You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

759 lines
21 KiB
Rust

use crate::impl_matrix_op;
use crate::index::Index2D;
use crate::util::checked_inv;
use num_traits::real::Real;
use num_traits::{Num, NumOps, One, Zero};
use std::fmt::Debug;
use std::iter::{zip, Flatten, Product, Sum};
use std::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Mul, MulAssign, Neg};
/// A 2D array of values which can be operated upon.
///
/// Matrices have a fixed size known at compile time, and must be made up of types that implement
/// the [Scalar] trait.
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Matrix<T, const M: usize, const N: usize>
where
T: Copy,
{
data: [[T; N]; M], // Row-Major order
}
/// An alias for a [Matrix] with a single column
pub type Vector<T, const N: usize> = Matrix<T, N, 1>;
// Simple access functions that only require T be copyable
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// Generate a new matrix from a 2D Array
///
/// # Arguments
///
/// * `data`: A 2D array of elements to copy into the new matrix
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let a = Matrix::new([[1,2,3,4];4]);
/// ```
#[must_use]
pub fn new(data: [[T; N]; M]) -> Self {
assert!(M > 0, "Matrix must have at least 1 row");
assert!(N > 0, "Matrix must have at least 1 column");
Matrix::<T, M, N> { data }
}
/// Generate a new matrix from a single scalar
///
/// # Arguments
///
/// * `scalar`: Scalar value to copy into the new matrix.
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::<i32,4,4>::fill(5);
/// // is equivalent to
/// assert_eq!(my_matrix, Matrix::new([[5;4];4]))
/// ```
#[must_use]
pub fn fill(scalar: T) -> Matrix<T, M, N> {
assert!(M > 0, "Matrix must have at least 1 row");
assert!(N > 0, "Matrix must have at least 1 column");
Matrix::<T, M, N> {
data: [[scalar; N]; M],
}
}
/// Create a matrix from an iterator of vectors
///
/// # Arguments
///
/// * `iter`: iterator of vectors to copy into rows
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::new([[1,2,3],[4,5,6]]);
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
/// assert_eq!(transpose, Matrix::new([[1,4],[2,5],[3,6]]))
/// ```
#[must_use]
pub fn from_rows<I>(iter: I) -> Self
where
I: IntoIterator<Item = Vector<T, N>>,
Self: Default,
{
let mut result = Self::default();
for (m, row) in iter.into_iter().enumerate().take(M) {
result.set_row(m, &row)
}
result
}
/// Create a matrix from an iterator of vectors
///
/// # Arguments
///
/// * `iter`: iterator of vectors to copy into columns
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::new([[1,2,3],[4,5,6]]);
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
/// assert_eq!(transpose, Matrix::new([[1,4],[2,5],[3,6]]))
/// ```
#[must_use]
pub fn from_cols<I>(iter: I) -> Self
where
I: IntoIterator<Item = Vector<T, M>>,
Self: Default,
{
let mut result = Self::default();
for (n, col) in iter.into_iter().enumerate().take(N) {
result.set_col(n, &col)
}
result
}
/// Returns an iterator over the elements of the matrix in row-major order.
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
/// assert!(vec![1,2,3,4].iter().eq(my_matrix.elements()))
/// ```
#[must_use]
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a {
self.data.iter().flatten()
}
/// Returns a mutable iterator over the elements of the matrix in row-major order.
#[must_use]
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
self.data.iter_mut().flatten()
}
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
///
/// // element at index 2 is the same as the element at (row 1, column 0).
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
///
/// // my_matrix.get() is equivalent to my_matrix[],
/// // but returns an Option instead of panicking
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
///
/// // index 4 is out of range, so get(4) returns None.
/// assert_eq!(my_matrix.get(4), None);
/// ```
#[inline]
#[must_use]
pub fn get(&self, index: impl Index2D) -> Option<&T> {
let (m, n) = index.to_2d(M, N)?;
Some(&self.data[m][n])
}
/// Returns a mutable reference to the element at that position in the matrix, or `None` if out of bounds.
