does not need to be a column-vector, it can also be a 2D matrix. For example,
|
||||
/// the following is another way to calculate the [inverse](LUDecomposable::inverse()) by solving for the identity matrix $I$.
|
||||
/// the following is another way to calculate the [inverse](LUDecompose::inv()) by solving for the identity matrix $I$.
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::decompose::LUDecomposable;
|
||||
/// # use vector_victor::decompose::LUDecompose;
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
///
|
||||
/// let m = Matrix::new([[1.0,3.0],[2.0,4.0]]);
|
||||
/// let m = Matrix::mat([[1.0,3.0],[2.0,4.0]]);
|
||||
/// let i = Matrix::<f64,2,2>::identity();
|
||||
/// let mi = m.solve(&i).expect("Cannot solve a singular matrix");
|
||||
///
|
||||
/// assert_eq!(mi, Matrix::new([[-2.0, 1.5],[1.0, -0.5]]));
|
||||
/// assert_eq!(mi, Matrix::mat([[-2.0, 1.5],[1.0, -0.5]]));
|
||||
/// assert_eq!(m.mmul(&mi), i, "M x M^-1 = I");
|
||||
/// ```
|
||||
#[must_use]
|
||||
fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Option<Matrix<T, N, M>>;
|
||||
}
|
||||
|
||||
impl<T, const N: usize> LUDecomposable<T, N> for Matrix<T, N, N>
|
||||
impl<T, const N: usize> LUDecompose<T, N> for Matrix<T, N, N>
|
||||
where
|
||||
T: Copy + Default + Real + Sum + Product,
|
||||
T: Copy + Default + Real + Sum + Product + Signed,
|
||||
{
|
||||
fn lu(&self) -> Option<LUDecomposition<T, N>> {
|
||||
// Implementation from Numerical Recipes §2.3
|
||||
@ -300,7 +296,7 @@ where
|
||||
return Some(LUDecomposition { lu, idx, parity });
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Matrix<T, N, N>> {
|
||||
fn inv(&self) -> Option<Matrix<T, N, N>> {
|
||||
match N {
|
||||
1 => Some(Self::fill(checked_inv(self[0])?)),
|
||||
2 => {
|
||||
@ -311,7 +307,7 @@ where
|
||||
result[(0, 1)] = -self[(0, 1)];
|
||||
Some(result * checked_inv(self.det())?)
|
||||
}
|
||||
_ => Some(self.lu()?.inverse()),
|
||||
_ => Some(self.lu()?.inv()),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -4,18 +4,21 @@ mod common;
|
||||
use common::Approx;
|
||||
use generic_parameterize::parameterize;
|
||||
use num_traits::real::Real;
|
||||
use num_traits::Zero;
|
||||
use num_traits::{Float, One, Signed, Zero};
|
||||
use std::fmt::Debug;
|
||||
use std::iter::{Product, Sum};
|
||||
use vector_victor::decompose::Parity::Even;
|
||||
use vector_victor::decompose::{LUDecomposable, LUDecomposition};
|
||||
use vector_victor::decompose::{LUDecompose, LUDecomposition, Parity};
|
||||
use vector_victor::{Matrix, Vector};
|
||||
|
||||
#[parameterize(S = (f32, f64), M = [1,2,3,4])]
|
||||
#[test]
|
||||
/// The LU decomposition of the identity matrix should produce
|
||||
/// the identity matrix with no permutations and parity 1
|
||||
fn test_lu_identity<S: Default + Approx + Real + Debug + Product + Sum, const M: usize>() {
|
||||
fn test_lu_identity<S, const M: usize>()
|
||||
where
|
||||
Matrix<S, M, M>: LUDecompose<S, M>,
|
||||
S: Copy + Real + Debug + Approx + Default,
|
||||
{
|
||||
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
|
||||
let i = Matrix::<S, M, M>::identity();
|
||||
let ones = Vector::<S, M>::fill(S::one());
|
||||
@ -26,7 +29,7 @@ fn test_lu_identity<S: Default + Approx + Real + Debug + Product + Sum, const M:
|
||||
(0..M).eq(idx.elements().cloned()),
|
||||
"Incorrect permutation matrix",
|
||||
);
|
||||
assert_eq!(parity, Even, "Incorrect permutation parity");
|
||||
assert_eq!(parity, Parity::Even, "Incorrect permutation parity");
