More API and fleshing things out

master
Andrew Cassidy 2 years ago
parent e928ed6926
commit 969a1ece67

@ -7,3 +7,4 @@ edition = "2021"
[dependencies]
generic_parameterize = "0.1.0"
num-traits = "0.2.15"

@ -3,5 +3,6 @@ extern crate core;
pub mod index;
mod macros;
mod matrix;
mod matrix_traits;
pub use matrix::{Matrix, Scalar, Vector};

@ -102,7 +102,7 @@ macro_rules! _impl_op_m_internal {
($ops_trait:ident, $ops_fn:ident, $lhs:ty, $out:ty) => {
impl<L, const M: usize, const N: usize> ::std::ops::$ops_trait for $lhs
where
L: ::std::ops::$ops_trait<Output = L> + Scalar,
L: ::std::ops::$ops_trait<Output = L> + Copy,
{
type Output = $out;
@ -125,8 +125,8 @@ macro_rules! _impl_op_mm_internal {
($ops_trait:ident, $ops_fn:ident, $lhs:ty, $rhs:ty, $out:ty) => {
impl<L, R, const M: usize, const N: usize> ::std::ops::$ops_trait<$rhs> for $lhs
where
L: ::std::ops::$ops_trait<R, Output = L> + Scalar,
R: Scalar,
L: ::std::ops::$ops_trait<R, Output = L> + Copy,
R: Copy,
{
type Output = $out;
@ -149,8 +149,8 @@ macro_rules! _impl_opassign_mm_internal {
($ops_trait:ident, $ops_fn:ident, $lhs:ty, $rhs:ty, $out:ty) => {
impl<L, R, const M: usize, const N: usize> ::std::ops::$ops_trait<$rhs> for $lhs
where
L: ::std::ops::$ops_trait<R> + Scalar,
R: Scalar,
L: ::std::ops::$ops_trait<R> + Copy,
R: Copy,
{
#[inline(always)]
fn $ops_fn(&mut self, other: $rhs) {
@ -169,8 +169,8 @@ macro_rules! _impl_op_ms_internal {
($ops_trait:ident, $ops_fn:ident, $lhs:ty, $rhs:ty, $out:ty) => {
impl<L, R, const M: usize, const N: usize> ::std::ops::$ops_trait<$rhs> for $lhs
where
L: ::std::ops::$ops_trait<R, Output = L> + Scalar,
R: Scalar,
L: ::std::ops::$ops_trait<R, Output = L> + Copy,
R: Copy + Num,
{
type Output = $out;
@ -193,8 +193,8 @@ macro_rules! _impl_opassign_ms_internal {
($ops_trait:ident, $ops_fn:ident, $lhs:ty, $rhs:ty, $out:ty) => {
impl<L, R, const M: usize, const N: usize> ::std::ops::$ops_trait<$rhs> for $lhs
where
L: ::std::ops::$ops_trait<R> + Scalar,
R: Scalar,
L: ::std::ops::$ops_trait<R> + Copy,
R: Copy + Num,
{
#[inline(always)]
fn $ops_fn(&mut self, r: $rhs) {