#[inline]
#[must_use]
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
let (m, n) = index.to_2d(M, N)?;
Some(&mut self.data[m][n])
}
/// Returns a row of the matrix. or [None] if index is out of bounds
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
///
/// // row at index 1
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
/// ```
#[inline]
#[must_use]
pub fn row(&self, m: usize) -> Vector<T, N> {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
m,
M,
N
);
Vector::<T, N>::vec(self.data[m])
}
#[inline]
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
m,
M,
N
);
for n in 0..N {
self.data[m][n] = val.data[n][0];
}
}
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
let tmp = self.row(m2);
self.set_row(m2, &self.row(m1));
self.set_row(m1, &tmp);
}
#[inline]
#[must_use]
pub fn col(&self, n: usize) -> Vector<T, M> {
assert!(
n < N,
"Column index {} out of bounds for {}x{} matrix",
n,
M,
N
);
Vector::<T, M>::vec(self.data.map(|r| r[n]))
}
#[inline]
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
assert!(
n < N,
"Column index {} out of bounds for {}x{} matrix",
n,
M,
N
);
for m in 0..M {
self.data[m][n] = val.data[m][0];
}
}
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
let tmp = self.col(n2);
self.set_col(n2, &self.col(n1));
self.set_col(n1, &tmp);
}
#[must_use]
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m))
}
#[must_use]
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n))
}
#[must_use]
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
where
T: Default,
{
Self::from_rows(ms.elements().map(|&m| self.row(m)))
}
#[must_use]
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
where
T: Default,
{
Self::from_cols(ns.elements().map(|&n| self.col(n)))
}
pub fn transpose(&self) -> Matrix<T, N, M>
where
Matrix<T, N, M>: Default,
{
Matrix::<T, N, M>::from_rows(self.cols())
}
pub fn abs(&self) -> Self
where
T: Default + PartialOrd + Zero + Neg<Output = T>,
{
self.elements()
.map(|&x| match x > T::zero() {
true => x,
false => -x,
})
.collect()
}
}
// 1D vector implementations
impl<T: Copy, const N: usize> Vector<T, N> {
/// Create a vector from a 1D array.
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
///
/// # Examples
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_vector = Vector::vec([1,2,3,4]);
/// // is equivalent to
/// assert_eq!(my_vector, Matrix::new([[1],[2],[3],[4]]));
/// ```
pub fn vec(data: [T; N]) -> Self {
assert!(N > 0, "Vector must have at least 1 element");
return Vector::<T, N> {
data: data.map(|e| [e]),
};
}
pub fn dot<R>(&self, rhs: &R) -> T
where
for<'s> &'s Self: Mul<&'s R, Output = Self>,
T: Sum<T>,
{
(self * rhs).elements().cloned().sum()
}
}
// Cross Product
impl<T: Copy> Vector<T, 3> {
pub fn cross_r<R: Copy>(&self, rhs: &Vector<R, 3>) -> Self
where
T: NumOps<R> + NumOps,
{
Self::vec([
(self[1] * rhs[2]) - (self[2] * rhs[1]),
(self[2] * rhs[0]) - (self[0] * rhs[2]),
(self[0] * rhs[1]) - (self[1] * rhs[0]),
])
}
pub fn cross_l<R: Copy>(&self, rhs: &Vector<R, 3>) -> Vector<R, 3>
where
R: NumOps<T> + NumOps,
{
rhs.cross_r(self)
}
}
//Matrix Multiplication
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
pub fn mmul<R: Copy, const P: usize>(&self, rhs: &Matrix<R, N, P>) -> Matrix<T, M, P>
where
T: Default + NumOps<R> + Sum,
{
let mut result: Matrix<T, M, P> = Default::default();
for (m, a) in self.rows().enumerate() {
for (n, b) in rhs.cols().enumerate() {
result[(m, n)] = a.dot(&b)
}
}
return result;
}
}
// Square matrix implementations
impl<T: Copy, const N: usize> Matrix<T, N, N> {
/// Create an identity matrix
#[must_use]
pub fn identity() -> Self
where
T: Zero + One,
{
let mut result = Self::zero();
for i in 0..N {
result[(i, i)] = T::one();
}
return result;
}
/// returns an iterator over the elements along the diagonal of a square matrix
#[must_use]
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..N).map(|n| self[(n, n)])
}
/// Returns an iterator over the elements directly below the diagonal of a square matrix
#[must_use]
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..N - 1).map(|n| self[(n, n + 1)])
}
/// Returns `Some(lu, idx, d)`, or [None] if the matrix is singular.
///
/// Where:
/// * `lu`: The LU decomposition of `self`. The upper and lower matrices are combined into a single matrix
/// * `idx`: The permutation of rows on the original matrix needed to perform the decomposition.