|
||||
|
||||
// Check determinant calculation which uses LU decomposition
|
||||
assert_approx!(
|
||||
@ -37,7 +40,7 @@ fn test_lu_identity<S: Default + Approx + Real + Debug + Product + Sum, const M:
|
||||
|
||||
// Check inverse calculation with uses LU decomposition
|
||||
assert_eq!(
|
||||
i.inverse(),
|
||||
i.inv(),
|
||||
Some(i),
|
||||
"Identity matrix should be its own inverse"
|
||||
);
|
||||
@ -54,7 +57,11 @@ fn test_lu_identity<S: Default + Approx + Real + Debug + Product + Sum, const M:
|
||||
#[parameterize(S = (f32, f64), M = [2,3,4])]
|
||||
#[test]
|
||||
/// The LU decomposition of any singular matrix should be `None`
|
||||
fn test_lu_singular<S: Default + Real + Debug + Product + Sum, const M: usize>() {
|
||||
fn test_lu_singular<S, const M: usize>()
|
||||
where
|
||||
Matrix<S, M, M>: LUDecompose<S, M>,
|
||||
S: Copy + Real + Debug + Approx + Default,
|
||||
{
|
||||
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
|
||||
let mut a = Matrix::<S, M, M>::zero();
|
||||
let ones = Vector::<S, M>::fill(S::one());
|
||||
@ -66,7 +73,7 @@ fn test_lu_singular<S: Default + Real + Debug + Product + Sum, const M: usize>()
|
||||
S::zero(),
|
||||
"Singular matrix should have determinant of zero"
|
||||
);
|
||||
assert_eq!(a.inverse(), None, "Singular matrix should have no inverse");
|
||||
assert_eq!(a.inv(), None, "Singular matrix should have no inverse");
|
||||
assert_eq!(
|
||||
a.solve(&ones),
|
||||
None,
|
||||
@ -76,7 +83,7 @@ fn test_lu_singular<S: Default + Real + Debug + Product + Sum, const M: usize>()
|
||||
|
||||
#[test]
|
||||
fn test_lu_2x2() {
|
||||
let a = Matrix::new([[1.0, 2.0], [3.0, 0.0]]);
|
||||
let a = Matrix::mat([[1.0, 2.0], [3.0, 0.0]]);
|
||||
let decomp = a.lu().expect("Singular matrix encountered");
|
||||
// the decomposition is non-unique, due to the combination of lu and idx.
|
||||
// Instead of checking the exact value, we only check the results.
|
||||
@ -90,16 +97,16 @@ fn test_lu_2x2() {
|
||||
assert_approx!(a.det(), decomp.det());
|
||||
|
||||
assert_approx!(
|
||||
a.inverse().unwrap(),
|
||||
Matrix::new([[0.0, 2.0], [3.0, -1.0]]) * (1.0 / 6.0)
|
||||
a.inv().unwrap(),
|
||||
Matrix::mat([[0.0, 2.0], [3.0, -1.0]]) * (1.0 / 6.0)
|
||||
);
|
||||
assert_approx!(a.inverse().unwrap(), decomp.inverse());
|
||||
assert_approx!(a.inverse().unwrap().inverse().unwrap(), a)
|
||||
assert_approx!(a.inv().unwrap(), decomp.inv());
|
||||
assert_approx!(a.inv().unwrap().inv().unwrap(), a)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_lu_3x3() {
|
||||
let a = Matrix::new([[1.0, -5.0, 8.0], [1.0, -2.0, 1.0], [2.0, -1.0, -4.0]]);
|
||||
let a = Matrix::mat([[1.0, -5.0, 8.0], [1.0, -2.0, 1.0], [2.0, -1.0, -4.0]]);
|
||||
let decomp = a.lu().expect("Singular matrix encountered");
|
||||
|
||||
let (l, u) = decomp.separate();
|
||||
@ -109,9 +116,9 @@ fn test_lu_3x3() {
|
||||
assert_approx!(a.det(), decomp.det());
|
||||
|
||||
assert_approx!(
|
||||
a.inverse().unwrap(),
|
||||
Matrix::new([[9.0, -28.0, 11.0], [6.0, -20.0, 7.0], [3.0, -9.0, 3.0]]) * (1.0 / 3.0)
|
||||
a.inv().unwrap(),
|
||||
Matrix::mat([[9.0, -28.0, 11.0], [6.0, -20.0, 7.0], [3.0, -9.0, 3.0]]) * (1.0 / 3.0)
|
||||
);
|
||||
assert_approx!(a.inverse().unwrap(), decomp.inverse());
|
||||
assert_approx!(a.inverse().unwrap().inverse().unwrap(), a)
|
||||
assert_approx!(a.inv().unwrap(), decomp.inv());
|
||||
assert_approx!(a.inv().unwrap().inv().unwrap(), a)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user