Improve documentation on everything in lib.rs

This commit is contained in:
Andrew Cassidy 2023-05-22 22:42:20 -07:00
parent 4bbcabb2aa
commit 9b14bebb2d
6 changed files with 306 additions and 123 deletions

View File

@ -124,7 +124,7 @@ impl<T: Copy + Default + Real, const N: usize> LUDecomposition<T, N> {
/// This is equivalent to [`LUDecompose::det`] while allowing the LU decomposition
/// to be reused
pub fn det(&self) -> T {
self.parity * self.lu.diagonals().fold(T::one(), T::mul)
self.parity * self.lu.diagonals().fold(T::one(), |l, &r| l * r)
}
/// Calculate the inverse of the original matrix, such that $bbM xx bbM^{-1} = bbI$

View File

@ -1,66 +0,0 @@
use crate::Matrix;
use num_traits::{Bounded, One, Zero};
// Identity
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
/// Create an identity matrix, a square matrix where the diagonals are 1 and all other elements
/// are 0.
/// for example,
///
/// $bbI = [[1,0,0],[0,1,0],[0,0,1]]$
///
/// Matrix multiplication between a matrix and the identity matrix always results in itself
///
/// $bbA xx bbI = bbA$
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let i = Matrix::<i32,3,3>::identity();
/// assert_eq!(i, Matrix::mat([[1,0,0],[0,1,0],[0,0,1]]))
/// ```
///
/// Note that the identity only exists for matrices that are square, so this doesnt work:
/// ```compile_fail
/// # use vector_victor::Matrix;
/// let i = Matrix::<i32,4,2>::identity();
/// ```
#[must_use]
pub fn identity() -> Self {
let mut result = Self::zero();
for i in 0..N {
result[(i, i)] = T::one();
}
return result;
}
}
// Zero
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
fn zero() -> Self {
Matrix::fill(T::zero())
}
fn is_zero(&self) -> bool {
self.elements().all(|e| e.is_zero())
}
}
// One
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
fn one() -> Self {
Matrix::fill(T::one())
}
}
// min_value and max_value
// LowerBounded and UpperBounded are automatically implemented from this
impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N, M> {
fn min_value() -> Self {
Self::fill(T::min_value())
}
fn max_value() -> Self {
Self::fill(T::max_value())
}
}

View File

@ -19,7 +19,7 @@ use std::fmt::Debug;
/// assert_eq!(m[7], 8);
///
/// let v = Vector::vec([4,8,15,16,23,42]);
/// assert_eq!(m[2], 15); // just like a std::vec
/// assert_eq!(v[2], 15); // just like a std::vec
/// ```
///
/// Indexing by a `(usize,usize)` indexes by row and column