/// Each element is the corresponding row index in the original matrix
/// * `d`: The permutation parity of `idx`, either `1` for even or `-1` for odd
///
/// The resulting tuple (once unwrapped) has the [LUSolve] trait, allowing it to be used for
/// solving multiple matrices without having to repeat the LU decomposition process
#[must_use]
pub fn lu(&self) -> Option<(Self, Vector<usize, N>, T)>
where
T: Real + Default,
{
// Implementation from Numerical Recipes §2.3
let mut lu = self.clone();
let mut idx: Vector<usize, N> = (0..N).collect();
let mut d = T::one();
let mut vv: Vector<T, N> = self
.rows()
.map(|row| {
let m = row.elements().cloned().reduce(|acc, x| acc.max(x.abs()))?;
match m < T::epsilon() {
true => None,
false => Some(T::one() / m),
}
})
.collect::<Option<_>>()?; // get the inverse maxabs value in each row
for k in 0..N {
// search for the pivot element and its index
let (ipivot, _) = (lu.col(k) * vv)
.abs()
.elements()
.enumerate()
.skip(k) // below the diagonal
.reduce(|(imax, xmax), (i, x)| match x > xmax {
// Is the figure of merit for the pivot better than the best so far?
true => (i, x),
false => (imax, xmax),
})?;
// do we need to interchange rows?
if k != ipivot {
lu.pivot_row(ipivot, k); // yes, we do
idx.pivot_row(ipivot, k);
d = -d; // change parity of d
vv[ipivot] = vv[k] //interchange scale factor
}
let pivot = lu[(k, k)];
if pivot.abs() < T::epsilon() {
// if the pivot is zero, the matrix is singular
return None;
};
for i in (k + 1)..N {
// divide by the pivot element
let dpivot = lu[(i, k)] / pivot;
lu[(i, k)] = dpivot;
for j in (k + 1)..N {
// reduce remaining submatrix
lu[(i, j)] = lu[(i, j)] - (dpivot * lu[(k, j)]);
}
}
}
return Some((lu, idx, d));
}
/// Computes the inverse matrix of `self`, or [None] if the matrix cannot be inverted.
#[must_use]
pub fn inverse(&self) -> Option<Self>
where
T: Real + Default + Sum + Product,
{
match N {
1 => Some(Self::fill(checked_inv(self[0])?)),
2 => {
let mut result = Self::default();
result[(0, 0)] = self[(1, 1)];
result[(1, 1)] = self[(0, 0)];
result[(1, 0)] = -self[(1, 0)];
result[(0, 1)] = -self[(0, 1)];
Some(result * checked_inv(self.det())?)
}
_ => Some(self.lu()?.inverse()),
}
}
/// Computes the determinant of `self`.
#[must_use]
pub fn det(&self) -> T
where
T: Real + Default + Product + Sum,
{
match N {
1 => self[0],
2 => (self[(0, 0)] * self[(1, 1)]) - (self[(0, 1)] * self[(1, 0)]),
3 => {
// use rule of Sarrus
(0..N) // starting column
.map(|i| {
let dn = (0..N)
.map(|j| -> T { self[(j, (j + i) % N)] })
.product::<T>();
let up = (0..N)
.map(|j| -> T { self[(N - j - 1, (j + i) % N)] })
.product::<T>();
dn - up
})
.sum::<T>()
}
_ => {
// use LU decomposition
self.lu().map_or(T::zero(), |lu| lu.det())
}
}
}
/// Solves a system of `Ax = b` using `self` for `A`, or [None] if there is no solution.
#[must_use]
pub fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Option<Matrix<T, N, M>>
where
T: Real + Default + Sum + Product,
{
Some(self.lu()?.solve(b))
}
}
/// Trait for the result of [Matrix::lu()],
/// allowing a single LU decomposition to be used to solve multiple equations
pub trait LUSolve<T, const N: usize>: Copy
where
T: Real + Copy,
{
/// Solves a system of `Ax = b` using an LU decomposition.
fn solve<const M: usize>(&self, rhs: &Matrix<T, N, M>) -> Matrix<T, N, M>;
/// Solves the determinant using an LU decomposition,
/// by multiplying the product of the diagonals by the permutation parity
fn det(&self) -> T;
/// Solves the inverse of the matrix that the LU decomposition represents.
fn inverse(&self) -> Matrix<T, N, N> {
return self.solve(&Matrix::<T, N, N>::identity());
}
/// Separate the lu decomposition into L and U matrices, such that `L*U = P*A`.
