vector-victor/tests/decompose.rs

130 lines
4.1 KiB
Rust

// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
//! Data structures and traits for decomposing and solving matrices
#[macro_use]
mod common;
use common::Approx;
use generic_parameterize::parameterize;
use num_traits::real::Real;
use num_traits::Zero;
use std::fmt::Debug;
use vector_victor::decompose::{LUDecompose, LUDecomposition, Parity};
use vector_victor::{Matrix, Vector};
#[parameterize(S = (f32,), M = [1,2,3,4], fmt="{fn}_{M}x{M}")]
#[test]
/// The LU decomposition of the identity matrix should produce
/// the identity matrix with no permutations and parity 1
fn test_lu_identity<S, const M: usize>()
where
Matrix<S, M, M>: LUDecompose<S, M>,
S: Copy + Real + Debug + Approx + Default,
{
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
let i = Matrix::<S, M, M>::identity();
let ones = Vector::<S, M>::fill(S::one());
let decomp = i.lu().expect("Singular matrix encountered");
let LUDecomposition { lu, idx, parity } = decomp;
assert_eq!(lu, i, "Incorrect LU decomposition");
assert!(
(0..M).eq(idx.elements().cloned()),
"Incorrect permutation matrix",
);
assert_eq!(parity, Parity::Even, "Incorrect permutation parity");
// Check determinant calculation which uses LU decomposition
assert_approx!(
i.det(),
S::one(),
"Identity matrix should have determinant of 1"
);
// Check inverse calculation with uses LU decomposition
assert_eq!(
i.inv(),
Some(i),
"Identity matrix should be its own inverse"
);
assert_eq!(
i.solve(&ones),
Some(ones),
"Failed to solve using identity matrix"
);
// Check triangle separation
assert_eq!(decomp.separate(), (i, i));
}
#[parameterize(S = (f32,), M = [2,3,4], fmt="{fn}_{M}x{M}")]
#[test]
/// The LU decomposition of any singular matrix should be `None`
fn test_lu_singular<S, const M: usize>()
where
Matrix<S, M, M>: LUDecompose<S, M>,
S: Copy + Real + Debug + Approx + Default,
{
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
let mut a = Matrix::<S, M, M>::zero();
let ones = Vector::<S, M>::fill(S::one());
a.set_row(0, &ones);
assert_eq!(a.lu(), None, "Matrix should be singular");
assert_eq!(
a.det(),
S::zero(),
"Singular matrix should have determinant of zero"
);
assert_eq!(a.inv(), None, "Singular matrix should have no inverse");
assert_eq!(
a.solve(&ones),
None,
"Singular matrix should not be solvable"
)
}
#[test]
fn test_lu_2x2() {
let a = Matrix::mat([[1.0, 2.0], [3.0, 0.0]]);
let decomp = a.lu().expect("Singular matrix encountered");
// the decomposition is non-unique, due to the combination of lu and idx.
// Instead of checking the exact value, we only check the results.
// Also check if they produce the same results with both methods, since the
// Matrix<> methods use shortcuts the decomposition methods don't
let (l, u) = decomp.separate();
assert_approx!(l.mmul(&u), a.permute_rows(&decomp.idx));
assert_approx!(a.det(), -6.0);
assert_approx!(a.det(), decomp.det());
assert_approx!(
a.inv().unwrap(),
Matrix::mat([[0.0, 2.0], [3.0, -1.0]]) * (1.0 / 6.0)
);
assert_approx!(a.inv().unwrap(), decomp.inv());
assert_approx!(a.inv().unwrap().inv().unwrap(), a)
}
#[test]
fn test_lu_3x3() {
let a = Matrix::mat([[1.0, -5.0, 8.0], [1.0, -2.0, 1.0], [2.0, -1.0, -4.0]]);
let decomp = a.lu().expect("Singular matrix encountered");
let (l, u) = decomp.separate();
assert_approx!(l.mmul(&u), a.permute_rows(&decomp.idx));
assert_approx!(a.det(), 3.0);
assert_approx!(a.det(), decomp.det());
assert_approx!(
a.inv().unwrap(),
Matrix::mat([[9.0, -28.0, 11.0], [6.0, -20.0, 7.0], [3.0, -9.0, 3.0]]) * (1.0 / 3.0)
);
assert_approx!(a.inv().unwrap(), decomp.inv());
assert_approx!(a.inv().unwrap().inv().unwrap(), a)
}