View File

@ -1,13 +1,13 @@
extern crate core;
use index::Index2D;
use num_traits::{Bounded, One, Zero};
use std::cmp::min;
use std::fmt::Debug;
use std::iter::{zip, Flatten};
use std::ops::{Index, IndexMut};
pub mod decompose;
mod identities;
pub mod index;
mod math;
mod ops;
@ -37,6 +37,72 @@ impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M,
}
}
// Zero
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
fn zero() -> Self {
Matrix::fill(T::zero())
}
fn is_zero(&self) -> bool {
self.elements().all(|e| e.is_zero())
}
}
// One
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
fn one() -> Self {
Matrix::fill(T::one())
}
}
// min_value and max_value
// LowerBounded and UpperBounded are automatically implemented from this
impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N, M> {
fn min_value() -> Self {
Self::fill(T::min_value())
}
fn max_value() -> Self {
Self::fill(T::max_value())
}
}
// Identity
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
/// Create an identity matrix, a square matrix where the diagonals are 1 and all other elements
/// are 0.
/// for example,
///
/// $bbI = [[1,0,0],[0,1,0],[0,0,1]]$
///
/// Matrix multiplication between a matrix and the identity matrix always results in itself
///
/// $bbA xx bbI = bbA$
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let i = Matrix::<i32,3,3>::identity();
/// assert_eq!(i, Matrix::mat([[1, 0, 0],
/// [0, 1, 0],
/// [0, 0, 1]]))
/// ```
///
/// Note that the identity only exists for matrices that are square, so this doesnt work:
/// ```compile_fail
/// # use vector_victor::Matrix;
/// let i = Matrix::<i32,4,2>::identity();
/// ```
#[must_use]
pub fn identity() -> Self {
let mut result = Self::zero();
for i in 0..N {
result[(i, i)] = T::one();
}
return result;
}
}
// Matrix constructors
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// Generate a new matrix from a 2D Array
@ -45,8 +111,6 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
///
/// * `data`: A 2D array of elements to copy into the new matrix
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
@ -66,15 +130,12 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
///
/// * `scalar`: Scalar value to copy into the new matrix.
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::<i32,4,4>::fill(5);
/// // is equivalent to
/// assert_eq!(my_matrix, Matrix::mat([[5;4];4]))
/// // these are equivalent
/// assert_eq!(Matrix::<i32,4,4>::fill(5), Matrix::mat([[5;4];4]))
/// ```
#[must_use]
pub fn fill(scalar: T) -> Matrix<T, M, N> {
@ -91,15 +152,19 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
///
/// * `iter`: iterator of vectors to copy into rows
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// The following is another way of performing [`Matrix::transpose()`]
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]);
/// let my_matrix = Matrix::mat([[1, 2, 3],
/// [4, 5, 6]]);
///
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]]))
///
/// assert_eq!(transpose, Matrix::mat([[1, 4],
/// [2, 5],
/// [3, 6]]))
/// ```
#[must_use]
pub fn from_rows<I>(iter: I) -> Self
@ -120,15 +185,19 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
///
/// * `iter`: iterator of vectors to copy into columns
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// The following is another way of performing [`Matrix::transpose()`]
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]);
/// let my_matrix = Matrix::mat([[1, 2, 3],
/// [4, 5, 6]]);
///
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]]))
///
/// assert_eq!(transpose, Matrix::mat([[1, 4],
/// [2, 5],
/// [3, 6]]))
/// ```
#[must_use]
pub fn from_cols<I>(iter: I) -> Self
@ -152,9 +221,8 @@ impl<T: Copy, const N: usize> Vector<T, N> {
/// # Examples
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_vector = Vector::vec([1,2,3,4]);
/// // is equivalent to
/// assert_eq!(my_vector, Matrix::mat([[1],[2],[3],[4]]));
/// // these are equivalent
/// assert_eq!(Vector::vec([1,2,3,4]), Matrix::mat([[1],[2],[3],[4]]));
/// ```
pub fn vec(data: [T; N]) -> Self {
assert!(N > 0, "Vector must have at least 1 element");
@ -168,44 +236,89 @@ impl<T: Copy, const N: usize> Vector<T, N> {
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// Returns an iterator over the elements of the matrix in row-major order.
///
/// This is identical to the behavior of [`IntoIterator`](#associatedtype.IntoIter)
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
/// assert!(vec![1,2,3,4].iter().eq(my_matrix.elements()))
/// let my_matrix = Matrix::mat([[1, 2],
/// [3, 4]]);
///
/// itertools::assert_equal(my_matrix.elements(), [1,2,3,4].iter())