fn separate(&self) -> (Matrix<T, N, N>, Matrix<T, N, N>);
}
impl<T: Copy, const N: usize> LUSolve<T, N> for (Matrix<T, N, N>, Vector<usize, N>, T)
where
T: Real + Default + Sum + Product,
{
#[must_use]
fn solve<const M: usize>(&self, b: &Matrix<T, N, M>) -> Matrix<T, N, M> {
let (lu, idx, _) = self;
let bp = b.permute_rows(idx);
Matrix::from_cols(bp.cols().map(|mut x| {
// Implementation from Numerical Recipes §2.3
// When ii is set to a positive value,
// it will become the index of the first nonvanishing element of b
let mut ii = 0usize;
for i in 0..N {
// forward substitution using L
let mut sum = x[i];
if ii != 0 {
for j in (ii - 1)..i {
sum = sum - (lu[(i, j)] * x[j]);
}
} else if sum.abs() > T::epsilon() {
ii = i + 1;
}
x[i] = sum;
}
for i in (0..N).rev() {
// back substitution using U
let mut sum = x[i];
for j in (i + 1)..N {
sum = sum - (lu[(i, j)] * x[j]);
}
x[i] = sum / lu[(i, i)]
}
x
}))
}
fn det(&self) -> T {
let (lu, _, d) = self;
*d * lu.diagonals().product()
}
fn separate(&self) -> (Matrix<T, N, N>, Matrix<T, N, N>) {
let mut l = Matrix::<T, N, N>::identity();
let mut u = self.0; // lu
for m in 1..N {
for n in 0..m {
// iterate over lower diagonal
l[(m, n)] = u[(m, n)];
u[(m, n)] = T::zero();
}
}
(l, u)
}
}
// Index
impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N>
where
I: Index2D,
T: Copy,
{
type Output = T;
#[inline(always)]
fn index(&self, index: I) -> &Self::Output {
self.get(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",
index, M, N
))
}
}
// IndexMut
impl<I, T, const M: usize, const N: usize> IndexMut<I> for Matrix<T, M, N>
where
I: Index2D,
T: Copy,
{
#[inline(always)]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
self.get_mut(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",
index, M, N
))
}
}
// Default
impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
fn default() -> Self {
Matrix::fill(T::default())
}
}
// Zero
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
fn zero() -> Self {
Matrix::fill(T::zero())
}
fn is_zero(&self) -> bool {
self.elements().all(|e| e.is_zero())
}
}
// One
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
fn one() -> Self {
Matrix::fill(T::one())
}
}
impl<T: Copy, const M: usize, const N: usize> From<[[T; N]; M]> for Matrix<T, M, N> {
fn from(data: [[T; N]; M]) -> Self {
Self::new(data)
}
}
impl<T: Copy, const M: usize> From<[T; M]> for Vector<T, M> {
fn from(data: [T; M]) -> Self {
Self::vec(data)
}
}
impl<T: Copy, const M: usize, const N: usize> From<T> for Matrix<T, M, N> {
fn from(scalar: T) -> Self {
Self::fill(scalar)
}
}
// deref 1x1 matrices to a scalar automatically
impl<T: Copy> Deref for Matrix<T, 1, 1> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.data[0][0]
}
}
// deref 1x1 matrices to a mutable scalar automatically
impl<T: Copy> DerefMut for Matrix<T, 1, 1> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.data[0][0]
}
}
// IntoIter
impl<T: Copy, const M: usize, const N: usize> IntoIterator for Matrix<T, M, N> {
type Item = T;
type IntoIter = Flatten<std::array::IntoIter<[T; N], M>>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter().flatten()
}
}
// FromIterator
impl<T: Copy, const M: usize, const N: usize> FromIterator<T> for Matrix<T, M, N>
where
Self: Default,
{
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut result: Self = Default::default();
for (l, r) in zip(result.elements_mut(), iter) {
*l = r;
}
result
}
}
impl<T: Copy + AddAssign, const M: usize, const N: usize> Sum for Matrix<T, M, N>
where
Self: Zero + Add<Output = Self>,
{
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Self::add)
}
}
impl<T: Copy + MulAssign, const M: usize, const N: usize> Product for Matrix<T, M, N>
where
Self: One + Mul<Output = Self>,
{
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::one(), Self::mul)
}
}
impl_matrix_op!(neg);
impl_matrix_op!(!);
impl_matrix_op!(+);
impl_matrix_op!(-);
impl_matrix_op!(*);
impl_matrix_op!(/);
impl_matrix_op!(%);
impl_matrix_op!(&);
impl_matrix_op!(|);
impl_matrix_op!(^);
impl_matrix_op!(<<);
impl_matrix_op!(>>);