mirror of
https://github.com/drewcassidy/vector-victor.git
synced 2024-09-01 14:58:35 +00:00
rename solve to decompose and rearrange stuff
This commit is contained in:
parent
543769f691
commit
bddc3e1977
@ -2,18 +2,16 @@ use crate::util::checked_inv;
|
||||
use crate::Matrix;
|
||||
use crate::Vector;
|
||||
use num_traits::real::Real;
|
||||
use num_traits::{One, Zero};
|
||||
use std::iter::{Product, Sum};
|
||||
use std::ops::Index;
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq)]
|
||||
pub struct LUDecomp<T: Copy, const N: usize> {
|
||||
pub struct LUDecomposition<T: Copy, const N: usize> {
|
||||
pub lu: Matrix<T, N, N>,
|
||||
pub idx: Vector<usize, N>,
|
||||
pub parity: T,
|
||||
}
|
||||
|
||||
impl<T: Copy + Default, const N: usize> LUDecomp<T, N>
|
||||
impl<T: Copy + Default, const N: usize> LUDecomposition<T, N>
|
||||
where
|
||||
T: Real + Default + Sum + Product,
|
||||
{
|
||||
@ -133,12 +131,12 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
pub trait LUSolve<T, const N: usize>
|
||||
pub trait LUDecomposable<T, const N: usize>
|
||||
where
|
||||
T: Copy + Default + Real + Product + Sum,
|
||||
{
|
||||
#[must_use]
|
||||
fn lu(&self) -> Option<LUDecomp<T, N>>;
|
||||
fn lu(&self) -> Option<LUDecomposition<T, N>>;
|
||||
|
||||
#[must_use]
|
||||
fn inverse(&self) -> Option<Matrix<T, N, N>>;
|
||||
@ -147,6 +145,57 @@ where
|
||||
fn det(&self) -> T;
|
||||
|
||||
#[must_use]
|
||||
fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Option<Matrix<T, N, M>>;
|
||||
}
|
||||
|
||||
impl<T, const N: usize> LUDecomposable<T, N> for Matrix<T, N, N>
|
||||
where
|
||||
T: Copy + Default + Real + Sum + Product,
|
||||
{
|
||||
fn lu(&self) -> Option<LUDecomposition<T, N>> {
|
||||
LUDecomposition::decompose(self)
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Matrix<T, N, N>> {
|
||||
match N {
|
||||
1 => Some(Self::fill(checked_inv(self[0])?)),
|
||||
2 => {
|
||||
let mut result = Self::default();
|
||||
result[(0, 0)] = self[(1, 1)];
|
||||
result[(1, 1)] = self[(0, 0)];
|
||||
result[(1, 0)] = -self[(1, 0)];
|
||||
result[(0, 1)] = -self[(0, 1)];
|
||||
Some(result * checked_inv(self.det())?)
|
||||
}
|
||||
_ => Some(self.lu()?.inverse()),
|
||||
}
|
||||
}
|
||||
|
||||
fn det(&self) -> T {
|
||||
match N {
|
||||
1 => self[0],
|
||||
2 => (self[(0, 0)] * self[(1, 1)]) - (self[(0, 1)] * self[(1, 0)]),
|
||||
3 => {
|
||||
// use rule of Sarrus
|
||||
(0..N) // starting column
|
||||
.map(|i| {
|
||||
let dn = (0..N)
|
||||
.map(|j| -> T { self[(j, (j + i) % N)] })
|
||||
.product::<T>();
|
||||
let up = (0..N)
|
||||
.map(|j| -> T { self[(N - j - 1, (j + i) % N)] })
|
||||
.product::<T>();
|
||||
dn - up
|
||||
})
|
||||
.sum::<T>()
|
||||
}
|
||||
_ => {
|
||||
// use LU decomposition
|
||||
self.lu().map_or(T::zero(), |lu| lu.det())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Option<Matrix<T, N, M>> {
|
||||
Some(self.lu()?.solve(b))
|
||||
}
|
@ -1,9 +1,9 @@
|
||||
extern crate core;
|
||||
|
||||
pub mod decompose;
|
||||
pub mod index;
|
||||
mod macros;
|
||||
mod matrix;
|
||||
pub mod solve;
|
||||
mod util;
|
||||
|
||||
pub use matrix::{Matrix, Vector};
|
||||
|
@ -1,13 +1,10 @@
|
||||
use crate::impl_matrix_op;
|
||||
use crate::index::Index2D;
|
||||
use crate::util::checked_inv;
|
||||
|
||||
use num_traits::real::Real;
|
||||
use num_traits::{Num, NumOps, One, Zero};
|
||||
use std::fmt::Debug;
|
||||
use std::iter::{zip, Flatten, Product, Sum};
|
||||
|
||||
use crate::solve::{LUDecomp, LUSolve};
|
||||
use std::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Mul, MulAssign, Neg};
|
||||
|
||||
/// A 2D array of values which can be operated upon.