/// ```
#[must_use]
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a {
pub fn elements<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
self.data.iter().flatten()
}
/// Returns a mutable iterator over the elements of the matrix in row-major order.
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let mut my_matrix = Matrix::mat([[1, 2],
/// [3, 4]]);
///
/// for elem in my_matrix.elements_mut() {*elem += 2;}
/// itertools::assert_equal(my_matrix.elements(), [3,4,5,6].iter())
/// ```
#[must_use]
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
pub fn elements_mut<'s>(&'s mut self) -> impl Iterator<Item = &'s mut T> + 's {
self.data.iter_mut().flatten()
}
/// returns an iterator over the elements along the diagonal of a matrix
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1, 2, 3],
/// [4, 5, 6],
/// [7, 8, 9],
/// [10,11,12]]);
///
/// itertools::assert_equal(my_matrix.diagonals(), [1,5,9].iter())
/// ```
#[must_use]
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..min(N, M)).map(|n| self[(n, n)])
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
(0..min(N, M)).map(|n| &self[(n, n)])
}
/// Returns an iterator over the elements directly below the diagonal of a matrix
/// returns an iterator over the elements along the diagonal of a matrix
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1, 2, 3],
/// [4, 5, 6],
/// [7, 8, 9],
/// [10,11,12]]);
///
/// itertools::assert_equal(my_matrix.subdiagonals(), [4,8,12].iter());
/// ```
#[must_use]
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..min(N, M) - 1).map(|n| self[(n, n + 1)])
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
(0..min(N, M - 1)).map(|n| &self[(n + 1, n)])
}
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
///
/// [`Index`](#impl-Index%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
/// but will panic if the index is out of bounds instead of returning an option
///
/// # Arguments
///
/// * `index`: a 1D or 2D index into the matrix. See [Index2D] for more information on matrix indexing.
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
/// let my_matrix = Matrix::mat([[1, 2],
/// [3, 4]]);
///
/// // element at index 2 is the same as the element at (row 1, column 0).
/// // element at index 2 is the same as the element at row 1, column 0.
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
///
/// // my_matrix.get() is equivalent to my_matrix[],
@ -222,7 +335,29 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Some(&self.data[m][n])
}
/// Returns a mutable reference to the element at that position in the matrix, or `None` if out of bounds.
/// Returns a mutable reference to the element at that position in the matrix,
/// or `None` if out of bounds.
///
/// [`IndexMut`](#impl-IndexMut%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
/// but will panic if the index is out of bounds instead of returning an option
///
/// # Arguments
///
/// * `index`: a 1D or 2D index into the matrix. See [Index2D] for more information
/// on matrix indexing.
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let mut my_matrix = Matrix::mat([[1, 2],
/// [3, 4]]);
///
/// match my_matrix.get_mut(2) {
/// Some(t) => *t = 5,
/// None => panic!()};
/// assert_eq!(my_matrix, Matrix::mat([[1,2],[5,4]]))
/// ```
#[inline]
#[must_use]
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
@ -230,13 +365,18 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Some(&mut self.data[m][n])
}
/// Returns a row of the matrix. or [None] if index is out of bounds
/// Returns a row of the matrix.
///
/// # Panics
///
/// Panics if row index `m` is out of bounds.
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
/// let my_matrix = Matrix::mat([[1, 2],
/// [3, 4]]);
///
/// // row at index 1
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
@ -246,7 +386,7 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
pub fn row(&self, m: usize) -> Vector<T, N> {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
"Row index {} out of bounds for {}×{} matrix",
m,
M,
N
@ -254,11 +394,27 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Vector::<T, N>::vec(self.data[m])
}
/// Sets a row of the matrix.
///
/// # Panics
///
/// Panics if row index `m` is out of bounds.
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let mut my_matrix = Matrix::mat([[1, 2],
/// [3, 4]]);
/// // row at index 1
/// my_matrix.set_row(1, &Vector::vec([5,6]));
/// assert_eq!(my_matrix, Matrix::mat([[1,2],[5,6]]));
/// ```
#[inline]
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