@ -1,8 +1,11 @@
use crate::impl_matrix_op;
use crate::index::Index2D;
use crate::matrix_traits::Mult;
use num_traits::{Num, One, Zero};
use std::fmt::Debug;
use std::iter::{zip, Flatten, Product, Sum};
use std::ops::{AddAssign, Deref, DerefMut, Index, IndexMut, MulAssign};
use std::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Mul, MulAssign, Neg, Sub};
use std::process::Output;
/// A Scalar that a [Matrix] can be made up of.
///
@ -25,15 +28,29 @@ where
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Matrix<T, const M: usize, const N: usize>
where
T: Scalar,
T: Copy,
{
data: [[T; N]; M],
data: [[T; N]; M], // Column-Major order
}
/// An alias for a [Matrix] with a single column
pub type Vector<T, const N: usize> = Matrix<T, N, 1>;
impl<T: Scalar, const M: usize, const N: usize> Matrix<T, M, N> {
pub trait Dot<R> {
type Output;
#[must_use]
fn dot(&self, rhs: &R) -> Output;
}
pub trait Cross<R> {
#[must_use]
fn cross_r(&self, rhs: &R) -> Self;
#[must_use]
fn cross_l(&self, rhs: &R) -> Self;
}
// Simple access functions that only require T be copyable
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// Generate a new matrix from a 2D Array
///
/// # Arguments
@ -95,8 +112,8 @@ impl<T: Scalar, const M: usize, const N: usize> Matrix<T, M, N> {
#[must_use]
pub fn from_rows<I>(iter: I) -> Self
where
Self: Default,
I: IntoIterator<Item = Vector<T, N>>,
Self: Default,
{
let mut result = Self::default();
for (m, row) in iter.into_iter().enumerate().take(M) {
@ -124,8 +141,8 @@ impl<T: Scalar, const M: usize, const N: usize> Matrix<T, M, N> {
#[must_use]
pub fn from_cols<I>(iter: I) -> Self
where
Self: Default,
I: IntoIterator<Item = Vector<T, M>>,
Self: Default,
{
let mut result = Self::default();
for (n, col) in iter.into_iter().enumerate().take(N) {
@ -143,17 +160,17 @@ impl<T: Scalar, const M: usize, const N: usize> Matrix<T, M, N> {
/// assert!(vec![1,2,3,4].iter().eq(my_matrix.elements()))
/// ```
#[must_use]
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &T> + 'a {
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a {
self.data.iter().flatten()
}
/// Returns a mutable iterator over the elements of the matrix in row-major order.
#[must_use]
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &mut T> + 'a {
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
self.data.iter_mut().flatten()
}
/// Returns a reference to the element at that position in the matrix or `None` if out of bounds.
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
///
/// # Examples
///
@ -163,6 +180,11 @@ impl<T: Scalar, const M: usize, const N: usize> Matrix<T, M, N> {
///
/// // element at index 2 is the same as the element at (row 1, column 0).
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
///
/// // my_matrix.get() is equivalent to my_matrix[],
/// // but returns an Option instead of panicking
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
///
/// // index 4 is out of range, so get(4) returns None.
/// assert_eq!(my_matrix.get(4), None);
/// ```
@ -173,6 +195,7 @@ impl<T: Scalar, const M: usize, const N: usize> Matrix<T, M, N> {
Some(&self.data[m][n])
}
/// Returns a mutable reference to the element at that position in the matrix, or `None` if out of bounds.
#[inline]
#[must_use]
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
@ -180,14 +203,28 @@ impl<T: Scalar, const M: usize, const N: usize> Matrix<T, M, N> {
Some(&mut self.data[m][n])
}
/// Returns a row of the matrix. panics if index is out of bounds
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
///
/// // row at index 1
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
/// ```
#[inline]
#[must_use]
pub fn row(&self, m: usize) -> Option<Vector<T, N>> {
if m < M {
Some(Vector::<T, N>::vec(self.data[m]))
} else {
None
}
pub fn row(&self, m: usize) -> Vector<T, N> {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
m,
M,
N
);
Vector::<T, N>::vec(self.data[m])
}
#[inline]
@ -231,17 +268,41 @@ impl<T: Scalar, const M: usize, const N: usize> Matrix<T, M, N> {
#[must_use]
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m).expect("invalid row reached while iterating"))