|
||||
@ -401,55 +398,6 @@ impl<T: Copy, const N: usize> Matrix<T, N, N> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, const N: usize> LUSolve<T, N> for Matrix<T, N, N>
|
||||
where
|
||||
T: Copy + Default + Real + Sum + Product,
|
||||
{
|
||||
fn lu(&self) -> Option<LUDecomp<T, N>> {
|
||||
LUDecomp::decompose(self)
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Matrix<T, N, N>> {
|
||||
match N {
|
||||
1 => Some(Self::fill(checked_inv(self[0])?)),
|
||||
2 => {
|
||||
let mut result = Self::default();
|
||||
result[(0, 0)] = self[(1, 1)];
|
||||
result[(1, 1)] = self[(0, 0)];
|
||||
result[(1, 0)] = -self[(1, 0)];
|
||||
result[(0, 1)] = -self[(0, 1)];
|
||||
Some(result * checked_inv(self.det())?)
|
||||
}
|
||||
_ => Some(self.lu()?.inverse()),
|
||||
}
|
||||
}
|
||||
|
||||
fn det(&self) -> T {
|
||||
match N {
|
||||
1 => self[0],
|
||||
2 => (self[(0, 0)] * self[(1, 1)]) - (self[(0, 1)] * self[(1, 0)]),
|
||||
3 => {
|
||||
// use rule of Sarrus
|
||||
(0..N) // starting column
|
||||
.map(|i| {
|
||||
let dn = (0..N)
|
||||
.map(|j| -> T { self[(j, (j + i) % N)] })
|
||||
.product::<T>();
|
||||
let up = (0..N)
|
||||
.map(|j| -> T { self[(N - j - 1, (j + i) % N)] })
|
||||
.product::<T>();
|
||||
dn - up
|
||||
})
|
||||
.sum::<T>()
|
||||
}
|
||||
_ => {
|
||||
// use LU decomposition
|
||||
self.lu().map_or(T::zero(), |lu| lu.det())
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Index
|
||||
impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N>
|
||||
where
|
||||
|
@ -1,4 +1,4 @@
|
||||
use num_traits::{Num, NumOps, One, Zero};
|
||||
use num_traits::{Num, One, Zero};
|
||||
use std::ops::Div;
|
||||
|
||||
pub fn checked_div<L: Num + Div<R, Output = T>, R: Num + Zero, T>(num: L, den: R) -> Option<T> {
|
||||
|
@ -29,10 +29,6 @@ impl<T: Copy + Approx, const M: usize, const N: usize> Approx for Matrix<T, M, N
|
||||
}
|
||||
}
|
||||
|
||||
pub fn approx<T: Approx>(left: &T, right: &T) -> bool {
|
||||
T::approx(left, right)
|
||||
}
|
||||
|
||||
macro_rules! assert_approx {
|
||||
($left:expr, $right:expr $(,)?) => {
|
||||
match (&$left, &$right) {
|
||||
|
@ -6,8 +6,8 @@ use generic_parameterize::parameterize;
|
||||
use num_traits::real::Real;
|
||||
use num_traits::Zero;
|
||||
use std::fmt::Debug;
|
||||
use std::iter::{zip, Product, Sum};
|
||||
use vector_victor::solve::{LUDecomp, LUSolve};
|
||||
use std::iter::{Product, Sum};
|
||||
use vector_victor::decompose::{LUDecomposable, LUDecomposition};
|
||||
use vector_victor::{Matrix, Vector};
|
||||
|
||||
#[parameterize(S = (f32, f64), M = [1,2,3,4])]
|
||||
@ -19,7 +19,7 @@ fn test_lu_identity<S: Default + Approx + Real + Debug + Product + Sum, const M:
|
||||
let i = Matrix::<S, M, M>::identity();
|
||||
let ones = Vector::<S, M>::fill(S::one());
|
||||
let decomp = i.lu().expect("Singular matrix encountered");
|
||||
let LUDecomp { lu, idx, parity } = decomp;
|
||||
let LUDecomposition { lu, idx, parity } = decomp;
|
||||
assert_eq!(lu, i, "Incorrect LU decomposition");
|
||||
assert!(
|
||||
(0..M).eq(idx.elements().cloned()),
|
@ -1,14 +1,10 @@
|
||||
#[macro_use]
|
||||
mod common;
|
||||
|
||||
use common::Approx;
|
||||
use generic_parameterize::parameterize;
|
||||
use num_traits::real::Real;
|
||||
use num_traits::Zero;
|
||||
use std::fmt::Debug;
|
||||
use std::iter::{zip, Product, Sum};
|
||||
use std::ops;
|
||||
use vector_victor::{Matrix, Vector};
|
||||
use vector_victor::Matrix;
|
||||
|
||||
#[parameterize(S = (i32, f32, f64, u32), M = [1,4], N = [1,4])]
|
||||
#[test]
|
||||
|
Loading…
Reference in New Issue
Block a user