"Row index {} out of bounds for {}×{} matrix",
m,
M,
N
@ -268,18 +424,28 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
}
}
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
let tmp = self.row(m2);
self.set_row(m2, &self.row(m1));
self.set_row(m1, &tmp);
}
/// Returns a column of the matrix.
///
/// # Panics
///
/// Panics if column index `n` is out of bounds.
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_matrix = Matrix::mat([[1, 2],
/// [3, 4]]);
///
/// // column at index 1
/// assert_eq!(my_matrix.col(1), Vector::vec([2,4]));
/// ```
#[inline]
#[must_use]
pub fn col(&self, n: usize) -> Vector<T, M> {
assert!(
n < N,
"Column index {} out of bounds for {}x{} matrix",
"Column index {} out of bounds for {}×{} matrix",
n,
M,
N
@ -287,11 +453,27 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Vector::<T, M>::vec(self.data.map(|r| r[n]))
}
/// Sets a column of the matrix.
///
/// # Panics
///
/// Panics if column index `n` is out of bounds.
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let mut my_matrix = Matrix::mat([[1, 2],
/// [3, 4]]);
/// // column at index 1
/// my_matrix.set_col(1, &Vector::vec([5,6]));
/// assert_eq!(my_matrix, Matrix::mat([[1,5],[3,6]]));
/// ```
#[inline]
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
assert!(
n < N,
"Column index {} out of bounds for {}x{} matrix",
"Column index {} out of bounds for {}×{} matrix",
n,
M,
N
@ -302,22 +484,64 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
}
}
/// Returns an iterator over the rows of the matrix, returning them as column vectors.
#[must_use]
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m))
}
/// Returns an iterator over the columns of the matrix, returning them as column vectors.
#[must_use]
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n))
}
/// Interchange two rows
///
/// # Panics
///
/// Panics if row index `m1` or `m2` are out of bounds
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
let tmp = self.row(m2);
self.set_row(m2, &self.row(m1));
self.set_row(m1, &tmp);
}
/// Interchange two columns
///
/// # Panics
///
/// Panics if column index `n1` or `n2` are out of bounds
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
let tmp = self.col(n2);
self.set_col(n2, &self.col(n1));
self.set_col(n1, &tmp);
}
#[must_use]
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m))
}
#[must_use]
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n))
}
/// Apply a permutation matrix to the rows of a matrix
///
/// # Arguments
///
/// * `ms`: a [`Vector`] of [`usize`] of length M. Each entry is the index of the row that will
/// appear in the result
///
/// # Panics
///
/// Panics if any of the row indices in `ms` is out of bounds
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_matrix = Matrix::mat([[1, 2, 3],
/// [4, 5, 6],
/// [7, 8, 9]]);
///
/// let permuted = my_matrix.permute_rows(&Vector::vec([1, 0, 2]));
/// assert_eq!(permuted, Matrix::mat([[4, 5, 6],
/// [1, 2, 3],
/// [7, 8, 9]]))
/// ```
#[must_use]
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
where
@ -326,6 +550,16 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Self::from_rows(ms.elements().map(|&m| self.row(m)))
}
/// Apply a permutation matrix to the columns of a matrix
///
/// # Arguments
///
/// * `ns`: a [`Vector`] of [`usize`] of length N. Each entry is the index of the column that will
/// appear in the result
///
/// # Panics
///
/// Panics if any of the column indices in `ns` is out of bounds
#[must_use]
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
where
@ -334,6 +568,20 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Self::from_cols(ns.elements().map(|&n| self.col(n)))
}
/// Returns the transpose $M^T$ of the matrix, or the matrix flipped across its diagonal.
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1, 2, 3],
/// [4, 5, 6]]);
///
/// assert_eq!(
/// my_matrix.transpose(),
/// Matrix::mat([[1, 4],
/// [2, 5],
/// [3, 6]]))
/// ```
pub fn transpose(&self) -> Matrix<T, N, M>
where
Matrix<T, N, M>: Default,
@ -353,7 +601,7 @@ where
#[inline(always)]
fn index(&self, index: I) -> &Self::Output {
self.get(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",
"index {:?} out of range for {}×{} Matrix",
index, M, N
))
}
@ -368,7 +616,7 @@ where
#[inline(always)]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
self.get_mut(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",
"index {:?} out of range for {}×{} Matrix",
index, M, N
))
}

View File

@ -1 +0,0 @@

View File

@ -1,3 +1,5 @@
//! Data structures and traits for decomposing and solving matrices
#[macro_use]
mod common;