(0..M).map(|m| self.row(m))
}
#[must_use]
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n).expect("invalid column reached while iterating"))
}
pub fn transpose(&self) -> Matrix<T, N, M>
where
Matrix<T, N, M>: Default,
{
Matrix::<T, N, M>::from_rows(self.cols())
}
// pub fn mmul<const P: usize, R, O>(&self, rhs: &Matrix<R, P, N>) -> Matrix<T, P, M>
// where
// R: Num,
// T: Scalar + Mul<R, Output = T>,
// Vector<T, N>: Dot<Vector<R, M>, Output = T>,
// {
// let mut result: Matrix<T, P, M> = Zero::zero();
//
// for (m, a) in self.rows().enumerate() {
// for (n, b) in rhs.cols().enumerate() {
// // result[(m, n)] = a.dot(b)
// }
// }
//
// return result;
// }
}
// 1D vector implementations
impl<T: Scalar, const M: usize> Matrix<T, M, 1> {
impl<T: Copy, const M: usize> Vector<T, M> {
/// Create a vector from a 1D array.
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
///
@ -249,7 +310,7 @@ impl<T: Scalar, const M: usize> Matrix<T, M, 1> {
///
/// * `data`: A 1D array of elements to copy into the new vector
///
/// returns: Matrix<T, { M }, 1>
/// returns: Vector<T, M>
///
/// # Examples
///
@ -260,17 +321,49 @@ impl<T: Scalar, const M: usize> Matrix<T, M, 1> {
/// assert_eq!(my_vector, Matrix::new([[1],[2],[3],[4]]));
/// ```
pub fn vec(data: [T; M]) -> Self {
return Matrix::<T, M, 1> {
data: data.map(|e| [e; 1]),
return Vector::<T, M> {
data: data.map(|e| [e]),
};
}
}
impl<T: Num + Copy, R: Num + Copy, const M: usize> Dot<Vector<R, M>> for Vector<T, M>
where
for<'a> Output: Sum<&'a T>,
for<'b> &'b Self: Mul<&'b Vector<R, M>, Output = Self>,
{
type Output = T;
fn dot(&self, rhs: &Matrix<R, M, 1>) -> Output {
(self * rhs).elements().sum::<Output>()
}
}
impl<T: Scalar> Vector<T, 3> {
pub fn cross_r<R: Scalar>(&self, rhs: Vector<R, 3>) -> Self
where
T: Mul<R, Output = T> + Sub<T, Output = T>,
{
Self::vec([
(self[1] * rhs[2]) - (self[2] * rhs[1]),
(self[2] * rhs[0]) - (self[0] * rhs[2]),
(self[0] * rhs[1]) - (self[1] * rhs[0]),
])
}
pub fn cross_l<R: Scalar>(&self, rhs: Vector<R, 3>) -> Self
where
T: Mul<R, Output = T> + Sub<T, Output = T>,
Self: Neg<Output = Self>,
{
-self.cross_r(rhs)
}
}
// Index
impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N>
where
I: Index2D,
T: Scalar,
T: Copy,
{
type Output = T;
@ -295,13 +388,28 @@ where
))
}
}
// Default
impl<T: Scalar, const M: usize, const N: usize> Default for Matrix<T, M, N> {
impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
fn default() -> Self {
Matrix {
data: [[T::default(); N]; M],
}
Matrix::new([[T::default(); N]; M])
}
}
// Zero
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
fn zero() -> Self {
Matrix::new([[T::zero(); N]; M])
}
fn is_zero(&self) -> bool {
self.elements().all(|e| e.is_zero())
}
}
// One
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
fn one() -> Self {
Matrix::new([[T::one(); N]; M])
}
}
@ -363,9 +471,12 @@ where
}
}
impl<T: Scalar + AddAssign, const M: usize, const N: usize> Sum for Matrix<T, M, N> {
impl<T: Scalar + AddAssign, const M: usize, const N: usize> Sum for Matrix<T, M, N>
where
Self: Zero + AddAssign,
{
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
let mut sum = Self::default();
let mut sum = Self::zero();
for m in iter {
sum += m;
@ -375,9 +486,12 @@ impl<T: Scalar + AddAssign, const M: usize, const N: usize> Sum for Matrix<T, M,
}
}
impl<T: Scalar + MulAssign, const M: usize, const N: usize> Product for Matrix<T, M, N> {
impl<T: Scalar + MulAssign, const M: usize, const N: usize> Product for Matrix<T, M, N>
where
Self: One + MulAssign,
{
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
let mut prod = Self::default();
let mut prod = Self::one();
for m in iter {
prod *= m;

@ -0,0 +1,22 @@
use num_traits::Pow;
pub trait Dot<RHS> {
type Output;
fn dot(&self, other: &RHS) -> <Self as Dot<RHS>>::Output;
}
pub trait Cross<RHS> {
type Output;
fn cross(&self, other: &RHS) -> <Self as Cross<RHS>>::Output;
}
pub trait Mult<RHS> {
type Output;
fn mult(&self, other: &RHS) -> <Self as Mult<RHS>>::Output;
}
pub trait Magnitude<T: Pow<f32>> {
fn sqrmag(&self) -> T;
fn mag(&self) -> <T as Pow<f32>>::Output;
fn norm(&self) -> Self;
}
Loading…
Cancel
Save